当前位置:文档之家› 探索杨辉三角的秘密

探索杨辉三角的秘密

探索杨辉三角的秘密
探索杨辉三角的秘密

探索杨辉三角的秘密潼南区东风小学校肖信

二○一七年七月十九日

杨辉三角(教案)

杨辉三角(1) 目的要求 1.了解有关杨辉三角的简史,掌握杨辉三角的基本性质。 2.通过研究杨辉三角横行的数字规律,培养学生由特殊到一般的归纳猜想能力。 3.通过小组讨论,培养学生发现问题。探究知识、建构知识的研究型学习习惯及合作化学习的团队精神。 内容分析 本课的主要内容是总结杨辉三角的三个基本性质及研究发现杨辉三角横行的若干规律。 杨辉三角的三个基本性质主要是二项展开式的二项式系数即组合数的性质,它是研究杨辉三角其他规律的基础。杨辉三角横行的数字规律主要包括横行各数之间的大小关系。组合关系以及不同横行数字之间的联系。 研究性课题,主要是针对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。目的在于培养学生的创新精神和创造能力。它要求教师给学生提供研究的问题及背景,让学生自主探究知识的发生发展过。从问题的提出、探索的过程及猜想的建立均主要由学生自主完成,教师不可代替,但作为组织者,可提供必要指导。 教师首先简介杨辉三角的相关历史,激发学生的民族自豪感和创造欲望,然后引导学生总结有关杨辉三角的基本知识(研究的基础)及介绍发现数字规律的主要方法(研究的策略),并类比数列的通项及求和,让学生对n阶杨辉三角进行初步的研究尝试活动,让学生充分展开思维进入研究状态。 以下主要分小组合作研究杨辉三角的横行数字规律,重点发现规律,不必在课堂上证明。 教学过程 (一)回顾旧知 1.用电脑展示贾宪三角图、朱泄杰的古法七乘方图、帕斯卡三角图(附后),同时播放用古代民族乐器演奏的音乐。

教师介绍杨辉三角的简史:北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,南宋数学家杨辉在《详解九章算法》(1961年)记载并保存了“贾宪三角”,故称杨辉三角。元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。 2.用电脑展示15阶杨辉三角或事先印好15阶杨辉三角分发给学生。对照杨辉三角,回顾高二下学期学过的杨辉三角的构造及基本性质,并由学生叙述。 1°与二项式定理的关系:杨辉三角的第n行就是二项式 n b a) (+展开 式的系数列 } {R N C。 2°对称性:杨辉三角中的数字左、右对称,对称轴是杨辉三角形底边 上的“高”,即 r n n r n c C- =。 3°结构特征:杨辉三角除斜边上1以外的各数,都等于它“肩上”的 两数之和,即 r n r n n r n C c C 1 1- - - + =。 (二)分组研究杨辉三角横行规律(将全班学生按前后排四或五人一组分成若干研究小组) 1.介绍数学发现的方法:杨辉三角中蕴涵了许多优美的规律。古今中外,许多数学家如贾宪、杨辉、朱世杰、帕斯卡、华罗庚等都曾深入研究过,并将研究结果应用于其他工作。他们研究的方法可以归纳为:

杨辉三角 小学数学 精品

杨辉三角 人教版小学数学五年级下期第115页第10题,涉及著名的“杨辉三角”, 对此,教参中已有所介绍。为了提高学生的学习兴趣,加深对“杨辉三角”的理解,增强学生的民族自豪感和爱国热情,下面推荐一个有趣的数学游戏。 老师出示一张图(有条件的可以使用多媒体): 宣布:“现在和同学们玩一个有趣的数学游戏。请一位同学在这个图的最下面一行6个圆圈里任意各填一个一位数,我随即在顶端那个圆圈里写一个数。然后,大家按照图中的连线,算出最下面那行相邻两个圆圈里的数的和,填入上一行的圆圈里。自下而上照这样进行下去,直到算出顶端那个圆圈里应该填的数,一定跟我已经填好的数一样。哪位同学愿意试一试?” 等那位同学把最下面一行的6个数填好以后,老师迅速算出左起第三、四两个数的和的10倍,加上第二、五两个数的和的5倍,再加上第一、六两个数,得数就是顶端那个圆圈里应该填的数。 比如,从左到右,学生所填的数是4、1、8、6、2、3,老师就应该填10 ×(8+6)+5×(1+2)+(4+3)=140+15+7=162。 这是为什么呢?原来,“杨辉三角”中的数是有规律的。 规律是:自上而下,每个圆圈里的数等于与它相连的,上一行圆圈里的数的和。比如,第三行中间圆圈里的数之所以是2,就因为与它相连的第二行两个圆圈里的数都是1,1+1=2。依此类推。 游戏相当于把上面的过程倒回去,所以要把圆圈里的数分别乘上1、5、10、10、5、1。

等玩过两三次以后,学生一定会急于知道老师是怎样做到未卜先知的,甚至有些爱动脑筋的学生,已经在开始探求其中的奥秘了。这时,可以启发学生用学过的“用字母表示数”的方法,看看最下面那行所填的6个数,在整个计算过程中究竟各用了几次。 设:第六行所填的6个数依次为A、B、C、D、E、F。第五行就是A+B、B +C、C+D、D+E、E+F;第四行就是A+2B+C、B+2C+D、C+2D+E、D+2E+F;第三行就是A+3B+3C+D、B+3C+3D+E、C+3D+3E+F;第二行就是A+4B+6C+4D+E、B+4C+6D+4E+F;顶端的数就是A+5B+10C+10D +5E+F,即10(C+D)+5(B+E)+(A+F)。从而得出前面所总结出的方法。 “杨辉三角”在数学中有着重要作用,同时又具有直观形象的特点,对于培养学生的思维能力很有好处,值得给学生提供一个加深印象的机会。 杨辉三角 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 …… 中还隐藏着许多奥秘: 请看这些斜线上的数: 自然数 1 三角形数 1 1 四面体数 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 …… 一、自然数:1,2,3,4,… 求前n个自然数的和,无需使用公式,答案就在第n个自然数的左下方。比如,前4个自然数的和,就在第4个自然数4的左下方,是10。前5个自

杨辉三角

杨辉三角 教学设计思想: 这节课是高三数学(选修II )的研究性课题,是在高二学过的“二项式定理”的基础上,进一步探讨和研究杨辉三角的性质,实质上就是二项展开式的二项式系数即组合数的性质。 (1)让学生在教师设计的问题情境中,自己根据已经学过的知识去发现问题→提出问题→解决问题,即观察、猜想、归纳杨辉三角横行、竖向、斜向的数字各数之间的大小关系、组合关系及各数字之间的联系等规律。 (2)在学生自主探究知识的发生发展过程中从中体会到数学世界的神奇和有趣,激发他们对数学的热爱之情。培养他们的交流与协作的能力。 (3)通过向他们介绍杨辉三角的有关历史,让他们了解中国古代数学的伟大成就,增强他们的民族自豪感。 教学 目标: 1 使学生了解杨辉及杨辉三角的有关历史,掌握杨辉三角的基本性质,并能认识到中国古代的数学的辉煌成就。 2 让学生在老师的启发下自己去探讨杨辉三角中行、列的数字的特点, 发现杨辉三角的有关的性质,培养学生由特殊到一般的归纳猜想能力。 3通过讨论,培养学生发现问题、提出问题、解决问题的能力。在交流中培养学生的协作能力,形成探究知识、建构知识的研究型学习习惯及合作化学习的团队精神,为进一步学习作好准备。 教学过程: 一 引入 今天我们在高二学过的杨辉三角的基础上,进一步探索杨辉三角数字中横 向、竖向、斜向…中蕴含的有趣的数量关系。(幻灯片:出示杨辉三角的前3行,余下的让学生补充完整) 二 杨辉简介 杨辉,中国南宋时期杰出的数学家 和数学教育家。在13世纪中叶活动于 苏杭一带,其著作甚多。其中《详解九章算术》 中的“开方作法本源图”,曾被称为“杨辉三角”, 杨辉指明次系贾宪(约11世纪)所用. 三 探讨杨辉三角的性质 ? ??++++++=++++++=+++++=++++=+++=++=+=+6 43223245665 432234554 3223443 22332 221061520156)(510105)(464)(33)(2)()(1)(b ab b a b a b a b a a b a b ab b a b a b a a b a b ab b a b a a b a b ab b a a b a b ab a b a b a b a b a

浅谈杨辉三角的奥秘及应用

浅谈杨辉三角的奥秘及应用 摘要文中阐述了杨辉三角中蕴涵的一些优美的规律及利用杨辉三角在以其为背景的一些现实生活问题中的应用来培养解决问题的思维能力。 关键词杨辉三角,最短路径,错位,幂 0 引言 杨辉是我国南宋末年的一位杰出的数学家。在他著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”,它是杨辉的一大重要研究成果。随着素质教育的提倡,新课程标准的颁布,生活中很多问题都与杨辉三角有着或多或少的联系,那如何解决这些以“杨辉三角”为背景的问题呢?这就需要我们对杨辉三角本身蕴涵着许多优美的规律进行探讨和研究。 1 杨辉三角与数字11的幂的关系 我们知道初中时老师要求我们背11的幂,11的1次幂、2次幂、3次幂还好背,后面就难起来了。后来我受到一位老师的启发,并且查看了这方面有关资料,发现杨辉三角与11的n次幂的关系非常密切。 假设y=11n 当n=0时: y=1; 当n=1时: y=11; 当n=2时:y=121; 当n=3时:y=1331; 当n=4时:y=14641; 以上是当n≤4时与扬辉三角的前5行多一致,接下来我们再来看一下当n≥5时的情况,如下: 当n=5时: 1 4 6 4 1 ? 1 1 1 4 6 4 1 1 4 6 4 1 1 5 10 10 5 1 当n=6时: 1 5 10 10 5 1 ? 1 1 1 5 10 10 5 1 1 5 10 10 5 1 1 6 15 20 15 6 1

…… 由上可知:11的n 次幂的各位数字(不含进位)与杨辉三角中的各数字完全相等(证 明还有待证明)即杨辉三角是11的幂按错位相加不进位的方法依次从小到大排列而成的图 形。如下图: 1 (110 ) 1 1 (111 ) 1 2 1 (112) 1 3 3 1 (113) 1 4 6 4 1 (114) 1 5 10 10 5 1 (115) 1 6 15 20 15 6 1 (116) …… 其实这个关系我们早就学习过了,只是用另一种方式表达而已。我们知道初中时老师教 我们记11的幂时,有一句口诀:头尾不变(即为1),左右相加放中间。其实是错位相加,而 扬辉三角中头尾为1,中间的数是其肩上的两数之和,也是错位相加得到的。 2 杨辉三角与2的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1 ( 1 ) 1 1 ( 1+1= 2 ) 1 2 1 (1+2+1=4 ) 1 3 3 1 (1+3+3+1=8 ) 1 4 6 4 1 (1+4+6+4+1=16 ) 1 5 10 10 5 1 (1+5+10+10+5+1=3 2 ) 1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 ) …… 我们知道相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5, 6,…次幂,即杨辉三角第n 行中n 个数之和等于2的n-1次幂。 刚好与高中时学的杨辉三角的性质相符合,归纳如下: 1°与二项式定理的关系:杨辉三角的第n 行就是二项式n b a )(+展开式的系数列 }{R N C 。 2°对称性:杨辉三角中的数字左、右对称,对称轴是杨辉三角形底边上的“高”,即 r n n r n c C -=。

杨辉三角教学设计

教学设计说明 1.3.2“杨辉三角”中的一些秘密

课题:1.3.2“杨辉三角”中的一些秘密 一、教学内容解析: 本课题来自人教A版选修2—3第一章后的“探究与发现”。杨辉三角蕴含了丰富的数字规律和数学思想方法,所以它是一个很有价值的探究性课题。 杨辉三角是一个特殊的数阵。探究杨辉三角中的数字规律,有利于巩固学习二项式系数的性质,并对进一步认识组合数、进行组合数的计算和变形有重要的作用。对杨辉三角的研究,可以让学生通过总结,得到研究一般数阵的方法。 同时通过欣赏分形、斐波那契数列等有趣的数学内容,学生由此发现数学之美,激发对数学的学习兴趣。另外,通过组织不同形式的探究,可以让学生学会观察、归纳等探究方法,体验数学当中发现和创造的历程,培养创新精神,也有利于学生理解数学知识,培养数学应用意识。 二、教学目标设置: 1、知识与技能: 1、从不同的角度,研究杨辉三角所蕴含的规律,并用组合数表示; 2、通过本节课的研究,归纳出杨辉三角的研究方法; 3、将杨辉三角的研究方法拓展为对一般数阵的研究方法。 2、过程与方法: 1、通过探究杨辉三角的数字规律,学会观察和分析问题,运用联系、类比的观点看待问题,从而解决问题,并能培养学生“从特殊到一般”进行归纳猜想的能力; 2、通过自主探究与合作交流,养成发现问题、探究知识、建构知识的学习习惯; 3、通过从不同角度探究问题,体会再发现再创造的过程,发展创造性思维。 3、情感态度与价值观: 1、以历史文化的实例引入,激发学生的学习兴趣,提升学生的民族自豪感; 2、通过归纳性思维的训练,养成踏实细致,严谨科学的学习习惯; 3、通过探索杨辉三角中的数字规律,形成独立思考、合作交流等良好的学习习惯,以及勇于批判、敢于创新的精神。 三、学生学情分析: 知识结构:学生已经学习过组合数的定义和性质以及二项式系数的性质,并对杨辉三角有一定的了解。 能力结构:作为正始中学高二创新班的学生已经具备了一定的综合分析问题的能力,适时的问题引导就能建立知识之间的相互联系,解决相关问题。但是,他们对于规律的归纳还有一定的困难,需要适当的引导。 四、教学策略分析: 因为发现杨辉三角中的部分数字规律有一定的难度,本节课采用的是学生自主探究为主,教师引导探究为辅的探究课类型。为了让学生感受数学的趣味性,本节课具体采用的是自主探究与合作交流相结合的探究方式。探究时采用个人独立思考后小组合作互动的方式,重点在于发现数阵中的规律,使学生通过思维碰撞,擦出智慧的火花,达到共同完成建构知识的目的;也使不同层次的学生都学有所获,让学生体会发现和创造的趣味感,发展学生的创造性思维。 多媒体辅助教学的应用,节省时间,增大信息量,增强直观形象性。提倡学习方式的多样化,本节课从情境引入→发现数字规律→利用组合数表述结论→证明结论,始终坚持让学生主动参与,亲身实践。在学生合作、师生互动中,学生真正成为知识的发现者和研究者。在这样的课堂中,不仅学生对本节课的知识结构有一个清晰的认识,而且对所用到的数学方法和涉及到的数学思想得以领会。 五、教学过程: 【教学目标】 1、从不同的角度,研究杨辉三角中所蕴含的规律,并用组合数表示; 2、通过杨辉三角的研究,总结归纳出杨辉三角的研究方法; 3、将杨辉三角的研究方法拓展为对一般数阵的研究方法。

人教课标版高中数学选修2-3数学视野:杨辉与杨辉三角的奥秘

数学视野 杨辉与杨辉三角的奥秘 杨辉,杭州钱塘人.中国南宋末年数学家,数学教育家,著作甚多,他编著的数学书共五种二十一卷,著有《详解九章算法》十二卷(1261年)、《日用算法》二卷、《乘除通变本末》三卷、《田亩类比乘除捷法》二卷、《续古摘奇算法》二卷.其中后三种合称《杨辉算法》,朝鲜、日本等国均有译本出版,流传世界. 杨辉三角出现在杨辉编著的《详解九章算法》一书中,此书还说明表内出除1以外的没一个数都等于它肩上两个数的和.杨辉指出这个方法处于《释锁》算数,且我国北宋数学家贾宪(约公元11世纪)已经用过它,这表明我国发现这个表不晚于11世纪. 在欧洲,这个表被为是法国数学家、物理学家帕斯卡首先发现的(1623-1662年),他们把这个表叫做帕斯卡三角.这就是说,杨辉三角的发现要比欧洲早500年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的. 杨辉三角有以下又去的数学排列规律: 1、如图,杨辉三角的第1,3,7,15,…,行,即第21(k k -是正整数)行的各个数字均为奇数;第2k 行除两端的1之外都是偶数. 0行 1 1行 1 1 2行 1 2 1 3行 1 3 3 1 4行 1 4 6 4 1 5行 1 5 10 10 5 1 6行 1 6 15 20 15 6 1 … … n-1行 1 11n C - 21n C - …11r n C -- 1r n C - … 21n n C -- 1 n 行 1 1n C 2n C … … 1r n C - … … 1n n C - 1 2、杨辉三角中若行数p 是质数(素数),则第p 行,除去两端的数字1以外,行数p 整除其余所有的数. 3、计算杨辉三角中各行数字的和,第n 行数字的和为2n ,前1n -行(含第0行)所有数的和为21n -,它恰好比第n 行的和2n 小1.

杨辉三角(教案)

杨辉三角(教案)

杨辉三角(1) 目的要求 1.了解有关杨辉三角的简史,掌握杨辉三角的基本性质。 2.通过研究杨辉三角横行的数字规律,培养学生由特殊到一般的归纳猜想能力。 3.通过小组讨论,培养学生发现问题。探究知识、建构知识的研究型学习习惯及合作化学习的团队精神。 内容分析 本课的主要内容是总结杨辉三角的三个基本性质及研究发现杨辉三角横行的若干规律。 杨辉三角的三个基本性质主要是二项展开式的二项式系数即组合数的性质,它是研究杨辉三角其他规律的基础。杨辉三角横行的数字规律主要包括横行

各数之间的大小关系。组合关系以及不同横行数字之间的联系。 研究性课题,主要是针对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。目的在于培养学生的创新精神和创造能力。它要求教师给学生提供研究的问题及背景,让学生自主探究知识的发生发展过。从问题的提出、探索的过程及猜想的建立均主要由学生自主完成,教师不可代替,但作为组织者,可提供必要指导。 教师首先简介杨辉三角的相关历史,激发学生的民族自豪感和创造欲望,然后引导学生总结有关杨辉三角的基本知识(研究的基础)及介绍发现数字规律的主要方法(研究的策略),并类比数列的通项及求和,让学生对n阶杨辉三角进行初步的研究尝试活动,让学生充分展开思维进入研究状态。 以下主要分小组合作研究杨辉三角

的横行数字规律,重点发现规律,不必在课堂上证明。 教学过程 (一)回顾旧知 1.用电脑展示贾宪三角图、朱泄杰的古法七乘方图、帕斯卡三角图(附后),同时播放用古代民族乐器演奏的音乐。 教师介绍杨辉三角的简史:北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,南宋数学家杨辉在《详解九章算法》(1961年)记载并保存了“贾宪三角”,故称杨辉三角。元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。 2.用电脑展示15阶杨辉三角或事先印好15阶杨辉三角分发给学生。对照杨辉三角,回顾高二下学期学过的杨辉三角的构造及基本性质,并由学生叙述。

杨辉三角应用

杨辉三角应用(回家的路有多少条) 小明生活的城市规划得非常规则,街区都是矩形,他的家和学校相隔了好几个街道。 有一天,小明在回家的路上正在为走哪条路发愁。忽然,他想起这段时间数学课正在学“排列组合”这一章,“我何不用刚学到的知识来计算一下我回家可有多少条路供选择?”于是,他边走边思考这个问题,他发现这个问题还真不简单,需要静下心来好好想一想。 同学们,你们会算吗? 小明这样想:“我肯定不会走回头路的,所以我只能向右和向上走,一共应该向右走5条街道,向上走5条街道。” 小明想起老师经常告诉他:“在遇到困难的时候,要学会将问题转化!”。于是,小明用a表示横向的一条街道,用b表示纵向的一条街道,那么“abbaaabba”就表示如图的一条路线。这样,小明就可以用a,b的字符串来表示每一条路线了,而路线的条数就等于a,b 的字符串个数。 问题就转化成为求“5个a和5个b组成多少个不同的字符串?”。这一问题的解答就很简单了:将10个位置种选出5个位置用来放置a,有C 10 5 种方法;余下的位置自然就用来放置。所以,一共有C 10 5=252个不同的字符串。

小明终于明白了,从家到学校竟然有252条路可以供选择,怪不得平时很少走重复的路线。 小明对自己的解法很是得意!他一到学校,就把这个题目告诉了好朋友小刚,却不告诉小刚答案,他想考考小刚。 小刚也是一个爱思考的同学,但是一时还真没做上来。不过,小刚没有气馁,他觉得这个问题中由于街道太多,导致问题比较复杂,所以他决定将问题简化,先做几个数学实验,然后从中找规律,最后才解决这个问题。 小刚先假设小明家和学校只相隔一个街区,图中顶点处的数字“1”表示从这个顶点到达小明家只有一条路线。 小刚再假设小明家和学校只相隔四个街区,图中顶点处的数字表示从这个顶点到达学校的路线条数。 这时小刚发现了规律:若顶点位于最上面或最左面,则它到H的路线只有1条;若顶点位于其他位置,则它到H的路线条数等于它上面和左面的顶点到H的路线条数之和!小刚根据这个规律一口气将所有顶点的路线条数都写了出来,发现从学校S到家H的路线正好是252条。

对杨辉三角的研究

对杨辉三角的研究 看似数学是无聊的,无非是一列列数字,一个个几何,一道道习题,其实只要善于发现,善于发掘,数学中蕴含了无数优美的规律和神秘的排列,例如“杨辉三角”。 什么是杨辉三角 杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。 杨辉三角的历史 北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算。 杨辉,字谦光,南宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪前半贾宪的《释锁算术》,并绘画了“古法七乘方图”。故此,杨辉三角又被称为“贾宪三角”。 在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。===================================================================== 1)初步认识杨辉三角 二项式(a+b)n展开式的二项式系数,当n依次取1,2,3...时,列出的一张表,叫做二项式系数表,因它形如三角形,南宋的杨辉对其有过深入研究,所以我们又称它为杨辉三角. 2)杨辉三角所蕴含的数量关系 (用Excel制作的杨辉三角的另一表现形式)

1)二项式定理与杨辉三角 与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。 杨辉三角我们首先从一个二次多项式(a+b)^2的展开式来探讨。 由上式得出: (a+b)^2=a^2+2ab+b^2 此代数式的系数为: 1 2 1 则(a+b)^3的展开式是什么呢?答案为:a^3+3a^2b+3ab^2+b^3 由此可发现,此代数的系数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)^4的展开式。 展开式为:a^4+4a^3b+6a^2b^2+4ab^3+b^4 由此又可发现,代数式的系数为: 1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列: 1 (11^0) 1 1 (11^1) 1 2 1 (11^2) 1 3 3 1 (11^3 1 4 6 4 1 (11^4) 1 5 10 10 5 1 (11^5) 1 6 15 20 15 6 1 (11^6) 所以,可得出二项式定理的公式为: (a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+C(n,n)a^0*b^n 因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。 2)杨辉三角的幂的关系 首先我们把杨辉三角的每一行分别相加,如下: 1 ( 1 ) 1 1 ( 1+1= 2 ) 1 2 1 (1+2+1=4 ) 1 3 3 1 (1+3+3+1=8 ) 1 4 6 4 1 (1+4+6+4+1=16 ) 1 5 10 10 5 1 (1+5+10+10+5+1=3 2 ) 1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 ) …… 相加得到的数是1,2,4,8,16,32,64, 刚好是2的0,1,2,3,4,5次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂

相关主题
文本预览
相关文档 最新文档