当前位置:文档之家› 氨基酸分析仪原理

氨基酸分析仪原理

日立L-8900全自动氨基酸分析仪简易标准操作规程

日立L-8900全自动氨基酸分析仪标准操作规程 一. 目的 为规范日立L-8900全自动氨基酸分析仪的基本操作、维护保养、异常处理程序,防止人为操作失误,确保氨基酸分析仪正常运转,特制定本程序。 二.适用范围 本程序适用于日立L-8900全自动氨基酸分析仪。 三.责任 1. 本程序的实施者为氨基酸分析仪操作者,各实验室负责人对本程序的实施情况进行监 督。 2. 日常运行及维护、定期维护、定期点检及保养由氨基酸分析仪操作者负责。 四. 内容 1.联机 (1)打开电脑。 (2)打开L-8900主机电源。 (3)双击桌面的图标,进入1-1画面,双击图标,进入程序。 1-1 (4)在菜单栏中依次点击和,出现1-2画面,单击

联机。大约两分钟,初始化完毕。中Uninitialized 变成Idle,图1-2变成了图1-3,各个组件可以进行控制了。初始化完毕后,分离柱的温度逐渐上升,分离柱的温度会升到50℃。如果打开反应柱的柱温控制,则温度大约20分钟升到135℃。 1-2

1-3 2、手动各组件控制操作 (1)泵1和泵2 点击,出现2-1的画面。设置泵1,流量0.1ml/分钟,B6 100%。点击打开泵1。泵打开后,泵的背景颜色由灰色变为黄色。

2-1 点击,出现2-2的画面,设置泵2,流量0.1ml/分钟,R3 100%。点击打开泵2。泵打开后,泵的背景颜色由灰色变为黄色。 2-2 (2)自动进样器 点击,出现2-3的画面,设置Sampler Wash不少于3次。

2-3 (3)分离柱柱温箱 点击,出现2-4画面,设置柱温50℃,设置ON,打开柱温箱。柱温箱打开后,背景颜色由灰色变为黄色。 2-4 (4)反应柱柱温箱 点击,出现2-5画面,设置柱温135℃,设置ON,打开柱温箱。柱温箱打开后,背景颜色由灰色变为黄色。 2-5

氨基酸测定方法

4.1 光度分析法[5] [6] β-氨基丙酸和茚三酮溶液在弱酸的条件下可以生成蓝紫色物质[7],其颜色深浅主要与β-氨基丙酸的浓度有关。因此可利用此显色反应采用比色法定量测量β-氨基丙酸。我在实验中发现很多因素如浓度、pH 值、反应温度、以及反应时间等对此显色反应有很大的影响。如忽视这些因素会使实验产生很大的误差。就此显色反应的最佳条件我做了初步的探究。 4.1.1试剂的配制: 缓冲液的配制:配制pH= 6.00的NaAc -HAc 缓冲溶液 β-氨基丙酸标准溶液的配制: 用电子天平准确称取1.020 g β-氨基丙酸(生化纯),溶于250ml pH=6.00缓冲溶液中,得到C = 4.080 g/L 标准溶液。 茚三酮试剂的配制:称取0.5g 茚三酮溶于100ml 蒸馏水中,得到5g/L 的茚三酮水溶液。 4.1.2标准曲线的确定 分别准确移取0.30ml 、0.40ml 、0.50ml 、0.60ml 、0.70ml 、0.80ml 、0.90ml 、1.00ml 标准液于8个比色管中,用pH=6.00的缓冲溶液稀释到5.00ml 再加入1ml 茚三酮水溶液充分摇匀,将其放在沸水浴中加热10min 。冷却到室温,用7230型分光光度计在569nm 下测其吸光度。以吸光度和浓度作一个标准曲线。 4.1.3样品的测定 稀释待测液于0.24mg/ml —0.73mg/ml,调pH 值到6.00,以相同的反应条件,测其吸光值并与上面的标准曲线对照查出稀释液的浓度,再乘以稀释倍数即为β-氨基丙酸的浓度。 4.1.4 标准曲线的测定结果 β-氨基丙酸浓度在0.24mg/ml —0.73mg/ml 范围内与茚三酮水溶液反应,颜色表现出由浅蓝到深蓝的递增变化。用茚三酮比色法测得的一组数据得到的标准曲线如图1: 0.20.30.40.50.60.70.80.9 1.0 1.1 0.4 0.6 0.8 1.0 1.2 1.4 吸光度加入标液体积(ml) B 图 1 标准曲线的测定 Fig 1 Determination of the standard curve 注:在沸水中加热10min ,β-氨基丙酸标准溶液5ml 、茚三酮水溶液1ml 、缓冲溶液pH=6.00 4.1.5样品的测定分析 将待测的一批稀释50倍,母液稀释的程度可以根据以与标准溶液在相同的

食物中氨基酸的测定方法

食物中氨基酸的测定方法 测定食物中的胱氨酸使用过甲酸氧化-氨基酸自动分析仪法,测定色氨酸使用荧光分光光度法,测定其它氨基酸使用氨基酸自动分析仪法。 一、氨基酸自动分析仪法 1.原理 食物蛋白质经盐酸水解成为游离氨基酸,经氨基酸分析仪的离子交换柱分离后,与茚三酮溶液产生颜色反应,再通过分光光度计比色测定氨基酸含量。一份水解液可同时测定天冬,苏,丝,谷,脯,甘,丙,缬,蛋,异亮,亮,酪,苯丙,组,赖和精氨酸等16种氨基酸,其最低检出限为10pmol。 2.适用范围 GB/T14965-1994食物中氨基酸的测定方法。 本法适用于食物中的16种氨基酸的测定。其最低检出限为10pmol。本方法不适用于蛋白质含量低的水果、蔬菜、饮料和淀粉类食物的测定 3.仪器和设备 3.1真空泵 3.2恒温干燥箱 3.3水解管:耐压螺盖玻璃管或硬质玻璃管,体积20~30ml。用去离子水冲洗干净并烘干。 3.4真空干燥器(温度可调节) 3.5氨基酸自动分析仪。 4.试剂 全部试剂除注明外均为分析纯,实验用水为去离子水。 4.1浓盐酸:优级纯 4.26mol/L盐酸:浓盐酸与水1:1混合而成。 4.3苯酚:需重蒸馏。 4.4混合氨基酸标准液(仪器制造公司出售):0.0025mol/L 4.5缓冲液: 4.5.1 pH2.2的柠檬酸钠缓冲液:称取19.6g柠檬酸钠(Na3C6H5O7.2H2O)和16.5ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至2.2

4.5.2 pH3.3的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和12ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节至pH至3.3。 4.5.3 pH4.0的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和9ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至4.0。 4.5.4 pH6.4的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和46.8g氯化钠(优级纯)加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至6.4。 4.6茚三酮溶液 4.6.1 pH 5.2的乙酸锂溶液:称取氢氧化锂(LiOH.H2O)168g,加入冰乙酸(优级纯)279ml,加水稀释到1000ml,用浓盐酸或50%的氢氧化钠调节pH至5.2。 4.6.2茚三酮溶液:取150ml二甲基亚砜(C2H6OS)和乙酸锂溶液(2.6.1)50ml加入4g 水合茚三酮(C9H4O3.H2O)和0.12g还原茚三酮(C18H10O6.2H2O)搅拌至完全溶解。 4.7高纯氮气:纯度99.99%。 4.8 冷冻剂:市售食盐与冰按1:3混合 5.操作步骤 5.1样品处理:样品采集后用匀浆机打成匀浆(或者将样品尽量粉碎)于低温冰箱中冷冻保存,分析用时将其解冻后使用。 5.2称样:准确称取一定量样品,精确到0.0001g。均匀性好的样品如奶粉等,使样品蛋白质含量在10~20mg范围内;均匀性差的样品如鲜肉等,为减少误差可适当增大称样量,测定前再稀释。将称好的样品防于水解管中。 5.3水解:在水解管内加6mol/L盐酸10~15ml(视样品蛋白质含量而定),含水量高的样品(如牛奶)可加入等体积的浓盐酸,加入新蒸馏的苯酚3~4滴,再将水解管放入冷冻剂中,冷冻3~5min,再接到真空泵的抽气管上,抽真空(接近0psi),然后充入高纯氮气;再抽真空充氮气,重复三次后,在充氮气状态下封口或拧紧螺丝盖将已封口的水解管放在110±1℃的恒温干燥箱内,水解22h后,取出冷却。 打开水解管,将水解液过滤后,用去离子水多次冲洗水解管,将水解液全部转移到50ml 容量瓶内,用去离子水定容。吸取滤液1ml于5ml容量瓶内,用真空干燥器在40~50℃干燥,残留物用1~2ml水溶解,再干燥,反复进行两次,最后蒸干,用1mlpH2.2的缓冲液溶解,供仪器测定用。 5.4测定:准确吸取0.200ml混合氨基酸标准,用pH2.2的缓冲液稀释到5ml,此标准稀释浓度为5.00nmol/50μL,作为上机测定用的氨基酸标准,用氨基酸自动分析仪以外标

氨基酸自动分析仪

氨基酸自动分析仪 1.实验目的 ①了解氨基酸自动分析仪的分析原理; ②掌握氨基酸自动分析仪的操作技巧。 2.实验原理 测定原理是利用样品各种氨基酸组分的结构不同、酸碱性、极性及分子大小不同,在阳离子交换柱上将它们分离,采用不同pH值离子浓度的缓冲液将各氨基酸组分依次洗脱下来,再逐个以另一流路的茚酮试剂混合,然后共同流至螺旋反应管中,于一定温度下(通常为115~120℃)进行显色反应,形成在570nm有最大吸收的蓝紫色产物。其中的羟脯氨酸与茚三酮反应生成黄色产物,其最大吸收在440nm。这些有色产物对570nm、440nm光的吸收强度与洗脱出来的各氨基酸的浓度(或含量)之间的关系符合比耳定律,可与标准氨基酸比较作定性和定量测定。 3.实验仪器与耗材 实验仪器: 耗材: 4.实验步骤 ①样品处理: 测定样品中各种游离氨基酸含量,可以除去脂肪杂质后,直接上柱进行分析。 测定蛋白质的氨基酸组成时样品必须经酸水解,使蛋白质完全变成氨基酸后才上柱进行分析。 ②样品分析:经过处理后的样品上柱进行分析。上柱的样品量根据所用自动分析仪的灵 敏度来确定。一般为每种氨基酸0.1μmol 左右(水解样品干重为0.3mg 左右)。测定必须在pH5~5.5、100℃下进行,反应进行时间为10~15min,生成的紫色物质在570nm 波长下进行比色测定。而生成的黄色化合物在440nm 波长下进行比色测定。做一个氨基酸全分析

一般只需1h 左右,同时可将几十个样品一起装入仪器,自动按序分析,最后自动计算给出精确的数据。仪器精确度在±1~3%。用阳离子交换柱分离及测定氨基酸所的如下图 自动分析仪氨基酸分离图谱 5.结果计算 带有数据处理机的仪器,各种氨基酸的定量结果能自动打印出来,否则,可用尺子测量峰高或用峰高乘以半峰宽确定峰面积进而计算出氨基酸的精确含量。另外,根据峰出现的时间可以确定氨基酸的种类。 6.说明 ①显色反应用的茚三酮试剂,随着时间推移发色率会降低,故在较长时间测样过程中应随时采用已知浓度的氨基酸标准溶液上柱测定以检验其变化情况。 ②近年出现的采用反相色谱原理制造的氨基酸分析仪,可使蛋白质水解出的17 种氨基酸在12min 内完成分离,且具有灵敏度高(最小检出量可达1pmol)、重现性好以及一机多用等优点。

氨基酸分析仪实验指导

氨基酸分析仪实验 测试中心吕雪娟 一、实验目的 了解氨基酸分析仪的主要结构及工作原理,掌握氨基酸分析的过程,前处理方法。 二、原理 氨基酸分析仪的分析原理是基于各种a一氨基酸的酸碱性、极性及分子大小的差异,用阳离子交换树脂在柱上进行层析分离,用几种不同pH值和离子强度的缓冲溶液依次将它们洗脱,从柱子上分离和洗脱下来的各种氨基酸在反应柱中与茚三酮进行加热反应,反应产物用可见光分光光度计进行检测,根据检测信号的大小计算出各种氨基酸的含量。 氨基酸和茚三酮反应

氨基酸分析仪结构示意图 二、操作步骤 1.准备工作 1.1缓冲液和茚三酮溶液的配制及正确放置 1.2氮气压力调整 1.2.1打开氮气钢瓶阀,调节其压力至50-100KPa(0.5-1.0Kgf/cm2)。 1.2.2顺时针轻轻旋转氮气调节器,使压力读数为34-40KPa(0.35-0.4Kgf /cm2)。 1.2.3脱气瓶中液体的更换 1.3放置自动进样器清洗瓶,向清洗瓶(C-1,1L)中盛上蒸馏水,放置于指定的位置并拧上盖子。 2.开稳压器 3.启动L-8800ASM应用程序 3.1系统初始化,OK 3.2打开Module Operation界面

3.3泵1流速设定----缓冲液的清洗,打开泵1的排液阀;清洗完毕,关闭泵1; 3.4泵2流速设定—一缓冲液的清洗,打开泵2的排液阀;清洗完毕关闭泵2; 3.5自动进样器流路和针头清洗,除气泡,重复此过程三次。 3.6泵的压力归零 4.分析程序 4.1选择应用程序 4.2选择分析方法 4.3输入待测样品的信息,编辑样品表,保存; 4.4打开数据采集监控画面 4.5选择样品表 4.6打开泵1和泵2 4.7按样品表顺序放置样品。 4.8单击监控屏幕下方的Start Series按钮,开始样品测试。 4.9开始结束后,关闭采集监控画面 4.10关闭L-8800ASM应用程序 4.11关电源 三、实验报告要求 1.实验原理及分析条件; 2.实验结果。

氨基酸分析原理和色谱条件

分析原理和色谱条件 一、氨基酸分析的须知: (一)样品要求:样品应有代表性,固体样品必须过60目筛;液体样品需有一定的流动性; 办固体状的样品要保证能在称量纸上不流动。对不难采集并需要我们处理的样品,常规样品一般固体样品5克左右,液体样品15ml左右;对难以收集的样品(如:酶、肽等)液体样蛋白含量应大于300μg/ml,体积不少于4ml;固体重量应不少于500μg。 (二)自己处理样品的同学和老师,应根据自己的样品状态,严格按照本室要求样品的处理方法处理样品。并讲处理好的样品在星期二下午3点前送到测试中心氨基酸分析室,处理好的样品要同时送两份(两个盛有蒸干样品的25ml小烧杯),并提供样品的蛋白质含量、称样量、定容体积、加0.02NHCl体积等有关数据。(样品处理方法见本附件)。 (三)因氨基酸分析需要柱后(或柱前)衍生,分析时间长,所以对氨基酸分析的上机浓度要求严格。请各位老师和同学无论是自己处理样品还是需要氨基酸分析室处理样品都应准确知道自己所测样品的蛋白含量(或氨基态氮含量)。如果需要本实验室处理样品时,提供的蛋白质含量的误差应控制±5%。如20%的蛋白含量,提供的数据应为(18-22)%。 (四)氨基酸分析室仪为学校所有需要氨基酸分析的同学和老师服务,为了保证仪器能长期处于良好的运行状态除了我们机台的工作人员的努力外,还需要各位同学和老师的大力合作。样品的浓度过高极易造成分离柱的污染和反应盘管爆裂(每个反应盘管3000元左右)并且测定的数据也不准确;样品的浓度过低直接影响分析结果的准确性。对提供的原始数据不准确的样品,在上机分析时造成仪器损坏或氨基酸峰过低由送样人员负责。因提供原始数据不准确的样品需要重新上机的样品,则需另收上机费。 (五)氨基酸的分析需要柱前或柱后衍生,衍生化试剂对分析结果会有一定的影响,对需要做影响因素分析的样品,应妥善保管好不同时间采集样品,待样品收集全后,一起处理、一起做。这样更有利于对实验结果的分析。 (六)每做一个样品的氨基酸全分析(17种氨基酸),对仪器都是一次的严重的磨损。为了使仪器能更好地为大家服务,请各位老师和同学根据自己的科研、论文的实际需

18种天然氨基酸分析

18种天然氨基酸分析 迪马科技摘要 氨基酸组成测定是蛋白质组学、食品质量检测以及药品质量检测中的重要分析项目。本文分别以异硫氰酸苯酯、2,4-二硝基氟苯作为衍生剂对蛋白质水解液和游离氨基酸注射液进行衍生,使用Diamonsil AAA柱250×4.6 mm,5 μm,梯度洗脱进行分离,能够满足19种天然氨基酸的分析,各组分分离度较高、定量结果准确而稳定。 Abstract The amino acid determination is an important analysis project in proteomics, food and drug quality testing.The method determination of 19 nature amino acid in protein hydrolyzed solution and free amino acid injection, the derived reagent is phenyl isothiocyanate (PITC) and 1-Fluoro-2,4-dinitrobenzene. The column is Diamonsil AAA (250 × 4.6 mm, 5 μm), gradient elution, the results are accurate and stable. 引言 从化学角度讲,同时含有一个或多个氨基和羧基的脂肪酸均可称为氨基酸。自然界存在300多种氨基酸,但构成天然蛋白质的氨基酸只有20种,这20种氨基酸又称为天然氨基酸。天然氨基酸分析是食品、饲料和药品分析的重要项目。目前氨基酸分析常常采用这样两种方式:离子交换色谱分离-柱后衍生和柱前衍生-反相色谱法分离。后者以操作灵活、费用低廉而被广泛应用。在柱前衍生-反相色谱法分离中,异硫氰酸苯酯(PITC)和2,4-二硝基氟苯(DNFB)均可与一级胺、二级胺反应,是理想的柱前衍生剂。尽管天然氨基酸多达20种,但由于蛋白质水解过程中天冬酰胺和谷氨酰胺分别转化为天冬氨酸和谷氨酸,半胱氨酸则以胱氨酸形式存在,因而对于含蛋白食品、饲料等样品的氨基酸分析时,只需分析Asp(天冬氨酸)、Glu(谷氨酸)、Ser(丝氨酸)、Gly(甘氨酸)、His(组氨酸)、Arg(精氨酸)、Thr(苏氨酸)、Ala(丙氨酸)、Pro(脯氨酸)、Tyr(酪氨酸)、Val(缬氨酸)、Met(甲硫氨酸)、Cys-Cys(胱氨酸)、Ile(异亮氨酸)、Leu(亮氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、Lys(赖氨酸)等18种氨基酸,PITC和DNFB均能与这些氨基酸生成稳定的衍生物。此外,DNFB还能对半胱氨酸进行衍生,对PITC衍生法是一个重要的补充,能够满足氨基酸注射液中涉及的19种氨基酸分析。 1 分析原理 对于含蛋白样品(饲料、动物组织等),先对样品进行酸水解或碱水解处理,得到游离氨基酸

各种类型氨基酸分析仪性能比较一览表

各种类型氨基酸分析仪性能比较一览表 常规氨基酸分析是指20种蛋白水解氨基酸和40余种游离氨基酸的分析。氨基酸分析仪自1958年问世以来,不断借助现代化的硬件和软件更新换代,现已发展成为现代食品、饲料、生物技术、医药卫生和生命科学等行业氨基酸分析必不可少的自动化常规检测设备。 氨基酸分析仪按其分离和检测方法的不同可分为两大类型。第一类是基于阳离子交换柱分离、柱后茚三酮衍生光度法测定的经典方法(IEC)。此类方法于1972年获诺贝尔奖,是当今国际标准和国家标准以及仲裁和涉外的方法。第二类是所有基于反相色谱分离、柱前衍生、荧光或紫外检测的高效液相法(HPLC)以及阴离子交换分离直接安培法检测的离子色谱法(IC)。两类方法的特性比较见表1。 表1:氨基酸分析方法的分类和特性比较表[1]

说明:IEC离子交换色谱;PITC异硫氰酸苯酯;OPA邻苯二甲醛;FMOC 9-芴基甲氧羰酰氯;AQC 6-氨基-喹啉基-N-羟基琥贝酰亚胺-氨基甲酸酯;DABS-Cl 二甲基氨基偶氮苯磺酰氯 由表1可见,IEC标准方法优于HPLC非标准方法,且此类仪器为专用型自动氨基酸分析仪器。 国外氨基酸分析仪器中,基于I EC标准方法原理并按照国家计量法规规定迄今业已正式通过国家技术质量监督总局型式认证的,有日立公司的L-8800,安玛西亚公司的30系列和安米诺西斯公司的A200型三种氨基酸分析仪。尚待通过计量认证的有Sykam和Jeol。而提供HPLC型氨基酸分析仪器的外国厂家有沃特斯、安捷伦、岛津和戴安等。但此类仪器用做氨基酸分析仪器时,还须首先通过氨基酸分析的计量认证。上述三家IEC型仪器的性能和技术参数见表2。 表2:三种IEC型氨基酸分析仪主要性能和技术参数对比一览表[2]

氨基酸自动分析仪

氨基酸自动分析仪 氨基酸分析仪是进行氨基酸分离、衍生和检测的自动化分析系统,广泛用于制药、食品、饲料、农业、育种、医学研究、临床诊断和地质考察等领域。 仪器类别:仪器仪表 /成份分析仪器 /氨基酸分析仪 指标信息:分辨率:THR-Ser Ile-leu ≥98% 保留时间重现性:RSD≤0.5% (水解,所有峰) 峰面积重现性:RSD≤1% (水解,所有峰) 1.原理 测定原理是利用样品各种氨基酸组分的结构不同、酸碱性、极性及分子大小不同,在阳离子交换柱上将它们分离,采用不同pH值离子浓度的缓冲液将各氨基酸组分依次洗脱下来,再逐个以另一流路的茚酮试剂混合,然后共同流至螺旋反应管中,于一定温度下(通常为115~120℃)进行显色反应,形成在570nm 有最大吸收的蓝紫色产物。其中的羟脯氨酸与茚三酮反应生成黄色产物,其最大吸收在440nm。这些有色产物对570nm、440nm光的吸收强度与洗脱出来的各氨基酸的浓度(或含量)之间的关系符合比耳定律,可与标准氨基酸比较作定性和定量测定。

2.操作方法 ①样品处理: 测定样品中各种游离氨基酸含量,可以除去脂肪杂质后,直接上柱进行分析。 测定蛋白质的氨基酸组成时样品必须经酸水解,使蛋白质完全变成氨基酸后才上柱进行分析。 ②样品分析:经过处理后的样品上柱进行分析。上柱的样品量根据所用自动分析仪的灵 敏度来确定。一般为每种氨基酸0.1μmol 左右(水解样品干重为0.3mg 左右)。测定必须 在pH5~5.5、100℃下进行,反应进行时间为10~15min,生成的紫色物质在570nm 波长下 进行比色测定。而生成的黄色化合物在440nm 波长下进行比色测定。做一个氨基酸全分析 一般只需1h 左右,同时可将几十个样品一起装入仪器,自动按序分析,最后自动计算给出精确的数据。仪器精确度在±1~3%。用阳离子交换柱分离及测定氨基酸所的如下图 自动分析仪氨基酸分离图谱 3.结果计算 带有数据处理机的仪器,各种氨基酸的定量结果能自动打印出来,否则,可用尺子测量 峰高或用峰高乘以半峰宽确定峰面积进而计算出氨基酸的精确含量。另外,根据峰出现的时间可以确定氨基酸的种类。 4.说明 ①显色反应用的茚三酮试剂,随着时间推移发色率会降低,故在较长时间测样过程中应随时采用已知浓度的氨基酸标准溶液上柱测定以检验其变化情况。 ②近年出现的采用反相色谱原理制造的氨基酸分析仪,可使蛋白质水解出的17 种氨基酸在12min 内完成分离,且具有灵敏度高(最小检出量可达1pmol)、重现性好以及一机多用等优点。 5.应用举例

烟叶游离氨基酸的测定 氨基酸分析仪法

烟叶游离氨基酸的测定氨基酸分析仪法(YC/T 282—2009) 日期:2009/6/2 10:39:18 作者:来源: 烟叶游离氨基酸的测定氨基酸分析仪法(YC/T 282—2009)由国家烟草专卖局于2009年3月30日批准发布,自2009年5月1日起实施。 前言 本标准的附录A、附录B、附录C为资料性附录。 本标准由国家烟草专卖局提出。 本标准由全国烟草标准化技术委员会卷烟分技术委员会(TC144/SC1)归口。 本标准起草单位:湖北中烟工业有限责任公司、中国烟草总公司郑州烟草研究院。 本标准主要起草人:王娟、李丹、刘建锋、马舒翼、宋旭艳、郭国宁、刘克建。 烟叶游离氨基酸的测定氨基酸分析仪法 1 范围 本标准规定了烟叶中游离氨基酸的氨基酸分析仪测定方法。 本标准适用于烟叶中天冬氨酸(Asp)、苏氨酸(Thr)、丝氨酸(Ser)、天冬酰胺(Asn)、谷氨酸(Glu)、脯氨酸(Pro)、甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、胱氨酸(Cys)、异亮氨酸(Ile)、亮氨酸(Leu)、酪氨酸(Tyr)、苯丙氨酸(Phe)、β-丙氨酸(β-Ala)、β-氨基异丁酸(β-Aia)、γ-氨基丁酸(γ-Aba)、赖氨酸(Lys)、组氨酸(His)、色氨酸(Trp)、精氨酸(Arg)等21种游离氨基酸的测定。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 YC/T 31-1996 烟草及烟草制品试样的制备和水分测定烘箱法 3 术语和定义 下列术语和定义适用于本标准。 3.1 烟叶中游离氨基酸 dissociated amino acid(free amino acid)in tobacco leaf 烟叶的盐酸浸出物中,以游离状态存在、未结合在蛋白质分子中的氨基酸。 4 原理 氨基酸为两性电解质,在酸性环境下形成阳离子。烟叶中的游离氨基酸经酸溶液萃取后,经氨基酸分析仪的磺酸型锂离子交换柱分离,然后与茚三酮混合,通过加热反应,伯胺与之生成蓝紫色化合物,仲胺与之生成黄色化合物。两种衍生物使用波长分别为570 nm和440 nm的双通道紫外检测器同时进行定性定量分析测定(氨基酸分析仪管路图参见附录A)。 5 试剂 除特别要求以外,本标准所使用的试剂均为分析纯试剂,水为去离子水。 5.1盐酸溶液,0.005 mol/L。

氨基酸分析仪

1.简介 采用经典的阳离子交换色谱分离、茚三酮柱后衍生法,对蛋白质水解液及各种游离氨基酸的组分含量进行分析。仪器基本结构同普通HPLC相似,但针对氨基酸分析进行了细节优化(例如氮气保护、惰性管路、在线脱气、洗脱梯度及柱温梯度控制等等)2.系统 通常细分为两种系统:蛋白水解分析系统(钠盐系统)和游离氨基酸分析系统(锂盐系统),利用不同浓度和pH值的柠檬酸钠或柠檬酸锂进行梯度洗脱。其中钠盐系统一次最多分析约25 种氨基酸,速度较快,基线平直度好;锂盐系统一次最多分析约50种氨基酸,速度较慢,基线一般不如钠盐系统好。 3.效果 分析效果:从目前已知的氨基酸分析方法比较来看,除灵敏度(最低检测限)比HPLC柱前衍生方法稍低以外(HPLC:<0.5pmol;氨基酸分析仪:<10pmol),其他如分离度、重现性、操作简便性、运行成本等方面,都优于其他分析方法。 4.如何选择质量可靠的氨基酸分析仪 1、原理。基于阳离子交换柱分离、柱后茚三酮衍生、光度法测定的离子交换色谱法(IEC)。此类方法由Stein和Moore两人

1958年发明,并于1972年获诺贝尔奖,是当今国际标准和国家标准以及仲裁和涉外的方法。 2、重要指标。满足分析需要的技术指标如分离度、重复性等要求,而其中的分离度又是更为重要的指标,因为,色谱理论一般以分离度达到1.2作为两峰基本分离的判定前提,只有峰分开了,才有意义去讨论定性和定量的重复性。 3、指标的真实性。有些厂家只标出个别氨基酸的指标如Asp 或Arg,或只用平均数据替代全部数据等等,而仪器性能好,经营信誉较高的厂家就会标出全部氨基酸的指标供用户参考。 4、仪器的可靠性。如果仪器今天堵了、明天漏了,用户不仅要付出大量人力财力,分析结果的可信度也将大打折扣。 5、仪器的运行成本。例如是否可以使用国产试剂、柱子寿命(以多少次进样计算、而不以多少年计算)等。 6、仪器设计是否有利于氨基酸分析。例如是否有惰性气体保护(茚三酮极易被氧化)、是否提供在线脱气、是否提供溶液和样品的制冷控制等。 7、售后服务。分析过程中遇到困难是在所难免,厂家必须能够快速响应、尽快解决问题。另外,常用备件的价格也是一个重要因素,因为用户在购买前一般难以注意到售后的问题,而很多厂家也没有公示自己的常用备件价格,这就为将来的使用埋下了隐患,事实上,也的确有很多仪器在出现一些看似微小的故障之后,就因为维修费用太高而被“束之高阁”。

氨 基 酸 自 动 分 析 仪 简 介

氨基酸自动分析仪 氨基酸是蛋白质的组成成分,是蛋白质化学研究的主要内容之一。蛋白质是一切生命物质的基础,因此,探讨和揭示生命现象的发生、生长、新陈代谢、遗传变异过程,都与氨基酸的研究有关。 随着近代物理学、化学和电子学的飞速发展,氨基酸的分析技术亦在不断更新。氨基酸分析仪是本世纪50年代研制的,仅40多年,已发展到现在的进样、分离、检测和数据处理全部自动化的程度。检出量由微克分子到毫微克分子,分析时间由原来的24小时到现在的半个小时,分析技术的提高促进了其他科学领域的发展。 一、氨基酸自动分析仪的进展 用于氨基酸分析的方法很多,有纸色谱法、柱色谱法、薄层色谱法、电泳法及气相色谱法等。一般认为离子交换柱色谱法是较为精确的检测方法,氨基酸分析仪就是在此基础上研制成功的。1951年Moor和Stein采用离子交换树脂色谱,用茚三酮试剂显色和分光光度计检测而设计,后来在Spaekman的协助下,使分析操作自动化。迄今氨基酸分析仪的条件和自动程度有了很大的改观,其特点主要表现以下几个方面。 ⒈树脂粒径减小近年来制成的小颗粒球状树脂,使氨基酸分析仪得到很大改进。由于树脂粒径减小就对应地增加等

量树脂的总面积,使现在少量树脂达到过去大量树脂的分离效果,从而减小了树脂柱的内径和体积,节省了试剂用量,缩短了分析时间。树脂的粒径从200→20→10→5μm。 ⒉色谱柱内径缩小树脂粒径减小使填充树脂床的色谱柱内径减小,由过去的粗长柱变为微柱。色谱柱内径的变化为18→6→2.8→1.75mm。 ⒊输压泵压力增高一般氨基酸分析仪采用低压泵,其施加于输液的压力只有几9.80665×104Pa,以后增加至几十 9.80665×104Pa,现在发展到2068×104Pa。 ⒋分析时间缩短由于树脂粒径的改善,色谱柱内径缩小和泵压增高,使分析时间大大缩短。蛋白质水解液的分析时间从过去的24小时缩短到现在的半个小时左右。 ⒌仪器灵敏度提高由于仪器的不断改进,使灵敏度大为提高,过去仪器的最高灵敏度已远不及现在仪器的最低灵敏度。现在一般氨基酸分析仪的灵敏度均达到0.1nmol。 ⒍试剂用量减少由于分析时间大大缩短,致使试剂消耗量大为降低。氨基酸分析的试剂要求纯度很高,且价格昂贵,试剂用量减少会降低分析费用,试剂流量(每小时茚三酮试剂的用量)的变化为70→35→18→3.5ml。 ⒎样品用量少由于仪器灵敏度不断提高,同时不少仪器采用单柱分析法,所以样品用量逐渐减少,从过去一次分析需要样品几ml到现在只用20μl。这对科研中难以收集和制

氨基酸分析仪(水解)

德国sykamS433D/S433(赛卡姆)氨基酸分析仪 仪器主要特点:

1、经典的茚三酮柱后衍生法、符合国家标准 2、带制冷功能的溶液存放单元,全部试剂均有惰性气体保护,试剂瓶带独立阀门 3、全自动进样器带电子制冷,进样体积可编程,无样品损失 4、四元梯度泵内置在线真空脱气,优化后的洗涤梯度只需2-3种缓冲液 5、检测系统包含可精确控温的柱温箱及衍生系统,双波长同时检测 6、中英文、图形化软件极易操作,具有日志记录及权限管理,符合GLP/21CFR规范 7、优异的定性定量重复性,超长的分离柱使用寿命 仪器技术参数: 1、分析柱 ●电子恒温(制热或制冷) ●柱温 可梯度编程 20℃~99℃ ●温度准确度 0.1℃ ●柱 PEEK,4.6 x 150mm, 7um,10%交联(最适于氨基酸分析的强度) ●安全保护 过热保护 2、自动进样器 ●进样模式 100μl体积可变环进样 ●进样体积 可变; 1μl~5000μl,0.1μl增量 ●样品清洗 最高5000μl清洗液,1μl增量 ●记忆效应 低于0.01%(自动清洗进样回路) ●重现性 10μl 变体积进样时变异低于1% ●进样/样品瓶 每个系列1~9次进样,可设不同体积 ●样品盘 两个盘,每盘60个样品位,1.5ml样品瓶 ●温度控制 +5℃~70℃(电子恒温) 3、溶液存放单元,带电子恒温装置 ●可存放所有缓冲液、再生液及茚三酮试剂 ●温度 4℃ ●内置式冷却器,可进行温度控制 4、四元梯度泵(输液单元) ●活塞 双活塞短行程技术,自动清洗 ●流速 0.000ml/min~9.999ml/min ●流速稳定性 RSD<0.1% ●最大压力 40MPa (400bar,6000psi) ●操作方式 恒流,恒压 ●梯度混合室 100μl~500μl ●材料 PEEK 5、检测系统 ●检测波长 570nm, 440nm(可同时检测) ●荧光检测(选配)

氨基酸分析仪故障及解决

(1)故障现象:泵1泵2压力均高(正常压力泵1约9MPa,泵2约1MPa) 产生原因:反应柱被堵塞。 判断方法:将泵1泵2通往混合器的连接管路取下,此时如果两个压力明显下降则可断定。解决方法:将反应柱取下放入干净的容器中并注入蒸馏水,利用超声波清洗器清超30分钟,然后反装回原位利用泵2走水(用R3),流量视压力而设定,由小到大直至压力正常为止,最后将反应柱恢复原状(注意:反相冲洗反应柱时脱开通往流动池的管路,以防流动池堵塞)。(2)故障现象:仅泵1压力高 产生原因1:在线过滤器被堵塞(此故障发生率较高)。 判断方法1:将在线过滤器与分析柱脱离后压力远远大于0.5MPa。 解决方法1:将过滤器的滤芯取出,利用超声波清洗30分钟后反相开路用缓冲液1冲洗,直至压力恢复正常;如果无效则要更换滤芯。 产生原因2:分析柱入口被堵塞(此故障发生率较高)。 判断方法2:将在线过滤器与分析柱脱离后压力小于0.5MPa。 解决方法2:参考清洗反应柱方法。 产生原因3:分析柱内树脂被样品污染。 判断方法3:氨基酸组分出峰拖尾,分辨率下降。 解决方法3:参照说明书方法处理树脂后再填装。 产生原因4:除氨柱堵塞。 判断方法4:脱开除氨柱出口管路后压力远远大于0.3MPa。 解决方法4:参考清洗反应柱方法或重新填充除氨柱。 产生原因5:自动进样器有关管路被堵塞。 判断方法5:将通往在线过滤器的管路开路后压力仍高。 解决方法5:此故障较难判断,一般规律多发生在六通阀及取样环部位。 产生原因6:压力传感器出口过滤网被堵塞。 判断方法6:脱开除氨柱入口的管路后压力仍高。 解决方法6:取出过滤网后用超声波清洗。 (3)故障现象:仅泵2压力高 产生原因1:反应柱被堵塞(此故障发生率较高)。 判断方法1:将反应柱输出管路开路后压力仍高。 解决方法1:参考上述方法。 产生原因2:泵2输出软管被堵塞。 判断方法2:将软管与混合器处的连接脱开后压力仍高。 解决方法2:利用泵2走水,流量设定为0.1ml/min,长时间冲洗直至压力降下来,如无效则要更换输出软管。 产生原因3:压力传感器出口过滤网堵塞。 判断方法3:脱开压力传感器出口的软管后压力仍高。 解决方法3:取出过滤网用超声波清洗。 (4)故障现象:泵1或泵2压力低 产生原因1:有关管路漏液。 判断方法1:用滤纸在有关连接处试漏。 解决方法1:再紧固有关连接处。 产生原因2:缓冲液或茚三酮试剂瓶中吸管头的过滤器堵塞,不能吸液。 判断方法2:将良好的泵停止运转,仅启动有问题的泵,检查废液管排液量。 解决方法2:利用超声波清洗或更换新的过滤头。

氨基酸分析实验报告

生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心

实验名称氨基酸的薄层层析 实验日期2014-10-22 实验地点第4实验室 合作者指导老师 评分教师签名批改日期 一、实验目的 1.掌握薄层层析法的一般原理。 2.掌握氨基酸薄层层析法的基本操作技术。 3.掌握如何根据移动速率(R f值)来鉴定被分离的物质(即氨基酸混合液)。 二、实验原理 (一)薄层层析 1.层析技术是利用化合物中各组分的物理性质(如溶解度、吸附能力、分子形状和大小、分子极性、分子亲和力、分配系数等)的不同,使各组分不同程度地分布在两相中,随着流动相从固定相上流过,不同组分以不同速度而最终被分离。 1)特点:分离效率高,能分离各种性质相类似的物质。不仅可用于少量物质的 分离纯化,也可用于大量物质的分离纯化和制备。 2)固定相:固定相是层析的一个基质。包括固体物质(如吸附剂,凝胶,离子 交换剂等)和液体物质(如固定在硅胶或纤维素上的溶液),这些物质能与相 关的化合物进行可逆性的吸附、溶解和交换作用。 3)流动相:在层析过程中,推动固定相上待分离的物质移动的液体、气体等, 都称为流动相。柱层析中一般称为洗脱剂,薄层层析时称为展层剂。 4)分类

(1)按两相所处状态,可分为液相层析和气相层析,前者以液体为流动相,后者以气体为流动相。 (2)按操作形式不同,可分为柱层析、薄层层析和纸层析。 (3)按层析的原理不同,可分为吸附层析、分配层析、凝胶层析、离子交 换层析和亲和层析等。 今天要做的试验,根据原理属于吸附层析,根据操作形式又属于薄层层析,合到一起叫:吸附薄层层析。 2.薄层层析法是色谱分析技术的一种 一般是将固体吸附剂涂布在平板上形成薄层作为固定相。当液相(展开溶剂)在固定相上流动时,由于吸附剂对不同氨基酸的吸附力不一样,不同氨基酸在展开溶剂中的溶解度不一样,点在薄板上的混合氨基酸样品随着展开剂的移动速率也不同,因而可以彼此分开。(即通过吸附-解吸-再吸附-再解吸的反复进行,而将样品各组分分离开来)3.硅胶吸附薄层层析 1)吸附薄层中常用的吸附剂为氧化铝和硅胶 : 硅胶:表达式为SiO2·XH2O。层析用硅胶是一种多孔性物质,它的硅氧环交链结构表面上密布极性硅醇基(-Si-OH),这种极性的硅醇基能和许多化合物形成氢键而产生吸附. 2)硅胶吸附薄层层析的特点: (1)硅胶的吸附能力比氧化铝稍弱,其吸附活性也与含水量呈负性相关。 (2)硅醇基显较弱的酸性,因而,硅胶只能用于中性、或酸性成分的分离,碱性成分不能用它分离。 (3)硅胶的活化温度通常为105℃-110℃,不能过高。 (二)氨基酸与茚三酮的显色反应 茚三酮水化后生成水化茚三酮,它与氨基酸的羧基反应生成还原茚三酮、氨基

氨基酸分析仪使用调试技术

氨基酸分析仪使用调试技术 一、仪器安装调试 仪器安装最好外接稳压器,安装安全闸防止突然停电造成难以排除的故障。还要安装铜板地线,这样可使峰谱线稳定。仪器各项技术指标的调试采用18种氨基酸混合标样(日本和光试剂公司H型氨基酸混合标准液)。 1. 基酸分辨率的检测该仪器要求苏一丝氨基酸分辨率为70%以上,甘-丙氨基酸分辨率为80%以上,采用5个标样经检测苏-丝氨基酸分辨率为85%以上,甘一丙氨基酸分辨率为以95%上(试验数据表略)。 2. 氨基酸峰位重现性检测:5个标样连续多次检测,丙氨酸最高和最低出峰保留时间不超过1分钟,精氨酸出峰时间最高和最低偏差在1%以内(试验数据表略)。 3. 氨基酸蜂面积重现性检测:5个标样、经多次检测甘氨酸和丙氨酸峰面积重现性编差平均值均达仪器指标2.5%以下(数据表略)。 4. 仪器重复性检测:仪器分离柱重新装树脂后,对10个标样进行检测,,17种氨基酸(不包括氨峰)的出峰保留时间(t)和峰面积(A)的变异系数(CV)值列表1。 表1看出种17氨基酸值均在以1%内,说明各种氨基酸峰面积再现性较好,仪器重复性好。

二、不同样品氨基酸含里测定 1. 仪器检测原理和方法:该分析仪不锈钢分离柱内装有专利2619混合离子交换树酯(Hitachi Cuiuomion-Exchange Resin),根据离子吸附交换的原理,,样品用6摩尔盐酸水介法处理后,经自动进样器定量,然后进入分离柱,用流量稳定的泵1输送规定的缓冲液,按事先编好的程序卡规定的程序自动淋洗,样品水介后的酸性、中性和碱性氨基酸分别从分离柱上被洗脱下来,各种氨基酸分次与泵2输送的茚三酮显色液在混合器中充分混合,在温度为100℃左右的反应浴中进行显色,生成紫色色素Dikepohydrindlidene Dikerohydrinaomine(DrDA),此紫色发色液经单色分离器的分光光度计,用570 纳米和440 纳米两个注长连续检测,得到的吸光度进行信号放大,记录仪自动绘出各神氨基酸峰谱,以标准氨基酸峰谱为基准,采用峰面极H·W 法进行结果计算,或通过数据处理系统进行计算打印,得出各种氨基酸含量。 2. 分析结果:为了检测仪器的稳定性,选用了各种不同样品20个,进行氨基酸含量的测试,测定数据列表2。

日立-8900全自动氨基酸分析仪简单操作规程

日立L-8900全自动氨基酸分析仪 简易操作规程 一、联机 1、打开电脑。 2、打开主机电源。 3、双击桌面的图标,进入1-1画面,双击图标,进入程序。 1-1 4、在菜单栏中依次点击和,出现1-2画面,单击 联机。大约两分钟,初始化完毕。中Uninitialized变成 Idle,图1-2变成了图1-3,各个组件可以进行控制了。初始化完毕后,分离柱的温度逐渐上升。分离柱的温度会升到50℃。

1-2 1-3

二、手动各组件控制操作 1、泵1和泵 2 点击,出现2-1的画面。设置泵1,流量0.ml/min,B1 100%。点击打开泵1。泵打开后,泵的背景颜色由灰色变为黄色。 2-1 点击,出现2-2的画面,设置泵2,流量0.1ml/分钟,R3 100%。点击打开泵2。泵打开后,泵的背景颜色由灰色变为黄色。

2-2 2、自动进样器 点击,出现2-3的画面,设置Sampler Wash不少于3次。 2-3 2-4 3、反应柱柱温箱 点击,出现2-5画面,设置柱温135℃,设置ON,打开柱温箱。柱温箱打开后,背景颜色由灰色变为黄色。 2-5 2-6 三、编辑方法 1、依次点击、、出现3-1-1的画面。

3-1-1 2、选中,点击。再依次点击、 ,出现3-1-2的画面。 3-1-2

3、在设置中选中各个柱,其余参数默认。 4、将方法另存为L8900分析方法,文件名及路径均可自选。注意一定不要覆盖原来的方法,一定得另存。 注意将梯度设为3-3-1所示,其余参数默认。 3-3-1 2、保存方法。 四、编辑Sequence 1、依次点击、、,出现4-1画面。选中,其余参数默认。

氨基酸的测定方法比较分析

食物中氨基酸的测定方法 一、氨基酸自动分析仪法 1. 原理 食物蛋白质经盐酸水解成为游离氨基酸,经氨基酸分析仪的离子交换柱分离后,与茚三酮溶液产生颜色反应,再通过分光光度计比色测定氨基酸含量。一份水解液可同时测定天冬,苏,丝,谷,脯,甘,丙,缬,蛋,异亮,亮,酪,苯丙,组,赖和精氨酸等16种氨基酸,其最低检出限为10pmol。 2. 适用范围 GB/T14965-1994食物中氨基酸的测定方法。本法适用于食物中的16种氨基酸的测定。其最低检出限为10pmol。本方法不适用于蛋白质含量低的水果、蔬菜、饮料和淀粉类食物的测定 3. 仪器和设备 3.1 真空泵 3.2 恒温干燥箱 3.3 水解管:耐压螺盖玻璃管或硬质玻璃管,体积20~30ml。用去离子水冲洗干净并烘干。 3.4 真空干燥器(温度可调节) 3.5 氨基酸自动分析仪。 4. 试剂 全部试剂除注明外均为分析纯,实验用水为去离子水。 4.1 浓盐酸:优级纯 4.2 6mol/L盐酸:浓盐酸与水1:1混合而成。 4.3 苯酚:需重蒸馏。 4.4 混合氨基酸标准液(仪器制造公司出售):0.0025mol/L 4.5 缓冲液: 4.5.1 pH2.2的柠檬酸钠缓冲液:称取19.6g柠檬酸钠(Na3C6H5O7.2H2O)和16.5ml浓盐酸加水稀释到1 000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至2.2 4.5.2 pH3.3的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和12ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节至pH至3.3。 4.5.3 pH4.0的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和9ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至4.0。 4.5.4 pH6.4的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和46.8g氯化钠(优级纯)加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至6.4。 4.6 茚三酮溶液 4.6.1 pH 5.2的乙酸锂溶液:称取氢氧化锂(LiOH.H2O)168g,加入冰乙酸(优级纯)279ml,加水稀释到1000ml,用浓盐酸或50%的氢氧化钠调节pH至5.2。 4.6.2茚三酮溶液:取150ml二甲基亚砜(C2H6OS)和乙酸锂溶液(2.6.1)50ml加入4g水合茚三酮(C9 H4O3.H2O)和0.12g还原茚三酮(C18H10O6.2H2O)搅拌至完全溶解。 4.7 高纯氮气:纯度99.99%。 4.8 冷冻剂:市售食盐与冰按1:3混合 5. 操作步骤 5.1 样品处理:样品采集后用匀浆机打成匀浆(或者将样品尽量粉碎)于低温冰箱中冷冻保存,分析用时将其解冻后使用。 5.2 称样:准确称取一定量样品,精确到0.0001g。均匀性好的样品如奶粉等,使样品蛋白质含量在10~2 0mg范围内;均匀性差的样品如鲜肉等,为减少误差可适当增大称样量,测定前再稀释。将称好的样品防于水解管中。 5.3 水解:在水解管内加6mol/L盐酸10~15ml(视样品蛋白质含量而定),含水量高的样品(如牛奶)可加入等体积的浓盐酸,加入新蒸馏的苯酚3~4滴,再将水解管放入冷冻剂中,冷冻3~5min,再接到真空泵的抽气管上,抽真空(接近0psi),然后充入高纯氮气;再抽真空充氮气,重复三次后,在充氮气状态下封口或拧紧螺丝盖将已封口的水解管放在110±1℃的恒温干燥箱内,水解22h后,取出冷却。 打开水解管,将水解液过滤后,用去离子水多次冲洗水解管,将水解液全部转移到50ml容量瓶内,用去离子水定容。吸取滤液1ml于5ml容量瓶内,用真空干燥器在40~50℃干燥,残留物用1~2ml水溶解,再干燥,反复进行两次,最后蒸干,用1mlpH2.2的缓冲液溶解,供仪器测定用。 5.4 测定:准确吸取0.200ml混合氨基酸标准,用pH2.2的缓冲液稀释到5ml,此标准稀释浓度为5.00nm ol/50μL,作为上机测定用的氨基酸标准,用氨基酸自动分析仪以外标法测定样品测定液的氨基酸含量。 6. 计算 上机样品液(50mL)中氨基酸量(nmol)= 上机标准液(50mL)中氨基酸量(nmol)×样品峰面积

相关主题
相关文档 最新文档