当前位置:文档之家› 双闭环直流电机调速系统设计

双闭环直流电机调速系统设计

双闭环直流电机调速系统设计
双闭环直流电机调速系统设计

《自动控制系统论文设计报告》

班级:自动化09-1

姓名:许丹阳

学号:0918120123

时间:2012年5月12号

指导老师:丁丽娜

大连海洋大学信息工程学院

自动化研究所

双闭环直流电机调速系统设计

摘要

转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。根据晶闸管的特性,通过调节控制角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图。然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。

为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。这就形成了转速、电流双闭环调速系统。先确定其结构形式和设计各元部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算然后最后采用MATLAB/SIMULINK 对整个调速系统进行了仿真分析,最后画出了调速控制电路电气原理图。

关键词:双闭环;转速调节器;电流调节器

目录

一.绪论

1.1直流调速系统的概述……………………………………………………………………

1.2为何要采用直流调速系统………………………………………………………………

1.3研究课题的目的和意义………………………………………………………………………

二.直流调速系统的方案设计

2.1设计内容和要求………………………………………………………………………

2.1.1设计内容……………………………………………………………………

2.1.2设计要求…………………………………………………………………………

2.2 双闭环直流调速系统总设计框图…………………………………………………………

2.3主电路的结构形式………………………………………………………………………三.调节器的设计………………………………………………………………………………

3.1电流调节器的设计…………………………………………………………

3.2转速调节器的设计…………………………………………………………………四.基于MATLAB/SIMULINK的调速系统的仿真……………………………………………五.课程设计总结………………………………………………………………………………六.参考文献………………………………………………………………………………………

绪论

1.1 直流调速系统的概述

三十多年来,直流电机调速控制经历了重大的变革。首先实现了整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进。同时,控制电路已经实现高集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。直流调速是指人为地或自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或外加工电压等方法来改变电动机的机械特性,从而改变电动机机械特性和工作特性机械特性的交点,使电动机的稳定运转速度发生变化。直流电动机具有良好的起、制动性能,宜于在广泛范围内平滑调速,在轧钢机、矿井卷扬机、挖掘机、海洋钻机、金属切削机床、造纸机、高层电梯等需要高性能可控电力拖动的领域中得到了广泛的应用。近年来,交流调速系统发展很快,然而直流拖动系统无论在理论上和实践上都比较成熟,并且从反馈闭环控制的角度来看,它又是交流拖动控制系统的基础,所以直流调速系统在生产生活中有着举足轻重的作用。

1.2 为何要采用直流双闭环调速

同开环控制系统相比,闭环控制具有一系列优点。在反馈控制系统中,不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。因此,它具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。由于闭环系统的这些优点因此选用闭环系统。

单闭环速度反馈调速系统,采用PI控制器时,可以保证系统稳态速度误差为零。但是如果对系统的动态性能要求较高,如果要求快速起制动,突加负载动态速降小等,单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照要求来控制动态过程的电流或转矩。另外,单闭环调速系统的动态抗干扰性较差,当电网电压波动时,必须待转速发生变化后,调节作用才能产生,因此动态误差较大。

在要求较高的调速系统中,一般有两个基本要求:一是能够快速启动制动;二是能够快速克服负载、电网等干扰。通过分析发现,如果要求快速起动,必须使直流电动机在起动过程中输出最大的恒定允许电磁转矩,即最大的恒定允许电枢电流,当电枢电流保持最大允许值时,电动机以恒加速度升速至给定转速,然后电枢电流立即降至负载电流值。如果要求快速克服电网的干扰,必须对电枢电流进行调节。

以上两点都涉及电枢电流的控制,所以自然考虑到将电枢电流也作为被控量,组成转速、电流双闭环调速系统。

1.3 研究课题的目的和意义

在单闭环调速系统中,电网电压扰动的作用点离被调量较远,调节作用受到多个环节的延滞,因此单闭环调速系统抵抗电压扰动的性能要差一些。双闭环系统中,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才能反馈

回来,抗扰性能大有改善因此,在双闭环系统中,由电网电压波动引起的转速动态变化会比单闭环系统小得多。用经典的动态校正方法设计调节器须同时解决稳、准、快、抗干扰等各方面相互有矛盾的静、动态性能要求,需要设计者有扎实的理论基础和丰富的实践经验,而初学者则不易掌握,于是有必要建立实用的设计方法。大多数现代的电力拖动自动控制系统均可由低阶系统近似。若事先深入研究低阶典型系统的特性并制成图表,那么将实际系统校正或简化成典型系统的形式再与图表对照,设计过程就简便多了。这样,就有了建立工程设计方法的可能性。

直流调速系统的方案设计

2.1.设计内容和要求

2.1.1设计内容:

1. 根据题目的技术要求,分析论证并确定主电路的结构形式和闭环调速系统的组成,画出系统组成的原理框图。

2. 调速系统主电路元部件的确定及其参数计算。

3. 驱动控制电路的选型设计。

4.动态设计计算:根据技术要求,对系统进行动态校正,确定ASR 调节器与ACR 调节器的结构形式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。

5. 绘制V —M 双闭环直流不可逆调速系统电器原理图,并研究参数变化时对直流电动机动态性能的影响。

2.1.2设计要求(假想参数):

1. 该调速系统能进行平滑地速度调节,负载电机不可逆运行,具有较宽地转速调速范围(10D ≥),系统在工作范围内能稳定工作。

2. 系统静特性良好,无静差(静差率2S ≤)。

3. 动态性能指标:转速超调量8%n δ<,电流超调量5%i δ<,动态最大转速降

810%n ?≤~,调速系统的过渡过程时间(调节时间)1s t s ≤。

4. 系统在5%负载以上变化的运行范围内电流连续。

5. 调速系统中设置有过电压、过电流保护,并且有制动措施。

6. 主电路采用三项全控桥。

2.2.双闭环直流调速系统总设计框图

在生活中,直接提供的是三相交流760V 电源,而直流电机的供电需要三相直流电, 因此要进行整流,本设计采用三相桥式整流电路将三相交流电源变成三相直流电源,最后达到要求把电源提供给直流电动机。如图2-1设计的总框架。

图2-1

双闭环直流调速系统设计总框架

三相交流电路的交、直流侧及三相桥式整流电路中晶闸管中电路保护有电压、电流保护。一般保护有快速熔断器,压敏电阻,阻容式。根据不同的器件和保护的不同要求采用不同的方法。

驱动电路是电力电子主电路与控制电路之间的接口,是电力电子装置的重要环节, 它将信息电子电路传来的信号按照其控制目标的要求,转换为加在电力电子器件控制端和公共端之间,可以使其开通或关断的信号。本设计使用的是晶闸管,即半控型器件。驱动电路对半控型只需要提供开通控制信号,对于晶闸管的驱动电路叫作触发电路。

直流调速系统中应用最普遍的方案是转速、电流双闭环系统,采用串级控制的方式。转速负反馈环为外环,其作用是保证系统的稳速精度;电流负反馈环为内环,其作用是实现电动机的转距控制,同时又能实现限流以及改善系统的动态性能。转速、电流双闭环直流调速系统在突加给定下的跟随性能、动态限流性能和抗扰动性能等,都比单闭环调速系统好。

2.3. 主电路的结构形式

在直流调速系统中,我们采用的是晶闸管-电动机调速系统(简称V-M 系统)的原理图如图2-2所示。它通过调节处罚装置GT 的控制电压c U 来移动触发脉冲的相位,即可改变平均整流电压d U ,从而实现平滑调速。与旋转变流机组及离子拖动变流装置相比,晶闸管整流装置不仅在经济性和可靠性上都很大提高,而且在技术性能上也显现出较大的优越性。 对于要求在一定范围内无级平滑调速的系统来说,自动控制的直流调速系统往往以调压调速为主,根据晶闸管的特性,可以通过调节控制角α大小来调节电压。当整流负载容量较大或直流电压脉动较小时应采用三相整流电路,其交流侧由三相电源供电。三相整流电路中又分三相半波和全控桥整流电路,因为三相半波整流电路在其变压器的二次侧含有

直流分量,故本设计采用了三相全控桥整流电路来供电, 该电路是目前应用最广泛的整流电路,输出电压波动小,适 图2-2 V-M 系统原理

合直流电动机的负载,并且该电路组成的调速装置调节范围广,能实现电动机连续、平滑地转速调节、电动机不可逆运行等技术要求。

保护电路

三相交流电源

三相直流电源

直流电机

驱动电路 双闭环调速系统

整流

供电

图2-3 主电路原理图

三相全控制整流电路由晶闸管VT1、VT3、VT5接成共阴极组,晶闸管VT4、VT6、VT2接成共阳极组,在电路控制下,只有接在电路共阴极组中电位为最高又同时输入触发脉冲的晶闸管,以及接在电路共阳极组中电位最低而同时输入触发脉冲的晶闸管,同时导通时,才构成完整的整流电路。

为了使元件免受在突发情况下超过其所承受的电压电流的侵害,在三相交流电路的交、直流侧及三相桥式整流电路中晶闸管中电路保护有电压、电流保护。一般保护有快速熔断器,压敏电阻,阻容式。

双闭环调速系统是建立在单闭环自动调速系统上的,实际的调速系统除要求对转速进行调整外, 很多生产机械还提出了加快启动和制动过程的要求,这就需要一个电流截止负反馈系统。

由2-4图启动电流的变化特性可知,在电机启动时, 启动

电流很快加大到允许过载能力值dm I , 并且保持不变, 在这个 条件下, 转速n 得到线性增长, 当开到需要的大小时, 电机的 电流急剧下降到克服负载所需的电流fz I 值,对应这种要求可控 硅整流器的电压在启动一开始时应为dm I R ∑, 随着转速n 的上升,

dm e U I R C n ∑=+ 也上升, 达到稳转速时, fz e U I R C n ∑=+。

这就要求在启动过程中把电动机的电流当作被调节量, 使之维持

在电机允许的最大值dm I , 并保持不变。这就要求一个电流调节 图2-4 带截止负反馈系统启动电流波形

器来完成这个任务。带有速度调节器和电流调节器的双闭环调速系统便是在这种要求下产生的。

图2-5转速、电流双闭环直流调速系统原理框图

(注: ASR —转速调节器 ACR —电流调节器 TG —直流测速发电机 TA —电流互感器 UPE —电力电子装置 Un*—转速给定电压 Un —转速反馈电压 Ui*—电流给定电压 Ui —电流反馈电压)

为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级联接,如图2-5所示。这就是说把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。从闭环结构上看,电流调节环在里面,叫内环;转速调节环在外边,叫做外环,这样就形成了转速、电流双闭环调速系统。

调节器的设计

3.1.电流调节器的设计 1. 时间常数的确定

(1) 整流装置滞后时间常数,即三相桥式电路的平均失控时间 Ts=0.0017s 。 (2)电流滤波时间常数oi T 。三相桥式电路的每个波头的时间是3.3ms ,为了基本滤平波头,应有(1~2)oi T =3.3ms ,因此取oi T =2ms=0.002s 。

(3)电流环小时间常数之和i T ∑。按小时间常数近似处理,取=Ts+Toi=0.0037s i T ∑。 (4)电磁时间常数l T 的确定。由前述已求出电枢回路总电感。

min

21

d l I U K L =mH 17.102201.0755

.322693.0=??=

则电磁时间常数 ∑

=R L T l l s mH

0182.056.017.10=Ω=

2. 选择电流调节器的结构

根据设计要求5%i σ≤,并保证稳态电流无静差,可按典型I 型系统设计电流调节器。

电流环控制对象是双惯性型的,因此可用PI 型调节器,其传递函数为

()(1)

i i ACR s i K s W s

ττ+=

(3-1)

式中 i K ------电流调节器的比例系数;

i τ-------电流调节器的超前时间常数。

检查对电源电压的抗扰性能:

i l T T ∑92.40037

.00182.0==,参照表3-1的典型I 型系统动态抗扰性能,各项指标都是可以接受的,因此基本确定电流调节器按典型I 型系统设计。

表3-1 典型I 型系统动态跟随性能指标和频域指标与参数的关系 参数关系KT 0.25 0.39 0.5 0.69 1.0 阻尼比ξ 1.0 0.8 0.707 0.6 0.5 超调量σ 0% 1.5% 4.3% 9.5% 16.3%

上升时间r t ∞ 6.6T 4.7T 3.3T 2.4T 峰值时间p t ∞

8.3T

6.2T

4.7T

3.6T

相角稳定裕度γ 76.3?

69.9?

65.5?

59.2?

51.8?

截止频率c ω

0.243/T

0.367/T

0.455/T

0.596/T

0.786/T

3. 计算电流调节器的参数

电流调节器超前时间常数: l i T =τ=0.0182s , 电流开环增益:要求5%i σ≤时,取0.5I i K T ∑=, 所以 10.50.5

135.10.0037I i K s T s

-∑=

== 于

ACR

β

τs i I i K R

K K =

()024.036/56.00182.01.135???==1.594 式中,β为电流反馈系数其值为024.0/10=≈N I V λβ;晶闸管装置放大系数Ks=36。

4. 校验近似条件

电流环截止频率:1135.1ci I K s ω-== 1)晶闸管整流装置传递函数的近似条件

111196.1330.0017ci s s T s

ω-==>? 满足近似条件

2)忽略反电动势变化对电流环动态影响的条件 l

m T T 1

3

=ci s ω<=?-154.480182.021.013 满足近似

条件

3)电流环小时间常数近似处理条件 11111

180.78330.00170.002ci s oi s T T s s

ω-==>? 满足近

似条件

5. 计算调节器电阻和电容

由图3-3,按所用运算放大器取R 0=40k Ω,各电阻和电容值为

Ω=Ω?=?=k k R K R i i 76.6340594.10 F k s

R C i

i

i 610285.076.630182.0-?=Ω

=

=

τ

6

30440.0020.2100.24010

oi oi T C F F F R μ-?=

==?=? 照上述参数,电流环可以达到的动态跟随性能指标为 4.3%5%i σ=<,满足设计要求。 3.2.转速调节器的设计

1. 确定时间常数

(1)电流环等效时间常数1/K I 。由前述已知,0.5I i K T ∑=,则

1

220.00370.0074i I

T s s K ∑==?= (2)转速滤波时间常数on T ,根据所用测速发电机纹波情况,取=0.01s on T .

(3)转速环小时间常数n T ∑。按小时间常数近似处理,取

1

0.00740.010.0174n on I

T T s s s K ∑=

+=+= 2. 选择转速调节器结构

按照设计要求,选用PI 调节器,其传递函数式为

(1)

()n n ASR n K s W s s

ττ+=

3. 计算转速调节器参数

按跟随和抗扰性能都较好的原则,先取h=5,则ASR 的超前时间常数为

=h =50.0174s=0.087s n n T τ∑? 则转速环开环增益

K 22

2222

16396.42250.0174

N n h s s h T --∑+=

==??

可得ASR 的比例系数为

图3-3 含滤波环节的PI 型电流调节器

()31.130174

.056.00083.05221

.0356.0024.0621=???????=

+=

∑∑n

m

e n T R h T C h K αβ

式中 电动势常数 356.0120006

.0220440=?-=-=

N a N N e n R I U C r

V m i n /. 转速反馈系数 r V r V

min/.0083.0min

/120010==

α

4.检验近似条件 转速截止频率为 111

396.40.08734.5N

cn N n K K s s ωτω--=

==?=

(1)电流环传递函数简化条件为

1

111135.163.7330.0037

I cn i K s s T ω--∑==> 满

足简化条件

(2)转速环小时间常数近似处理条件为 1

111135.138.7330.01

I cn on K s s T ω--==> 满足

近似条件

5.计算调节器电阻和电容

根据图5-4 所示,取040R k =Ω,则

Ω=Ω?==k k R K R n n 4.5324031.130 取Ωk 530

F F R C n n

n 63

10164.010530087

.0-?=?=

=

τ 取uF 2.0 3

0440.0114010

on on T C F F R μ?===? 取1F μ

6.校核转速超调量

当h=5时,查表3-2典型∏型系统阶跃输入跟随性能指标得,37.6%n σ=,不能满足设计要求。实际上,由于表3-2是按线性系统计算的,而突加阶跃给定时,ASR 饱和,不符合线性系统的前提,应该按ASR 退饱和的情况重新计算超调量。

表3-2 典型II 型系统阶跃输入跟随性能指标(按min r M 准则确定参数关系)

图3-4 含滤波环节的PI 型转速调节器

h 3 4 5 6 7 8 9 10 σ 52.60% 43.60% 37.60% 33.20% 29.80% 27.20% 25.00% 23.30% /r t T

2.4 2.65 2.85 3

3.1 3.2 3.3 3.35 /s t T 12.15

11.65 9.55 10.45 11.3 12.25 13.25 14.2 k 3

2

2

1

1

1

1

1

表3-3 典型II 型系统动态抗扰性能指标与参数的关系

h

3

4 5 6 7 8 9

10

max /b C C ? 72.20% 77.50% 81.20% 84.00% 86.30% 88.10% 89.60% 90.80%

/m t T 2.45 2.70 2.85 3.00 3.15 3.25 3.30 3.40 /v t T 13.60

10.45

8.80

12.95

16.85

19.80

22.80

25.85

设理想空载起动时,负载系数0=Z ,已知,220A I N =,min /1200r n N =,

9.1=λ,Ω=∑56.0R ,r V C e min/.356.0=,s T m 21.0=,0.0174n T s ∑=。当5=h 时,

由表5-3查得,%2.81/max =?b C C 而调速系统开环机械特性的额定稳态速降

m n

N b b b n T T n n Z C

C

n n C C ∑?-???

? ?

??=????? ???=*)(2*max

max λσ 式中 电机中总电阻 Ω=+=+=∑62.056.006.0R R R a 调

min /1.383356

.062

.0220r C R I n e N N =?==

? *n 为基准值,对应为额定转速min /1200r n N =

根据式(6-24)计算得

%12.821

.00174

.012001.3839.1%2.812=??

??=n σ%10< 能满足设计要求

7. 校核动态最大速降

设计指标要求动态最大速降8%~10%n ?≤。在实际系统中,n ?可定义为相对于额定转速时的动态速降max

N

n n ?。 由

max

max b

b

C n n C ??=

?,

()min /6.1201.38321

.00174

.09.122r n T T z n N m n b =???=?-=?∑λ;

查表可知,

m a

x

b

C C ?=81.2%,

所以min /9.97100/6.120%2.81max r n =?=? ;%10%2.8%1001200

9.97max <=?=?=?N n n n 能满足设计

要求

8. 转速超调的抑制

若退饱和超调量%10>n σ,则不满足动态指标要求,需加转速微分负反馈。加入这个环节可以抑制甚至消灭转速超调,同时可以大大降低动态速降。

在双闭环调速系统中,加入转速微分负反馈的转速调节器原理图如图5-5所示。和普通的转速调节器相比,在转速反馈环节上并联了微分电容C dn 和滤波电阻R dn ,即在转速负反馈的基础上再叠加一个带滤波的转速微分负反馈信号。

含有转速微分负反馈的转速环动态结构框图如下图5-6所示:

图3-6 含有转速微分负反馈的转速环动态结构框图

转速微分负反馈环节中待定的参数是dn C 和dn R ,其中转速微分时间常数0n dn R C τ=,

图3-5 带转速微分负反馈的转速调节器

转速微分滤波时间常数是以选定,odn dn dn on T R C T ==,只要确定dn τ,就可以计算出dn C 和

dn R 了。

由工程设计方法,近似计算公式得:

N

m n dn

n z T n T h h ?--

++=∑)(212

4*λστ

基于MATLAB/SIMULINK 的调速系统的仿真

通过对整个控制电路的设计, 用MATLAB/SIMULINK 对整个调速系统进行仿真。 首先建立双闭环直流调速系统的动态数学模型,可以参考该系统的动态结构形式,双闭环直流调速系统的动态结构框图如图4-1所示:

图4-1 双闭环直流电机调速系统的动态数学结构框图

把这些参数的值代入框图中的公式就可得到以下框图4-2。

图4-2 双闭环直流调速系统动态结构框图

为了分析双闭环调速系统的特性,在转速调节器和速度调节器的输出端设置一个限幅值,限幅值的大小可以根据所选的运算放大器的输入电压的大小来选定,本设计选取的限幅值为±13V。

根据动态模型图以及计算参数,用MA TLAB/SIMULINK进行仿真,主要是仿真电动机的输出转速。最终得到的转速仿真图形如图4-3所示

图4-3 双闭环直流电机转速输出仿真图形

从图4-3可以很明显的看出转速的起动和扰动的现象。从仿真得到的转速曲线图中可以得出转速超调量为25

100% 1.67%1490

n δ≈

?=,基本满足设计的要求,但是与设定值相比还是有误差。在0.9秒的时候,转速达到一个稳定值,系统无静差运行,其中在5秒的时候输入一个负载扰动量dL I ,在5.1秒的时候扰动消失,速降达到了40/min r ,过了0.4秒之后转速又达到稳定值。从图中可以看出,扰动很快得到了调节,这是两个PI 型调节器自动调节的作用。另外从图中也可以看到,系统是无静差运行的,符合设计的要求。从仿真的结果来看,得到这样结论:

(1) 工程设计方法在推导过程中为了简化计算做了许多近似的处理, 而这些简化处理必 须在一定的条件下才能成立。例如: 将可控硅触发和整流环节近似地看作一阶惯性环节, 设计电流环时不考虑反电势变化的影响; 将小时间常数当作小参数近似地合并处理; 设计转速环时将电流闭环从二阶振荡环节近似地等效为一阶惯性环节等。

(2) 仿真实验得到的结果也并不是和系统实际的调试结果完全相同, 因为仿真实验在辨

识过程中难免会产生模型参数的测量误差, 而且在建立模型过程中为了简化计算, 忽略了许多环节的非线性因素和次要因素。如: 可控硅触发和整流环节的放大倍数K S 和失控时间

s T , 这些都是非线性参数, 但在仿真中被近似看作常数; 再如, 设计电流调节器时只考

虑电流连续时的情况, 而忽略了电流断续时的情况。

(3)添了微分负反馈使得快速的达到稳态值,超调量也减少。但是微分容易引起振荡所以要加死区环节。

以上一些原因,在应用工程设计方法时应该注意的, 以减小理论设计与实际之间的差距

设计总结

本次设计是针对双闭环直流电机调速系统的设计,主要工作是设计直流调速控制器的电路,设计的电路都是模拟电路,同时相应地介绍了器件的保护、电流调调节器、转速调节器以及晶闸管的触发电路的设计过程,通过借用图书馆的书籍以及通过网络上的搜索,查阅了许多关于本设计的书籍和资料对该电路的设计有了较为深入的研究,也进一步熟悉了双闭环直流调速系统的结构形式、工作原理及各个器件的作用和设计。同时,在指导老师的指导下,并与有共同设计内容的同学交流,分析、整理和研究课题,先确立了设计基本思路,遇到问题及时与指导老师沟通,在老师的指点和自己的努力,最后完成了整个设计。在设计过程中也学会运用了protel 绘制电气原理图及简单电路图和MATLAB/SIMULINK 对整个电路进行仿真。

本设计在有限的条件下和本人有限的学识,做出的设计还是存在着一些不足。本设计采用PI 调节器,输出的转速存在这超调量比较大,而且快速性也相对受到影响。则今后可

以采用PID调节器可以全面的提高系统的控制性能,但是具体实现与调试要复杂,做的工作比现在就更多。设计研究是一个漫长的过程,要想让它真正的使用到现实中,还需要不断的改善。

参考文献

[1] 陈伯时. 电力拖动自动控制系统-运动控制系统[M],第三版. 北京:机械工业出版社, 2007年6月.

[2] 电力拖动自动控制系统-运动控制系统实验报告书大连海洋大学出版

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验 魏小景张晓娇刘姣 (自动化0602班) 摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。 关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真 1.引言 双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。 2.基本原理和系统建模 为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、 图1 直流电机双闭环调速系统的动态结构图

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真 一转速、电流双闭环控制系统 一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。这种理想的起动过程如图1所示。 n n t 图1 转速调节系统理想起动过程 为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。因此很自然地想到要采用电流负反馈控制过程。这里实际提到了两个控制阶段。起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。如图2所示。 图2 双闭环直流调速控制系统原理图 参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。如图3所示。

图3 双闭环直流调速系统动态结构图 在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。 二双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。 第Ⅰ阶段:0~t1是电流上升阶段。突加给定电压后,通过两个调节器的控制作用,使、、都上升,当后,电动机开始转动。由于机电惯性的作用,转速的增长不会太快,因而ASR的输入偏差电压数值较大并使其输出达到饱和值,强迫电流迅速上升。当时,,电流调节器ACR的作用使不再迅速增加,标志着这一阶段的结束。 在这一阶段中,ASR由不饱和很快达到饱和,而ACR一般应该不饱和,

双闭环调速系统课程设计

目录页 第一章绪论 (2) 1-1课题背景,实验目的与实验设备 (2) 1-2国内外研究情况 (3) 第二章双闭环调速系统设计理论 (3) 2-1典型Ⅰ型和典型Ⅱ型系统 (3) 2-2系统的静,动态性能指标 (4) 2-3非典型系统的典型化 (6) 2-4转速调节器和电流调节器的设计 (7) 第三章模型参数测定和模型建立 (9) 3-1系统模型参数测定实验步骤和原理 (9) 3-2模型测定实验的计算分析 (11) 3-3系统模型仿真和误差分析 (18) 第四章工程设计方法设计和整定转速,电流反馈调速系统 (22) 4-1 设计整定的思路 (22) 4-2 电流调节器的整定和电流内环的校正,简化 (23) 4-3转速调节器的整定和转速环的校正,简化 (25) 4-4系统的实际运行整定 (27) 4-5 关于ASR和ACR调节器的进一步探讨…………………………………… 33 第五章设计分析和心得总结 (34)

5-1实验中出现的问题 (34) 5-2实验心得体会 (35) 第六章实验原始数据 (38) 6-1建模测定数据 (38) 6-2 系统调试实验数据 (39) 第一章绪论 1-1课题背景,实验目的与实验设备 转速,电流反馈控制的调速系统是一种动静态特性优良的直流调速系统,它的控制规律是建立在经典控制规律的基础上的,用传递函数建立动态数学模型,并从传递函数模型和开环频域特性去总结其控制规律,用跟随和抗扰两个方面的指标去衡量它的动静态性能。转速,电流反馈控制的调速系统是一种串级系统,所以其整定系统参数的方法也借鉴了一般串级系统的差别,但又有不同于一般串级系统的。 本次实验的主要目的是针对一套调速系统(包括电源,电机,励磁回路等)建立模型并整定出带滤波的电流调节器和转速调节器参数,投入运行。实验正值暑期实践及国际交流周,我们将用两周的时间来完成参数测定实验,系统建模,调节器整定和系统投入运行。 本次实验的实验设备包括:

直流电机双闭环调速大作业

题目(中)直流电机双闭环控制调速 姓名与学号 指导教师 年级与专业

所在学院

目录: 一、电机控制实验目的和要求 (4) 二、双闭环调速控制内容 (4) 三、主要仪器设备和仿真平台 (5) 四、仿真建模步骤及分析 (5) 1.直流电机双闭环调速各模块功能分析 (5) 2.仿真结果分析(转速、转矩改变) (18) 3.转速PI调节器参数对电机运行性能的影响 (24) 4.电流调节器改用PI调节器后的仿真 (27) 5.加入位置闭环后的仿真 (28) 6.速度无超调仿真 (30) 七、实验心得 (32)

一、电机控制实验目的和要求 1、加深对直流电机双闭环PWM调速模型的理解。 2、学会利用MATLAB中的SIMULINK工具进行建模仿真。 3、掌握PI调节器的使用,分析其参数对电机运行性能的影响。 二、双闭环调速控制内容 必做: 1、描述Chopper-Fed DC Motor Drive中每个模块的功能。 2、仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象。 3、转速PI调节器参数对电机运行性能的影响。 4、电流调节器改用PI调节器后,对电机运行调速结果的影响。 选做: 5、加入位置闭环 6、速度无超调

三、主要仪器设备和仿真平台 1、MATLAB R2014b 2、Microsoft Officials Word 2016 四、仿真建模步骤及分析 1.直流电机双闭环调速各模块功能分析 参考Matlab自带的直流电机双闭环调速的SIMULINK仿真模型: demo/simulink/simpowersystem/Power Electronics Models/Chopper-Fed DC Motor Drive

双闭环控制系统设计

双闭环控制系统设计 课程设计报告 电力拖动自动控制系统课程设计 题目:双闭环控制系统设计学生姓名:董长青专业:电气自动化技术专业班级: Z070303 学号: Z07030330 指导教师:姬宣德 日期:2010年03月10日 随着现代工业的发展,在调速领域中,双闭环控制的理念已经得 到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地 控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的 这一缺陷。 双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得 良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以 及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有 必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是 旨在对双闭环进行最优化的设计。 Summary With the development of modern industry, in the speed area, the concept of dual-loop control has been increasingly widespread recognition and application. Relative to the single closed-loop system can not arbitrarily control the dynamic

process of current and torque weakness. Double closed-loop control is very good to make up for this shortcoming of his. Double-loop speed and current control can achieve the difference of two negative feedback effect, thus get a good static and dynamic performance. The good dynamic performance mainly reflected in its anti-disturbance and anti-grid load over voltage disturbance. Precisely because of the many advantages of Double Closed Loop, so here it is necessary to optimize the design of its depth discussion and study. This course is designed to designed to optimize the double loop design. 一.课程设计设计说明书4 1.1系统性能指标 1.2整流电路4 1.3触发电路的选择和同步5 1.4双闭环控制电路的工作原理6 二. 设计计算书7 2.1整流装置的计算7 2.1.1变压器副方电压7 2.1.2变压器和晶闸管的容量8 2.1.3平波电抗器的电感量8 2.1.4晶闸管保护电路9 2.2 控制电路的计算10

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

双闭环直流电机调速系统

双闭环直流电机调速系统 摘要: 关键词: 引言:速度和电流双臂环直流调速系统,是由单闭环调速系统发展而来的,调速系统采用比例积分调节器,实现了转速的无静差调速。又采用直流截止负反馈环节,限制了启(制)动时的最大电流。这对一般要求不太高的调速系统,基本已能满足要求。但是由于电流截止反馈限制了最大电流,再加上电动机反电动势随着电机转速的上升而增加,使电流达最大值后便迅速将下来。此时,电机的转矩也减小,使启动过程变慢,启动时间较长。 一、双闭环直流调速系统的组成 转速、电流双闭环直流调速系统原理如图 1 所示。系统的组成框图如图2所示。

图1 转速-电流双闭环直流调速系统 图2 转速-电流双闭环直流电机调速系统组成框图 由图可见,该系统由两个反馈构成两个闭环回路,其中一个是由电流调节器ACR和电流检测——反馈环节构成的电流环,另一个是由速度调节器ASR和转速检测——反馈环节构成的速度环。由于速度环包围电流环,因此称电流环为内环,称速度环为外环。在电路中,ASR和ACR实行串级联接,即由ASR去“驱动”ACR,再由ACR去控制“触发电路”。图中ASR和ACR均为PI调节器。ASR、ACR的输入、输出量的极性主要视触发电路对控制电压的要求而定。 (一)直流电机各物理量间的关系 直流电动机的电路图如图3所示。由图可知,直流电动机有两个独立回路,一个是电枢回路,另一个是励磁回路。

1.电枢绕组的电磁转矩和转矩平衡关系: 2.电枢回路电压平衡关系 结合以上公式可推出即e e T a e a T K K R K U n ?Φ -Φ= 2 其中,Φ ?= e a K U n 0,称为电机理想空载转速,e e T a T K K R n ?Φ=?2为电机转速降,故 直流电机的调速方法 改变电压调速,采用此方法的特性曲线如下图6所示: 图6 改变U 时的机械曲线特性 3.直流电动机的系统框图 (二)转速调节器与速度调节器—比例积分电路(PI 调节器) PI 调节器的电路原理图如图7所示:

双闭环直流调速系统的设计及其仿真

双闭环直流调速系统 的设计及其仿真 班级:自动化 学号: 姓名:

目录 1 前言?????????????????????????3 1.1 课题研究的意义??????????????????????3 1.2 课题研究的背景??????????????????????3 2 总体设计方案?????????????????????? 3 2.1 MATLAB 仿真软件介绍???????????????????3 2.2 设计目标????????????????????????? 4 2.3 系统理论设计?????????????????????? 5 2.4 仿真实验????????????????????????9 2.5 仿真结果???????????????????????10 3 结论???????????????????????12 4 参考文献???????????????????????13 1 前言 1.1 课题研究的意义 现代运动控制技术以各类电动机为控制对象,以计算机和其他电子装置为控制手段,以电力

电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为基础,以计算机数字仿真和计算机辅助设计为研究和开发的工具。直调调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。所以加深直流电机控制原理理解有很重要的意义[1]。 1.2 课题研究的背景 电力电子技术是电机控制技术发展的最重要的助推器, 电力电机技术的迅猛发展

直流电机双闭环控制系统分析报告与设计

基于MATLAB 的直流电机 双闭环调速系统的设计与仿真 设计任务书: 1. 设置该大作业的目的 在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果。通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。此外,通过完成本大作业题目,让学生体会反馈校正方法所具有的独特优点:改造受控对象的固有特性,使其满足更高的动态品质指标。 2. 大作业具体容 设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为: 额定功率200W ; 额定电压48V ; 额定电流4A ; 额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2; 电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5s ; 电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ; 要求转速调节器和电流调节器的最大输入电压==* *im nm U U 10V ; 两调节器的输出限幅电压为10V ;

f10kHz; PWM功率变换器的开关频率= K 4.8。 放大倍数= s 试对该系统进行动态参数设计,设计指标: 稳态无静差; σ5%; 电流超调量≤ i 空载起动到额定转速时的转速超调量σ≤ 25%; t0.5 s。 过渡过程时间= s 3. 具体要求 (1) 计算电流和转速反馈系数; (2) 按工程设计法,详细写出电流环的动态校正过程和设计结果; (3) 编制Matlab程序,绘制经过小参数环节合并近似后的电流环开环频率特性曲线和单位阶跃响应曲线; (4) 编制Matlab程序,绘制未经过小参数环节合并近似处理的电流环开环频率特性曲线和单位阶跃响应曲线; (5) 按工程设计法,详细写出转速环的动态校正过程和设计结果; (6) 编制Matlab程序,绘制经过小参数环节合并近似后的转速环开环频率特性曲线和单位阶跃响应曲线; (7) 编制Matlab程序,绘制未经过小参数环节合并近似处理的转速环开环频率特性曲线和单位阶跃响应曲线; (8) 建立转速电流双闭环直流调速系统的Simulink仿真模型,对上述分析设计结果进行仿真; (9) 给出阶跃信号速度输入条件下的转速、电流、转速调节器输出、电流调节器输出过渡过程曲线,分析设计结果与要求指标的符合性;

双闭环直流电机控制完整版.

双闭环直流电机调速系统设计 摘要 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。根据晶闸管的特性,通过调节控制角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图。然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。这就形成了转速、电流双闭环调速系统。先确定其结构形式和设计各元部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算然后最后采用MATLAB/SIMULINK对整个调速系统进行了仿真分析,最后画出了调速控制电路的电气原理图。 关键词:双闭环;转速调节器;电流调节器 目录 前言0 第1章绪论1 1.1直流调速系统的概述1 1.2研究课题的目的和意义1 1.3设计内容和要求1 1.3.1设计要求1 1.3.2设计内容1 第2章双闭环直流调速系统设计框图3 第3章系统电路的结构形式和双闭环调速系统的组成4

3.1主电路的选择与确定4 3.2 双闭环调速系统的组成6 3.3 稳态结构框图和动态数学模型7 3.3.1稳态结构框图7 3.3.2 动态数学模型9 第4章主电路各器件的选择和计算10 4.1变流变压器容量的计算和选择10 4.2 整流元件晶闸管的选型12 4.3 电抗器设计13 4.4 主电路保护电路设计15 4.4.1过电压保护设计15 4.4.2过电流保护设计17 第5章驱动电路的设计18 5.1晶闸管的触发电路18 5.2脉冲变压器的设计20 第6章双闭环调速系统调节器的动态设计22 6.1 电流调节器的设计23 6.2 转速调节器的设计24 第7章基于MATLAB/SIMULINK的调速系统的仿真28 小结31 致谢32 参考文献33 附表34 附图35

双闭环直流调速系统的设计

双闭环直流调速系统设计 一、系统组成与数学建模 1)系统组成 为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接如下图所示。 L + - 图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 为了获得良好的静、动态性能,转速和电流两个调节器一般都采用P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c为正电压的情况标出的,并考虑到运算放大器的倒相作用。

2)数学建模 图中W ASR(s)和W ACR(s)分别表示转速调节器和电流调节器的传递函数。如果采用PI 调节器,则有 s s K s W i i i ACR 1 )(ττ+= s s K s W n n n ASR 1 )(ττ+= 二、 设计方法 采用工程设计法 1、设计方法的原则: (1)概念清楚、易懂; (2)计算公式简明、好记; 双闭环直流调速系统的动态结构图

(3)不仅给出参数计算的公式,而且指明参数调整的方向; (4)能考虑饱和非线性控制的情况,同样给出简单的计算公式; (5)适用于各种可以简化成典型系统的反馈控制系统。 2、工程设计方法的基本思路: (1)选择调节器结构,使系统典型化并满足稳定和稳态精度。 (2)设计调节器的参数,以满足动态性能指标的要求。 一般来说,许多控制系统的开环传递函数都可表示为 ∏∏==++= n 1 i i r m 1j j ) 1() 1()(s T s s K s W τ 上式中,分母中的 sr 项表示该系统在原点处有 r 重极点,或者说,系统含有 r 个积分环节。根据 r=0,1,2,……等不同数值,分别称作0型、I 型、Ⅱ型、……系统。 自动控制理论已经证明,0型系统稳态精度低,而Ⅲ型和Ⅲ型以上的系统很难稳定。 因此,为了保证稳定性和较好的稳态精度,多选用I 型和II 型系统。 三、 电流环设计 反电动势与电流反馈的作用相互交叉,给设计工作带来麻烦。 转速的变化往往比电流变化慢得多,对电流环来说,反电动势是一个变化较慢的扰动,在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,0≈?E 。 忽略反电动势对电流环作用的近似条件是 l m ci T T 1 3 ≥ω (3-45) 式中ωci ——电流环开环频率特性的截止频率。 图3-19 电流环的动态结构图及其化简 (a)忽略反电动势的动态影响 把给定滤波和反馈滤波同时等效地移到环内前向通道上,再把给定信号改成 ,则电流环便等效成单位负反馈系统。 ) (s W R (s ) C (s )

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书 一、课程设计的主要任务 (一)系统各环节选型 1、主回路方案确定。 2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。 (二)主要电气设备的计算和选择 1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。 2、晶闸管整流元件:电压定额、电流定额计算及定额选择。 3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择计算。 4、平波电抗器选择计算。 (三)系统参数计算 1、电流调节器ACR 中i i R C 、 计算。

2、转速调节器ASR 中n n R C 、 计算。 3、动态性能指标计算。 (四)画出双闭环调速系统电气原理图。 使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。 二、基本要求 1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。 2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。 3、熟练掌握过电压、过电流保护方式的配置及其整定计算。 4、掌握触发电路的选型、设计方法。 5、掌握同步电压相位的选择方法。 6、掌握速度调节器、电流调节器的典型设计方法。 7、掌握电气系统线路图绘制方法。 8、掌握撰写课程设计报告的方法。 三、 课程设计原始数据

有以下四个设计课题可供选用: A 组: 直流他励电动机:功率P e =1.1KW ,额定电流I e =6.7A ,磁极对数P=1, n e =1500r/min,励磁电压220V,电枢绕组电阻R a =2.34Ω,主电路总电阻R =7Ω,L ∑=246.25Mh(电枢电感、平波电感和变压器电感之和),K s =58.4,机电时间常数 T m =116.2ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* B 组: 直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对 数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =0.112Ω,主电路总电阻R = 0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数 C e =0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116ms ,机电时间常数T m =0.157ms , 滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* C 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数

直流电机双闭环系统设计

直流电机双闭环系统设计 院系:机电工程学院 班级:电气自动化一班 姓名: 学号: 1 1 0 2 0 3 0 1 4 2 指导教师: 目录

1引言 2调速系统的性能指标 2.1调速系统的稳态指标 2.2调速系统的动态性能指标 2.3系统结构选择 3数字直流电机调速系统的数字PID控制3.1基于单片机控制的直流电机双闭环调速系统3.2 PID调节器的基本原理 4总结与展望 4.1工作总结 4.2研究展 参考文献 直流电机双闭环系统设计摘要

近年来,自动化控制系统在各行业中得到了广泛的应用和发展,而直流调速系统作为电力拖动系统的主要方式之一,在现代化生产中起着十分重要的作用。随着微电子技术的不断发展,计算机在调速系统中的应用使控制系统得到简化,体积减小,可靠性提高,而且各种经典和智能算法也都分别在调速系统中得到了灵活。 以单片机为控制核心的数字直流调速系统有着许多优点:由于速度给定和测速采用了数字化,能够在很宽的范围内高精度测速,所以扩大了调速的范围,提高了测速控制系统的精度;由于硬件的高度集成化,所以使得零部件数量大大减少;由于很多功能都是由软件实现的,使硬件得以简化,因此故障率小;单片机以数字信号工作,控制方法灵活便捷,抗干扰能力较强。 关键词:直流电动机;调速;双闭环 1引言 按照拖动的电动机的类型来划分,自动调速系统可以分为直流调速系统和交流调速系统两大类。由于直流电动机的电压、电流和磁通的耦合较弱,使直流电动机具有良好的运行性能和控制特性,能够在大范围内平滑调速,启动、制动性能良好,其在20世纪70年代以来一直在高精度,大调速范围的传动领域内占据主导地位。在要求高起、制动转矩,快速响应和较宽速度调节范围的电气传动领域中,采用直流电动机作为调速系统的执行电机。由于直流电动机具有良好的机械特性和调速特性,调速平滑,方便,易于在大范围内进行平滑调速,过载能力较大,能够承受频繁的冲击负载,可

双闭环直流调速系统设计

运动控制系统仿真课程设计 班级:xxxxx 姓名:xxx 学号:xxxxx

双闭环直流调速系统的设计 1系统方案选择与总体结构设计 调速方案的优劣直接关系到系统调速的质量。根据电机的型号及参数选择最优方案,以确保系统能够正常,稳定地运行。本系统采用直流双闭环调速系统,使系统达到稳态无静差,调速范围0-1500r/min,电流过载倍数为1.5倍,速度控制精度为0.1%(额定转速时)。 2系统控制对象的确定 本次设计选用直流电动机的额定参数直流电动机的额定参数电动机供电方案选择 变电压调速是直流调速系统用的主要方法,调节电枢供电电压所需的可控制电源通常有3种:旋转电流机组,静止可控整流器,直流斩波器和脉宽调制变换器。旋转变流机组简称G-M系统,用交流电动机和直流发电机组成机组,以获得可调的直流电压。适用于调速要求不高,要求可逆运行的系统,但其设备多、体积大、费用高、效率低、维护不便。用静止的可控整流器,例如,晶闸管可控整流器,以获得可调直流静止可控整流器又称V-M系电压。通过调节触发装置GT 的控制电压来移动触发脉冲的相位,即可改变Ud,从而实现平滑调速,且控制作用快速性能好,提高系统动态性能。直流斩波器和脉宽调制交换器采用PWM,用恒定直流或不可控整流电源供电,利用直流斩波器或脉宽调制变换器产生可变的平均电压。与V—M系统相比,PWM系统在很多方面有较大的优越性: 一、主电路线路简单,需要的功率器件少; 二、开端频率高,电流容易连续,谐波少,电机损耗及发热都较小: 三、低速性能好,稳速精度该,调速范围宽,可达1:10000左右; 四、若与快速响应的电动机配合,则系统频带宽,动态响应快,动态 抗扰能力强;

双闭环直流电动机调速系统设计及MATLAB仿真

目录 1、引言 (2) 二、初始条件: (2) 三、设计要求: (2) 四、设计基本思路 (3) 五、系统原理框图 (3) 六、双闭环调速系统的动态结构图 (3) 七、参数计算 (4) 1. 有关参数的计算 (4) 2. 电流环的设计 (5) 3. 转速环的设计 (6) 七、双闭环直流不可逆调速系统线路图 (8) 1.系统主电路图 (8) 2.触发电路 (9) 3.控制电路 (13) 4. 转速调节器ASR设计 (13) 5. 电流调节器ACR设计 (14) 6. 限幅电路的设计 (14) 八、系统仿真 (15) 1. 使用普通限幅器进行仿真 (15) 2. 积分输出加限幅环节仿真 (16) 3. 使用积分带限幅的PI调节器仿真 (17) 九、总结 (20)

一、设计目的 1.联系实际,对晶闸管-电动机直流调速系统进行综合性设计,加深对所学 《自动控制系统》课程的认识和理解,并掌握分析系统的方法。 2.熟悉自动控制系统中元部件及系统参数的计算方法。 3.培养灵活运用所学自动控制理论分析和解决实际系统中出现的各种问题 的能力。 4.设计出符合要求的转速、电流双闭环直流调速系统,并通过设计正确掌 握工程设计的方法。 5.掌握应用计算机对系统进行仿真的方法。 二、初始条件: 1.技术数据 (1)直流电机铭牌参数:P N =90KW, U N =440V, I N =220A, n N=1500r/min,电枢电阻Ra=0.088Ω,允许过载倍数λ=1.5; (2)晶闸管整流触发装置:Rrec=0.032Ω,Ks=45-48。 (3)系统主电路总电阻:R=0.12Ω (4)电磁时间常数:T1=0.012s (5)机电时间常数:Tm =0.1s (6)电流反馈滤波时间常数:Toi=0.0025s,转速率波时间常数:Ton=0.014s. (7)额定转速时的给定电压:Unm =10V (8)调节器饱和输出电压:10V 2.技术指标 (1)该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作错误!未指定书签。; (2)系统静特性良好,无静差(静差率s≤2); (3)动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤8-10%,调速系统的过渡过程时间(调节时间)ts≤1s; (4)调速系统中设置有过电压、过电流等保护,并且有制动措施。三、设计要求: (1)根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图; (2)调速系统主电路元部件的确定及其参数计算。 (3)动态设计计算:根据技术要求,用Mrmin准则设计转速环,确定ASR 调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳 定,并满足动态性能指标的要求; (4)绘制V-M双闭环直流不可逆调速系统线路图(主电路、触发电路、控

双闭环直流电机调速的matlab仿真

双闭环直流电机调速系统的设计与MATLAB 仿真 双闭环调速系统的工作原理 转速控制的要求和调速指标 生产工艺对控制系统性能的要求经量化和折算后可以表达为稳态和动态性能指标。设计任务书中给出了本系统调速指标的要求。深刻理解这些指标的含义是必要的,也有助于我们构想后面的设计思路。在以下四项中,前两项属于稳态性能指标,后两项属于动态性能指标 调速范围D 生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围,即 m in m ax n n D = (1-1) 静差率s 当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落,与理想空载转速之比,称作静差率,即 %1000 ??= n n s nom (1-2) 静差率是用来衡量调速系统在负载变化下转速的稳定度的。 跟随性能指标 在给定信号R (t )的作用下,系统输出量C (t )的变化情况可用跟随性能指标来描述。具体的跟随性能指标有下列各项:上升时间r t ,超调量σ,调节时间s t . 抗扰性能指标 此项指标表明控制系统抵抗扰动的能力,它由以下两项组成:动态降落%max C ?,恢复时间v t . 调速系统的两个基本方面 在理解了本设计需满足的各项指标之后,我们会发现在权衡这些基本指标,即

1) 动态稳定性与静态准确性对系统放大倍数的要求; 2) 起动快速性与防止电流的冲击对电机电流的要求。 采用转速负反馈和PI 调节器的单闭环调速系统,在保证系统稳定的条件下,实现转速无静差,解决了第一个问题。但是,如果对系统的动态性能要求较高,例如要求快速启制动,突加负载动态速降小等等,则单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流和转矩。 在电机最大电流受限的条件下,希望充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流为允许的最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳态后,又让电流立即降低下来,使转速马上与负载相平衡,从而转入稳态运行。在单闭环调速系统中,只有电流截止负反馈环节是专门用来控制电流的,但它只是在超过临界电流I dcr 值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。带电流截止负反馈的单闭环调速系统起动时的电流和转速波形如图1-1a 所示。 a) b) 图1-1 调速系统启动过程的电流和转速波形 a) 带电流截止负反馈的单闭环调速系统的启动过程 b) 理想快速启动过程 当电流从最大值降低下来以后,电机转矩也随之减小,因而加速过程必然拖 I d t 0 I 0 t

双闭环直流调速系统的设计

双闭环直流调速系统设计 一、 系统组成与数学建模 1)系统组成 为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接如下图所示。 图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 为了获得良好的静、动态性能,转速和电流两个调节器一般都采用 P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c 为正电压的情况标出的,并考虑到运算放大器的倒相作用。 TG n ASR ACR U *n + - U n U i U * i + - U c TA V M + - U d I d UPE L - M T + 图3-2 ASR —转速调节器 ACR —电流调节器 TG — 测速发电机 内环 外环

2)数学建模 图中W ASR(s)和W ACR(s)分别表示转速调节器和电流调节器的传递函数。如果采用PI 调节器,则有 s s K s W i i i ACR 1 )(ττ+= s s K s W n n n ASR 1 )(ττ+= 二、 设计方法 采用工程设计法 1、设计方法的原则: (1)概念清楚、易懂; (2)计算公式简明、好记; 双闭环直流调速系统电路原理图 + + - + - M TG + - + - RP 2 n U *n R 0 R 0 U c U i TA L I d R i C i U d + + - R 0 R 0 R n C n ASR ACR LM GT V RP 1 U n U *i LM M T U PE 双闭环直流调速系统的动态结构图

直流电机双闭环调速系统设计说明

存档日期:存档编号: 本科生毕业设计(论文) 论文题目:直流电机双闭环调速系统设计 姓名:徐震杰 学院:电气工程及自动化 专业:自动化 班级、学号:10电51 10285038 指导教师:甘良志 师大学教务处印制

摘要 直流调速系统的控制一般都是由转速、电流反馈来完成的,它的静态性能和动态性能都是十分杰出的,正是由于它的这些优点使其使用围也很广泛。其主要通过晶闸管可控整流电源来调节电源的大小。根据题目的设计要求,调速系统一共有两个控制器,它们分别是转速控制器(ASR)和电流控制器(ACR)。速度控制系统的电源电路的设计是使用三相全控桥整流电路实现的。在设计中,首先对总体规划的设计图进行了确定。之后又对主电路的结构形式以及各个元器件进行了确定和设计。与此同时,对包括晶闸管、电抗器等元件的参数进行了计算。在本文的最后一个部分,主要围绕本设计最重要的部分,直流调速系统的转速环和电流环进行设计。为了使速度和电流两个负反馈可以发挥一定的作用,因此,应该使其嵌套连接在速度和电流负反馈之间。单纯的从布局上来看的话,电流环在转速环的部,因此电流环被叫做环,相应的转速环就被称为外环。这样设计之后,以电流负反馈、转速负反馈为核心的调速系统就这样形成了。在对所有部分设计都完成了之后,采用MATLAB对整个系统进行仿真实验,并对数据进行分析,得出结论。 关键词:直流电动机双闭环调速系统转速负反馈电流负反馈

Abstract The speed and current feedback control of dc speed control system has excellent static and dynamic performance and the most widely application scope. It through thyristor controlled rectifying power supply to adjust the size of the power supply mainly. According to the design requirements of the title, it uses ASR and ACR as the controller of speed control system in the control circuit. The power supply circuit of the speed control system of design uses the Sedan fully-controlled bridge rectifier circuit. Firstly, we need determine the overall plan and diagram of this design before the design. Secondly, we need identify and design the structure of main circuit and the various components. At the same time, including the parameters of thyristor, reactor, etc. Finally, focus on the design of the most important two parts which are speed loop and current loop dc speed control system in the design. In the system were introduced speed negative feedback and current feedback and the implementation of a nested connection can realize the speed and current two kind of negative feedback effect between the two respectively. On the layout of it simply, current loop is referred to as the inner ring, because it is in the inside. Speed ring is called the outer ring, because current loop is in the interior of the speed loop. Through this design, the core of the double closed loop speed regulation system: speed negative feedback and current feedback is formed. After all parts of the design is done, using MATLAB simulation to do the experiments to the whole system and analyze the data, we can safely draw the conclusion. Keywords: DC motor; double closed loop; speed ring; current loop

相关主题
文本预览
相关文档 最新文档