当前位置:文档之家› 可控硅原理--检测--击穿分析

可控硅原理--检测--击穿分析

可控硅原理--检测--击穿分析
可控硅原理--检测--击穿分析

一、可控硅击穿原因:

1、RC电路只是用于尖峰脉冲电压的吸收(平波作用),RC时间常数应和尖峰

脉冲上升沿时间一致,并且要注意电容的高频响应,应使用高频特性好的。

2、压敏电阻本身有反应时间,该反应时间必须要小于可控硅的最大过压脉冲宽

度,而且压敏电阻的过压击穿电压值有一定的离散性,实际的和标识的值有一定的误差。

3、击穿的可能性好多种,过电流,过电压.短路,散热不好都会被击穿.RC电路或

压敏电阻只是吸收尖峰脉冲电压.和涌浪电压用的有条件.可以增大双向可控硅容量,这能有效减少以上的问题,如果是短路就要查明短路原因

二、问题例子:

最初使用MOC3061+BT131控制电磁阀,BT131击穿很多;后来将BT131更换成BT136虽然有多改善,但还是偶尔有击穿。电路图如下

实际电路中R56没焊,R55为330欧姆。

电路有RC吸收、压敏电阻保护电路,负载为电磁阀,负载电流最多不超过

100mA,按说1A的BT131就已经足够了,但使用4A的BT136还偶尔会坏,是可控硅质量问题,还是我的电路参数有问题?

另外,有谁知道可控硅的门极触发电流是怎么计算得来的?

在之前的BT131电路中R55、R56的阻值是330欧姆,后来的BT136电路中去掉了R56、R55的阻值还是330欧姆。

是不是这个值太小了,触发电流太大引起的损坏?

关于电路图做一下补充:

1.电阻R68实际用的是75欧姆

2.电容C11用的是103 630V(0.01u)

3.压敏电阻R75用的是471V的

回答一:

对双向可控硅驱动,技术已十分成熟了。对感性负载,驱动电路不要这样接,有经典的参考电路,请参考相应的资料。

我认为该处应该用CBB电容,其特性有利于浪涌的吸收。如果受体积限制,类似的电路我也这样用。

CBB电容

回答二:

照这个图来做,烧了可控硅那就是你的质量太差了!

此电路我用了3年,现在还在用。

左边的电路为恒流,输入5-30V都不会烧坏光耦。

R3一定要用20-50欧以内的电阻,不可以用上百欧的!!!!!否则可控硅无法完全导通,一直处于调压状态,很容易发热甚至损坏!!!

回答三:

回答四:

其实有一点大家可能都没有注意,就是可控硅的尾缀问题,TW的才是更适合电机类使用的器件!仔细查一下手册看看吧!

三、可控硅检测:

注:本文中所使用的万用表为指针式,若换为数字式,注意红黑表笔极性正好相反

1、判断引脚极性

方法一:

由双向可控硅的内部结构可知,控制极G与主电极A1之间是由—块P型半导体连接的,两电极间的电阻(体电阻)为几十欧姆,根据公特点就可以方便

地判断出各电极来。

先确定主电极A2:将万用表置在R×10档,用黑表笔接住任—电极,再用

红表笔去接另外任一电极,如果头指示为几十欧姆电阻,就说的两表笔所接电

极为控制极G和主电极A1,那么余下的电极便是主电极A2;如果指针不动,仍停在∞处,应及时调整表笔所接电极,直到测出电阻值为几十欧姆的两电极,

从而确定主电极A2为止。

再区分控制极G和主电极 A1:现假定两电极中任一为主电极A1,则另一

个就为为控制极G,万用表置于R×10挡,用黑表笔接主电极A2(已确定),

再用红表笔去接假定的主电极主“A1”,并用红表笔笔尖碰一下G后再离开,

如果表针发生偏转,指示在几或几十欧姆上,就说明假定的主电极"T1”为真正的主电极T1,而另一电极也为真正的控制极G;如果表针没有偏转,说明假定

是错的,应重新假定A1和G,即让黑表笔仍接A2,而将红表笔接新“A1”,如果判别结呆同上,即对区分出控制极G和主电极A1。

方法二:

先确定主电极A2:将万用表置于R×1k档,现假定双向可控硅任意一个脚

为主电极“A2”,并用黑表笔接“A2”,再用红表笔去分别触碰另外两个电极,如果指针没有偏转,指示在∞处,就说朋黑表笔所接为主电极A2,这是因为主

电极A2与A1和G之间有多个正反相的PN结,它们之间的电阻是很大的;如果红完笔触碰其中的—个电极时指针不偏转,而触碰另一个电极时发生了偏转,

说明原来的假定是错的,应重新假定A2,再按上述方法测试判断,直至找到真

正的T2为止。

找到A2后,剩下的两个电极就是G和A1,由于设计上的需要以及内部结

构特点决定,G和A1之间仍然存在正反向电阻特性,只是正反向电阻差别不是

很大。将万用表置于R×10档,两表笔与G、A1相接,测试正反向电阻,以阻

值小的那次为准,黑表笔接的电极为主电极A1,而红表笔接的电极为控制极G。

测试时请注意,在测量大功率向可控硅时,应尽是量使用低阻档,如不行还可象测试单向可控硅—样,在万用表表笔上串上一节或多节1.5V干电池,使测试更为可靠。

2、判断好坏

方法一:

测量极间电阻法。将万用表置于皮R×1k档,如果测得T2-T1、T2-G之间的正反向电阻接近∞,而万用表置于R×10档测得T1-G之间的正反向电阻在几十欧姆时,就说明双向可控硅是好的,可以使用;反之,

1、若测得T2-T1,、T2-G之间的正反向电阻较小甚或等于零.而

Tl-G之间的正反向电阻很小或接近于零时.就说明双向可控硅的

性能变坏或击穿损坏。不能使用;

2、如果测得T1-G之间的正反向电阻很大(接近∞)时,说明控制极G

与主电极T1之间内部接触不良或开路损坏,也不能使用。

方法二:

检查触发导通能力。万用表置于R×10档:①如图,1(a)所示,用黑表笔接主电极T2,红表笔接T1,即给T2加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果表头指针发生了较大偏转并停留在一固定位置,说明双向可控硅中的一部分(其中一个单向可控硅)是好的,如图1(b)所示,改黑表笔接主电极T1,红表笔接T2,即给T1加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果结果同上,也证明双向可控硅中的另一部分(其中的一个单向可控硅是好的。测试到止说明双向可控硅整个都是好的,即在两个方向(在不同极性的触发电压证)均能触发导通。

图1 判断双向可控硅的触发导通能力

方法三:

检查触发导通能力。如图2所示.取一只10uF左右的电解电容器,将万用表置于R×10k档(V电压),对电解电容器充电3~5s后用来代替图1中的短路线,即利用电容器上所充的电压作为触发信号,然后再将万用表置于R×10档,照图2(b)连接好后进行测试。测试时,电容C的极性可任意连接,同样是碰触

一下后离开,观察表头指针偏转情况,如果测试结果与“方法二’相同,就证

明双向可控硅是好的。

图2 判断双向可控硅的触发导通能力

应用此法判断双向可控硅的触发导通能力更为可靠。由于电解电容器上充的电压较高,使触发信号增大,更利于判断大功率双向可控硅的触发能力。

实物图:

四、双向可控硅概念

联的可控硅,而且仅需一个触发电路,是比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。

双向可控硅参数符号

IT(AV)--通态平均电流 Tc=75℃ 40A

VRRM--反向反复峰值电压 800V

IDRM--断态重复峰值电流

ITSM--通态一个周波不反复浪涌电流

VTM--通态峰值电压

IGT--门极触发电流 Tj=25℃ 100~150mA

VGT--门极触发电压 Tj=25℃ 1.5V

IH--维持电流 Tj=25℃ 100mA

dv/dt--断态电压临界上升率 250V/uS

di/dt--通态电流临界上升率 10A/uS

Rthjc--结壳热阻

VISO--模块绝缘电压

Tjm--额定结温

VDRM--通态反复峰值电压 Tj=125℃ 800V

IRRM--反向重复峰值电流

IF(AV)--正向平均电流

双向可控硅的设计及应用分析

引言

1958年,从美国通用电气公司研制成功第一个工业用可控硅开始,电能的变换和控制从旋转的变流机组、静止的离子变流器进入以电力半导体器件组成的变流器时代。可控硅分单向可控硅与双向可控硅。单向可控硅一般用于彩电的过流、过压保护电路。双向可控硅一般用于交流调节电路,如调光台灯及全自动洗衣机中的交流电源控制。

双向可控硅是在普通可控硅的基础上发展而成的,它不仅能代替两只反极性并联的可控硅,而且仅需一个触发电路,是目前比较理想的交流开关器件,一直为家电行业中主要的功率控制器件。近几年,随着半导体技术的发展,大功率双向可控硅不断涌现,并广泛应用在变流、变频领域,可控硅应用技术日益成熟。本文主要探讨广泛应用于家电行业的双向可控硅的设计及应用。

双向可控硅特点

双向可控硅可被认为是一对反并联连接的普通可控硅的集成,工作原理与普通单向可控硅相同。图1为双向可控硅的基本结构及其等效电路,它有两个主电极T1和T2,一个门极G,门极使器件在主电极的正反两个方向均可触发导通,所以双向可控硅在第1和第3象限有对称的伏安特性。双向可控硅门极加正、负触发脉冲都能使管子触发导通,因此有四种触发方式。

图1 双向可控硅结构及等效电路

双向可控硅应用

为正常使用双向可控硅,需定量掌握其主要参数,对双向可控硅进行适当选用并采取相应措施以达到各参数的要求。

耐压级别的选择:通常把VDRM(断态重复峰值电压)和VRRM(反向重复峰值电压)中较小的值标作该器件的额定电压。选用时,额定电压应为正常工作峰值电压的2~3倍,作为允许的操作过电压裕量。

电流的确定:由于双向可控硅通常用在交流电路中,因此不用平均值而用有效值来表示它的额定电流值。由于可控硅的过载能力比一般电磁器件小,因而一般家电中选用可控硅的电流值为实际工作电流值的2~3倍。同时,可控硅承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时的峰值电流应小于器件规定的IDRM和IRRM。

通态(峰值)电压VTM的选择:它是可控硅通以规定倍数额定电流时的瞬态峰值压降。为减少可控硅的热损耗,应尽可能选择VTM小的可控硅。

维持电流:IH是维持可控硅维持通态所必需的最小主电流,它与结温有关,结温越高,则IH越小。

电压上升率的抵制:dv/dt指的是在关断状态下电压的上升斜率,这是防

止误触发的一个关键参数。此值超限将可能导致可控硅出现误导通的现象。由

于可控硅的制造工艺决定了A2与G之间会存在寄生电容,如图2所示。我们知道dv/dt的变化在电容的两端会出现等效电流,这个电流就会成为Ig,也

就是出现了触发电流,导致误触发。

图2 双向可控硅等效示意图

切换电压上升率dVCOM/dt。驱动高电抗性的负载时,负载电压和电流

的波形间通常发生实质性的相位移动。当负载电流过零时双向可控硅发生切换,由于相位差电压并不为零。这时双向可控硅须立即阻断该电压。产生的切换电

压上升率(dVCOM/dt)若超过允许值,会迫使双向可控硅回复导通状态,因

为载流子没有充分的时间自结上撤出,如图3所示。

图3 切换时的电流及电压变化

高dVCOM/dt承受能力受二个条件影响:

dICOM/dt—切换时负载电流下降率。dICOM/dt高,则dVCOM/dt承受能力下降。

结面温度Tj越高,dVCOM/dt承受能力越下降。假如双向可控硅的dVCOM/dt的允许值有可能被超过,为避免发生假触发,可在T1 和T2 间装置RC缓冲电路,以此限制电压上升率。通常选用47~100Ω的能承受浪涌电流的碳膜电阻,0.01μF~0.47μF的电容,晶闸管关断过程中主电流过零

反向后迅速由反向峰值恢复至零电流,此过程可在元件两端产生达正常工作峰值电压5-6倍的尖峰电压。一般建议在尽可能靠近元件本身的地方接上阻容吸收回路。

断开状态下电压变化率dvD/dt。若截止的双向可控硅上(或门极灵敏的

闸流管)作用很高的电压变化率,尽管不超过VDRM,电容性内部电流能产生足够大的门极电流,并触发器件导通。门极灵敏度随温度而升高。假如发生这样的问题,T1 和T2 间(或阳极和阴极间)应该加上RC 缓冲电路,以限制dvD/dt。

电流上升率的抑制:电流上升率的影响主要表现在以下两个方面:

①dIT/dt(导通时的电流上升率)—当双向可控硅或闸流管在门极电流触发下导通,门极临近处立即导通,然后迅速扩展至整个有效面积。这迟后的时间有一个极限,即负载电流上升率的许可值。过高的dIT/dt可能导致局部烧毁,并使T1-T2 短路。假如过程中限制dIT/dt到一较低的值,双向可控硅可能可以幸存。因此,假如双向可控硅的VDRM在严重的、异常的电源瞬间过程中有可能被超出或导通时的dIT/dt有可能被超出,可在负载上串联一个几μH 的不饱和(空心)电感。

②dICOM/dt (切换电流变化率) —导致高dICOM/dt值的因素是:高负载电流、高电网频率(假设正弦波电流)或者非正弦波负载电流,它们引起的切换电流变化率超出最大的允许值,使双向可控硅甚至不能支持50Hz 波形由零上升时不大的dV/dt,加入一几mH的电感和负载串联,可以限制dICOM/dt。

·为了解决高dv/dt及di/dt引起的问题,还可以使用Hi-Com 双向可控硅,它和传统的双向可控硅的内部结构有差别。差别之一是内部的二个“闸流管”分隔得更好,减少了互相的影响。这带来下列好处:

①高dVCOM/dt。能控制电抗性负载,在很多场合下不需要缓冲电路,保

证无故障切换。这降低了元器件数量、底板尺寸和成本,还免去了缓冲电路的

功率耗散。

②高dICOM/dt。切换高频电流或非正弦波电流的性能大为改善,而不需

要在负载上串联电感,以限制dICOM/dt。

③高dvD/dt(断开状态下电压变化率)。双向可控硅在高温下更为灵敏。高温下,处于截止状态时,容易因高dV/dt下的假触发而导通。Hi-Com双向

可控硅减少了这种倾向。从而可以用在高温电器,控制电阻性负载,例如厨房

和取暖电器,而传统的双向可控硅则不能用。

门极参数的选用:

门极触发电流—为了使可控硅可靠触发,触发电流Igt选择25度时

max值的α倍,α为门极触发电流—结温特性系数,查数据手册可得,取特

性曲线中最低工作温度时的系数。若对器件工作环境温度无特殊需要,通常α

取大于1.5倍即可。

门极压降—可以选择Vgt 25度时max值的β倍。β为门极触发电压—结温特性系数,查数据手册可得,取特性曲线中最低工作温度时的系数。若对器

件工作环境温度无特殊需要,通常β取1~1.2倍即可。

触发电阻—Rg=(Vcc-Vgt)/Igt

触发脉冲宽度—为了导通闸流管(或双向可控硅),除了要门极电流≧

IGT ,还要使负载电流达到≧IL(擎住电流),并按可能遇到的最低温度考虑。因此,可取25度下可靠触发可控硅的脉冲宽度Tgw的2倍以上。

在电子噪声充斥的环境中,若干扰电压超过触发电压VGT,并有足够的门

极电流,就会发生假触发,导致双向可控硅切换。第一条防线是降低临近空间

的杂波。门极接线越短越好,并确保门极驱动电路的共用返回线直接连接到TI 管脚(对闸流管是阴极)。若门极接线是硬线,可采用螺旋双线,或干脆用屏

蔽线,这些必要的措施都是为了降低杂波的吸收。为增加对电子噪声的抵抗力,可在门极和T1 之间串入1kΩ或更小的电阻,以此降低门极的灵敏度。假如

已采用高频旁路电容,建议在该电容和门极间加入电阻,以降低通过门极的电

容电流的峰值,减少双向可控硅门极区域为过电流烧毁的可能。

结温Tj的控制:为了长期可靠工作,应保证Rth j-a 足够低,维持Tj不

高于80[%]Tjmax ,其值相应于可能的最高环境温度。

双向可控硅的安装

对负载小,或电流持续时间短(小于1 秒钟)的双向可控硅,可在自由空

间工作。但大部分情况下,需要安装在散热器或散热的支架上,为了减小热阻,可控硅与散热器间要涂上导热硅脂。

双向可控硅固定到散热器的主要方法有三种,夹子压接、螺栓固定和铆接。前二种方法的安装工具很容易取得。很多场合下,铆接不是一种推荐的方法,

本文不做介绍。

夹子压接

这是推荐的方法,热阻最小。夹子对器件的塑封施加压力。这同样适用于

非绝缘封装(SOT82 和SOT78 )和绝缘封装( SOT186 F-pack 和更新的SOT186A X-pack)。注意,SOT78 就是TO220AB。

螺栓固定

SOT78 组件带有M3 成套安装零件,包括矩形垫圈,垫圈放在螺栓头和

接头片之间。应该不对器件的塑料体施加任何力量。

安装过程中,螺丝刀决不能对器件塑料体施加任何力量。

和接头片接触的散热器表面应处理,保证平坦,10mm上允许偏差

0.02mm。

安装力矩(带垫圈)应在0.55Nm 和0.8Nm 之间。

应避免使用自攻丝螺钉,因为挤压可能导致安装孔周围的隆起,影响器件

和散热器之间的热接触。安装力矩无法控制,也是这种安装方法的缺点。

器件应首先机械固定,然后焊接引线。这可减少引线的不适当应力。

结语

在可控硅设计中,选用合适的参数以及与之相对应的软硬件设计,用可控

硅构成的变流装置具有节约能源、成本低廉等特点,目前在工业中得到飞速的

发展。

对双向可控硅内部电路的探讨

引言

双向可控硅(TRIAC)在控制交流电源控制领域的运用非常广泛,如我们

的日光灯调光电路、交流电机转速控制电路等都主要是利用双向可控硅可以双

向触发导通的特点来控制交流供电电源的导通相位角,从而达到控制供电电流

的大小[1]。然而对其工作原理和结构的描述,以我们可以查悉的资料都只是很浅显地提及,大部分都是对它的外围电路的应用和工作方式、参数的选择等等

做了比较多的描述,更进一步的--哪怕是内部方框电路--内容也很难找到。

由于可控硅所有的电子部件是集成在同一硅源之上,我们根本是不可能通

过采用类似机械的拆卸手段来观察其内部结构。为了深入了解和运用可控硅,

依据现有可查资料所给P型和N型半导体的分布图,采用分离元器件--三极管、电阻和电容--来设计一款电路,使该电路在PN的连接、分布和履行的功能上

完全与双向可控硅类似,从而通过该电路来达到深入解析可控硅和设计实际运

用电路的目的。

双向可控硅工作原理与特点

从理论上来讲,双向可控硅可以说是有两个反向并列的单向可控硅组成,

理解单向可控硅的工作原理是理解双向可控硅工作原理的基础[2-5]。

1.1单向可控硅

单向可控硅也叫晶闸管,其组成结构图如图1-a所示,可以分割成四个硅

区P、N、P、N和A、K、G三个接线极。把图一按图1-b 所示切成两半,就

很容易理解成如图1-c所示由一个PNP三极管和一个NPN三极管为主组成一

个单向可控硅管。

在图1-c的基础上接通电源控制电路如图2所示,当阳极-阴极(A-K)接上正向电压V后,只要栅极G接通触发电源Vg,三极管Q2就会正向导通,

开通瞬间Q1只是类似于接在Q1集电极的一个负载与电源正极接通,随后Q1也在Q2的拉电流下导通,此时由于C被充电,即便断开G极的触发电源Vg,

Q1和Q2在相互作用下仍能维持导通状态,只有当电源电压V变得相当小之

后Q1和Q2才会再次截止。

1.2 双向可控硅

相比于单向可控硅,双向可控硅在原理上最大的区别就是能双向导通,不

再有阳极阴极之分,取而代之以T1和T2,其结构示意图如图3-a所示,如果

不考虑G级的不同,把它分割成图3-b所示,可以看出相当于两个单向可控硅反向并联而成[1-2],如图3-c所示连接。

当T1与T2之间接通电源后,给G极正向触发信号(相对于T1、T2所

接电源负极而言),其工作原理如前面单向可控硅完全相同。当G极接负触发

信号时,其工作过原理如图4所示,此时Q3的基极B和发射极E处于正偏电

压而致使Q3导通,继而Q1导通给电容C充电后致Q2导通并保持导通状态。

1.3 双向可控硅的主要特点

双向可控硅的英文简称TRIC是英文Triad AC semiconductor switch

的缩写,其意思是三端交流半导体开关,目前主要用于对交流电源的控制,主

要特点表现在能在四个象限来使可控硅触发导通和保持导通,直到所接电源撤

出或反向[6][7]。

第一象限是T2接电源V的正极T1接电源V的负极,G触发信号Vg的正。第二象限是T2接电源V的正极T1接电源V的负极,G触发信号Vg的负。第三、四象限是T1接电源V的正极T2接电源V的负极,G触发信号分别

接Vg的正、负极。

2 类双向可控硅电路设计

在理解了前面所述双向可控硅的内部结构和工作原理之后,依据其内部结

构采用我们熟悉的晶体管来设计一种类似有双向可控硅工作的双向可触发电路。如图5所示,电路采用用7个三极管和几个电阻组成。把图5电路中PN结的

结构按图6所示结构图描出,与图3-a、b比较很是相似。在图5所示电路中,内部电流在外界所接电源的极性不同而有两种流向,如It12 和It21所示,

It12流向是从P2流入经N2-P1-N1流出,It21从P1流入经N2-P2-N32

流出;G极触发电流Ig+由P2流入或Ig- 从N31流出。下面是所设计电路在四个象限的触发导通工作过程。

2.1 T2接电源Vt21正极,T1接通电源Vt21负

此时当G极接Vg+为正电压, Q4、Q5、Q6、Q7处于反向截止,Q1

的B极和E极之间无正偏压也处于截止状态,Vg+由P2输入后经R3使Q2

的B极和E极之间产生正偏电压而导通,从而促使Q3导通,这时即使撤出

Vg+,在电容C1的的作用下,Q2、Q3也仍然能处于导通状态,只有当

Vt21先反向或撤除才重回截止。当G极接 Vg为负,Q4、Q5、Q6、Q7同

样处于反向截止状态,Q1的B极和E极之间因Vg产生正偏电压而导通,从

而使Q3、Q2导通并得以保持导通状态。

2.2 T1接电源Vt12正极,T2接通负电源Vt12的负极

此时G极接Vg为正, Q1因B极和E极之间处于反向偏压而截止,Q3

处于反向截止,Q2因B极和E极之间处于正向偏压导通而导致Q4、Q7的导通,从而Q6、Q7导通并保持导通状态,只有当Vt12先反向或撤除才重回截止。当G极接Vg为负,Q1、Q2、Q3和Q4处于反向截止, Q5的B极和

E极之间因Vg而处于正偏导通,从而使Q6导通,继而Q7、Q6导通并得以

保持导通状态。

3 电路制作与实验验证

为了验证所设计电路,采用比较常用的NPN三级管S8050和PNP三极

管S8550来设计制作实际的测试电路板(PCB),如图5所示。图6 中所标识

的T2、T1和G与图5所示的相同,也类似于双向可控硅的T2、T1和G三

个接线极。利用该模块电路串入负载接通正或负的直流电源和触发信号来测试,所得结果如图7所示,在正或负触发信号接入前电流表上的指示为0,当正或

负触发信号接通并撤离后电流表指示依然保持原来的电流值。该实验表明该电

路在正负电源供电情况下能双向触发导通。

该模块电路在接通交流电源和脉冲控制信号时,其测验结果如图8所示。

示波器探针1接触发信号,探针2接模块电路的两端T1-T2之间的电压。在

触发信号为0是,T1-T2之间的电压等于电源电压值,表明该电路没有导通,

当触发信号脉冲到来时,T1-T2两端的电压值为0,表明模块电路已经导通。

4 结束语

在详细解读了双向可控硅的内部结构和工作原理的基础之上,设计了一款

以7个三极管为主要元器件和电阻电容可以被双向触发的控制电路。利用常用

的对管S8050和S8550制作出实验电路验证了该电路的正确性。在今后具体运用过程中可以通过对此电路的相关器件做适当调整来满足具体的需求和设计

要求。同时,利用所设计的电路形象具体地解释了双向可控硅的工作原理与过程。

五、晶闸管两端并联阻容网络的作用

在实际晶闸管电路中,常在其两端并联RC串联网络,该网络常称为RC阻

容吸收电路。

我们知道,晶闸管有一个重要特性参数-断态电压临界上升率dlv/dlt。

它表明晶闸管在额定结温和门极断路条件下,使晶闸管从断态转入通态的最低

电压上升率。若电压上升率过大,超过了晶闸管的电压上升率的值,则会在无

门极信号的情况下开通。即使此时加于晶闸管的正向电压低于其阳极峰值电压,也可能发生这种情况。因为晶闸管可以看作是由三个PN结组成。

在晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容

C0。当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,

这个电流起了门极触发电流作用。如果晶闸管在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸

管误导通现象,即常说的硬开通,这是不允许的。因此,对加到晶闸管上的阳

极电压上升率应有一定的限制。

为了限制电路电压上升率过大,确保晶闸管安全运行,常在晶闸管两

端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R

可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端

出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成

过电流而损坏晶闸管。由于晶闸管过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。RC阻容吸收网络就是常用的保护方法之一。

六、可控硅晶闸管阻容电路如何选择?

为什么要在晶闸管两端并联阻容网络

一、在实际晶闸管电路中,常在其两端并联RC串联网络,该网络常称为RC阻

容吸收电路。

我们知道,晶闸管有一个重要特性参数-断态电压临界上升率dlv/dlt。

它表明晶闸管在额定结温和门极断路条件下,使晶闸管从断态转入通态的最低

电压上升率。若电压上升率过大,超过了晶闸管的电压上升率的值,则会在无

门极信号的情况下开通。即使此时加于晶闸管的正向电压低于其阳极峰值电压,也可能发生这种情况。因为晶闸管可以看作是由三个PN结组成。

在晶闸管处于阻断状态下,因各层相距很近,其J2结结面相当于一个电

容C0。当晶闸管阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管误导通现象,即常说的硬开通,这是不允许的。因此,对加到晶闸管上的阳

极电压上升率应有一定的限制。

为了限制电路电压上升率过大,确保晶闸管安全运行,常在晶闸管两端并联RC阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。

由于晶闸管过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。RC阻容吸收网络就是常用的保护方法之一。

二、整流晶闸管(可控硅)阻容吸收元件的选择

电容的选择

C=(2.5-5)×10的负8次方×If

If=0.367Id

Id-直流电流值: 如果整流侧采用500A的晶闸管(可控硅),Id=500A

可以计算C=(2.5-5)×10的负8次方×500=1.25-2.5mF

选用2.5mF,1kv 的电容器

电阻的选择:

R=((2-4) ×535)/If=5.72-11.44

选择10欧

PR=(1.5×(pfv×2πfc)的平方×10的负12次方×R)2

Pfv=2u(1.5-2.0)

u=三相电压的有效值

id=40A

C=(2.5-5)×10的负8次方×40=1.0 -2.0uf

R=((2-4) ×535)/If= 36.44-72.88

阻容吸收回路在实际应用中,RC的时间常数一般情况下取1~10毫秒。

小功率负载通常取2微秒左右,R=220欧姆1W,C=0.01微法400~630V。

大功率负载通常取10微秒,R=10欧姆10W,C=1微法630~1000V。

R的选取:小功率选金属膜或RX21线绕或水泥电阻;大功率选RX21线绕或水泥电阻。

C的选取:CBB系列相应耐压的无极性电容器。

看保护对象来区分:接触器线圈的阻尼吸收和小于10A电流的可控硅的阻尼吸收列入小功率范畴;接触器触点和大于10A以上的可控硅的阻尼吸收列入大功率范畴

问题:

1、驱动电流、限流电阻怎么算?

2、RC吸收回路参数?

3、

可控硅的工作原理

一、可控硅的工作原理 可控硅是可控硅整流器的简称。它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。 图3-29是它的结构、外形和图形符号。 可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。可控硅一旦导通,控制极便失去其控制作用。就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。 图3-30是可控硅的伏安特性曲线。 图中曲线I为正向阻断特性。无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。当控制极电流大到一定程度时,就不再出现正向阻断状态了。 曲线Ⅱ为导通工作特性。可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。 曲线Ⅲ为反向阻断特性。当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。

单向可控硅与双向可控硅结构电原理图及测试方法

单向可控硅与双向可控硅结构电原理图及测试方法 可控硅的检测 1.单向可控硅的检测 万用表选用电阻R×1档,用红黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑笔接的引脚为控制极G,红笔接的引脚为阴极K,另一空脚为阳极A。此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。此时万用表指针应不动。用短接线瞬间短接阳极A和控制极G,此时万用表指针应向右偏转,阻值读数为10欧姆左右。如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏

。 2.双向可控硅的检测 用万用表电阻R×1档,用红黑两表笔分别测任意两引脚正反向电阻,结果其中两组读数为无穷大。若一组为数十欧姆时,该组红黑表笔所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。确定A、G极后,再仔细测量A1、G极间正反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。将黑表笔接已确定了的第二阳极A2,红表笔接第一阳极A1,此时万用表指针应不发生偏转,阻值为无穷大。再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约为10欧姆左右。随后断开A2、G极短接线,万用表读数应保持10欧姆左右。互换红黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。同样万用表指针应不发生偏转,阻值为无穷大。用短接线将A2、G极间再次瞬间短接,给G极加上负向的触发电压,A1、A2间阻

值也是10欧姆左右。随后断开A2、G极间短接线,万用表读数应不变,保持10欧姆左右。符合以上规律,说明被测双向可控硅管未损坏且三个引脚极性判断正确。 检测较大功率可控硅管是地,需要在万用表黑笔中串接一节1.5V干电池,以提高触发电压。双向可控硅(TRIAC)在控制交流电源控制领域的运用非常广泛,如我们的日光灯调光电路、交流电机转速控制电路等都主要是利用双向可控硅可以双向触发导通的特点来控制交流供电电源的导通相位角,从而达到控制供电电流的大小[1]。然而对其工作原理和结构的描述,以我们可以查悉的资料都只是很浅显地提及,大部分都是对它的外围电路的应用和工作方式、参数的选择等等做了比较多的描述,更进一步的--哪怕是内部方框电路--内容也很难找到。 由于可控硅所有的电子部件是集成在同一硅源之上,我们根本是不可能通过采用类似机械的拆卸手段来观察其内部结构。为了深入了解和运用可控硅,依据现有可查资料所给P 型和N型半导体的分布图,采用分离元器件--三极管、电阻和电容--来设计一款电路,使该电路在PN的连接、分布和履行的功能上完全与双向可控硅类似,从而通过该电路来达到深入解析可控硅和设计实际运用电路的目的。 1 双向可控硅工作原理与特点 从理论上来讲,双向可控硅可以说是有两个反向并列的单向可控硅组成,理解单向可控硅的工作原理是理解双向可控硅工作原理的基础[2-5]。 1.1单向可控硅 单向可控硅也叫晶闸管,其组成结构图如图1-a所示,可以分割成四个硅区P、N、P、N和A、K、G三个接线极。把图一按图1-b 所示切成两半,就很容易理解成如图1-c所示由一个PNP三极管和一个NPN三极管为主组成一个单向可控硅管。

晶闸管模拟移相触发配套芯片KC41KC42(补发、脉冲串(精)

KC41六路双脉冲形成器 一、功能与特点 KC41六路双脉冲形成器是三相全控桥式触发线路中必备的电路, 具有双脉冲形成和电子开关控制封锁双脉冲形成二种功能。使用 2块有电子开关控制的 KC41电路能组成逻辑控制适用于正反组可逆系统。 二、概述 KC41电路是脉冲逻辑电路。当把移相触发器的触发胲冲输入到 KC41电路的1~6端时,由输入二极管完成了补脉冲, 再由 T 1~T6电流放大分六路输出。补脉冲按+A→ -C , -C → +B, +B→ -A , -A → +C, +C→ -B , -B → +A顺序排列组合。 T 7是电子开关,当控制 7#端接逻辑“ 0”电平时 T 7截止,各路有 输出触发脉冲。当控制 7#端接逻辑“ 1”电平(+15V时, T 7导通 ,各种无输出触发脉冲。 KC41 内部原理图见图 (1。 KC41应用实例见图 (2,各点波形分别见图 (3。图中输出端如果接 3DK4作功率放大可得到 800mA 的触发脉冲电流。使用 2块KC41电路相应的输入端并联 ,二个控制端分别作为正反组控制输入端,输出接12个功率放大管。这样就可组成一个 12脉冲正反组控制可逆系统,控制端逻辑“ 0”电平有效 。

图 (1 KC41电路内部原理图 三、主要技术数据 1、电源电压:直流 +15V, 允许波动±5%(±10%时功能正常 2、电源电流:≤ 20mA 3、输出脉冲 : 3. 1.最大输出能力:20mA (流出脉冲电流 3. 2.幅度:≥ 13V 4、输入端二极管反压:≥ 18V 5、控制端正向电流:≤ 8mA 6、封装:KC41电路采用 16脚陶瓷双列直插式封装 7.允许使用环境温度:-10℃— +70

晶闸管触发驱动电路设计-张晋远要点

宁波广播电视大学 机械设计制造及其自动化专业 《机电接口技术》 课程设计 题目晶闸管触发驱动电路设计 姓名张晋远学号1533101200119 指导教师李亚峰 学校宁波广播电视大学 日期2017 年 4 月20 摘要 晶闸管是一种开关元件,能在高电压、大电流条件下工作,为了控制晶闸管的导通,必须在控制级至阴极之间加上适当的触发信号(电压及电流),完成此任务的就是触发电路。本课题针对晶闸管的触发电路进行设计,其电路的主要组成部分由触发电路,交流电路,同步电路等电路环节组成。有阻容移相桥触发电路、正弦波同步触发电路、单结晶体触发电路、集成

UAA4002、KJ006触发电路。包括电路的工作原理和电路工作过程以及针对相关参数的计算。 关键词:晶闸管;触发电路;脉冲;KJ006; abstract Thyristor is a kind of switch components, can work under high voltage, high current conditions, in order to control thyristor conduction, must be between control level to the cathode with appropriate trigger signal (voltage and current), complete the task is to trigger circuit. This topic in view of the thyristor trigger circuit design, the main part of the circuit by the trigger circuit, communication circuit, synchronous circuit and other circuit link. There is a blocking phase bridge trigger circuit, the sine wave synchronous trigger circuit, the single crystal trigger circuit, the integrated UAA4002, the KJ006 trigger circuit. This includes the working principle of the circuit and the circuit working procedure and the calculation of the relevant parameters. Keywords: thyristor; Trigger circuit; Pulse; KJ006; 目录 第一章绪论 1.1设计背景与意义…………………………………… 1.2 晶闸管的现实应用……………………………………

可控硅工作原理

可控硅工作原理 一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称可控硅T。又由于可控硅最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。 在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称死硅)更为可贵的可控性。它只有导通和关断两种状态。 可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。 可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。 可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。 可控硅从外形上分类主要有:螺栓形、平板形和平底形。 1、可控硅元件的结构 不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。 2、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1、可控硅结构示意图和符号图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1

双向可控硅斩波实验报告

双向可控硅斩波实验报告 一.概述 双向可控硅是一种功率半导体器件,也称双向晶闸管,双向晶闸管可广泛用于工业、交通、家用电器等领域,实现交流调压、电机调速、交流开关、路灯自动开启与关闭、温度控制、台灯调光、舞台调光等多种功能。 双向和单向可控硅的区别。 普通晶闸管(又称可控硅)是一种大功率半导体器件,主要用于大功率的交直流变换、调压等。 单向可控硅通过触发信号(小的触发电流)来控制导通(可控硅中通过大电流)的可控特性,一只双向可控硅的工作原理,可等效两只同型号的单向可控硅互相反向并联,然后串联在调压电路 在单片机控制系统中,可作为功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流无触点开关使用。双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触发信号加载到可控硅的控制极。为减小驱动功率和可控硅触发时产生的干扰,交流电路双向可控硅的触发常采用过零触发电路。过零触发是指在电压为零或零附近的瞬间接通。由于采用过零触发,因此上述电路还需要正弦交流电过零检测电路。图一为此次实验电路原理图。

图1 双向可控硅实验电路原理图 二.项目主要研究内容 1.过零检测电路 为减小驱动功率和可控硅触发时产生的干扰,交流电路中可控硅的触发常采用过零触发电路。过零触发是指在电压为零或零附近的瞬间接通。由于采用过零触发,因此上述电路还需要正弦交流电过零检测电路。如图2所示。为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V ,脉冲宽度应大于20us.图中SDCZ3 为交流输入端子,TPL521为光电耦合器,起隔离作用。当正弦交流电压接近零时,光电耦合器的两个发光二极管截止,三极管Q2基极的偏置电阻电位使之导通,产生下降沿信号,T1的输出端接到单片机89C51 的外部中断0 的P3.2引脚,以引起外部中断。在中断服务子程序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。

单向双向可控硅触发电路设计原理

单向/双向可控硅触发电路设计原理 1,可以用直流触发可控硅装置。 2,电压有效值等于U等于开方{(电流有效值除以2派的值乘以SIN二倍电阻)加上(派减去电阻的差除以派)}。 3,电流等于电压除以(电压波形的非正弦波幅值半波整流的两倍值)。 4,回答完毕。 触摸式台灯的控制原理 这种台灯的主要优点是没有开关,使用时通过人体触摸,完成开启、调光、关闭动作,给使用带来方便。 一、电路设计原理 人体感应的信号加在电源电路可控硅的触发极,使电路导通,并给负载——灯泡或灯管供电,使灯按弱光、中光、强光、关闭4个状态动作,达到调光的目的。电路见图1,该电路的关键器件是采用CMOS工艺制造的集成电路BA210l。 二、降压稳压电路 由R3、VDl、VD4、C4组成。输出9V直流电,供给BA2101,由③⑦脚引入。 三、触发电路 由触发电极M将人体的感应信号,经c3、R8、R7送至④脚的sP端,经处理后,由⑥脚输出触发信号,经cl、R1加至可控硅VS的G极,VS导通,电灯H点亮。第二次触摸,可改变触发脉冲前沿的到达时间,而使电灯亮度改变。反复触摸,可按弱光、中光、强光和关闭四个动作状态循环,达到调节亮度的目的。可控硅VS在动作中其导通角分别为120度、86度、17度。 四、辅助电路 VD2和vD3为保护集成电路而设。防止触摸信号过大而遭破坏。C3为隔离安全电容。R4为取得同步交流信号而设。R5为外接振荡电阻。 五、使用中经常出现的故障 (1)由震动引发的故障。触摸只需轻轻触及即可。但在家庭使用中触击的强度因人而异,小孩去触摸可能是重重的一拳。性格刚烈的人去触摸,可能引起剧烈震动。因此经常出现灯泡断丝。 (2)集成块焊脚由震动而产生脱焊。如③脚脱焊,使电源切断而停止工作;④、⑥脚脱焊,使触摸信号中断,都会引起灯泡不亮。因此要检查集成块各脚是否脱焊。 (3)可控硅VS一般采用MAC94A4型双向可控硅,由于反复触发,或意外大信号触发,会引起可控硅击穿而停止工作。 触摸式台灯的控制原理 这种台灯的主要优点是没有开关,使用时通过人体触摸,完成开启、调光、关闭动作,给使用带来方便。 一、电路设计原理 人体感应的信号加在电源电路可控硅的触发极,使电路导通,并给负载——灯泡或灯管供电,使灯按弱光、中光、强光、关闭4个状态动作,达到调光的目的。电路见图1,该电路的关键器件是采用CMOS工艺制造的集成电路BA210l。 二、降压稳压电路 由R3、VDl、VD4、C4组成。输出9V直流电,供给BA2101,由③⑦脚引入。 三、触发电路 由触发电极M将人体的感应信号,经c3、R8、R7送至④脚的sP端,经处理后,由⑥脚输出触发信号,

双向可控硅的工作原理及原理图

双向可控硅得工作原理及原理图 双向可控硅得工作原理1、可控硅就是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它瞧作由一个PNP管与一个NPN管所组成当阳极A加上正向电压时,BG1与BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2得集电极直接与BG1得基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于就是BG1得集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2得基极,表成正反馈,使ib2不断增大,如此正向馈循环得结果,两个管子得电流剧增,可控硅使饱与导通.由于BG1与BG2所构成得正反馈作用,所以一旦可控硅导通后,即使控制极G得电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅就是不可关断得。 由于可控硅只有导通与关断两种工作状态,所以它具有开关特性,这种特性需要一定得条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区得空穴时入N2区,N2区得电子进入P2区,形成触发电流IGT。在可控硅得内部正反馈作用(见图2)得基础上,加上IGT得作用,使可控硅提前导通,导致图3得伏安特性OA 段左移,IGT越大,特性左移越快。 TRIAC得特性?什么就是双向可控硅:IAC(TRI—ELECTRODEACSWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。TRIAC为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)与G(控制极)亦为一闸极控制开关,与SCR最大得不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。因为它就是双向元件,所以不管T1 ,T2得电压极性如何,若闸极有信号加入时,则T1,T2间呈导通状态;反之,加闸极触发信号,则T1,T2间有极高得阻抗。 ?(a)符号(b)构造 图1TRIAC 二、TRIAC得触发特性: ?由于TRIAC为控制极控制得双向可控硅,控制极电压VG极性与阳极间之电压VT1T2四种组合分别如下:?(1)、VT1T2为正,VG为正。?(2)、VT1T2为正,VG为负。?(3)、VT1T2为负, VG 为正。?(4)、VT1T2为负,VG为负。 一般最好使用在对称情况下(1与4或2与3),以使正负半周能得到对称得结果,最方便得控制方法则为1与4之控制状态,因为控制极信号与VT1T2同极性。

双向可控硅移相触发器模块TRIAC

双向可控硅移相触发器模块TRIAC-JK: 双向可控硅移相触发器模块TRIAC-JK只有一路输出,且要求可控硅移相触发器模块所取的同步信号与电网相位同步,以控制 信号为0~5VDC的G型为例,当控制电压在0~5V之间变化时,触发器模块内部便输出与电网电压同步、脉冲宽度可相对电网电压从 180°~0°可调节的触发信号通过光耦隔离,输出端(A、G)便可触发相应的双向可控硅导通,从而达到移相调压的目的。 双向可控硅移相触发器模块TRIAC-JK 在使用时需要外接一组与输入电网同步的、通过变压器隔离降压后的18VAC同步电压信 号,此同步电压信号还同时作为移相触发器模块内部电源用,并产生一组辅助电源作为电位器手动调节时用。可控硅移相触发器模块 内部集相位检测电路、移相电路、光电隔离触发电路于一体,实现了高压与控制部分的隔离,输入控制信号可由其它自动控制设备输

出供给,也可以由内部电源外接一只电位器进行手动调节。使用安全、简单、方便。 双向可控硅移相触发器模块的命名规则: 主要型号表: 产品外形尺寸:

可控硅移相触发器模块的引脚功能: 1、①、②脚接18VAC输出的同步变压器的副边绕组18Vac,供给移相触发器电源和同步基准; 2、③脚接可控硅的触发门极(G); 3、④脚TRIAC-JK双向可控硅移相触发器时接双向可控硅的主电极(T1) 。 4、⑤脚为内部地,当移相触发器由外电路输入控制信号时,⑤脚与外电路的地相连; 5、⑥脚为控制端,以控制信号为0~5V输入(E型)移相触发器模块为例,当⑥脚输入0~5V变化的电压信号时,对阻性负载 而言,③④便触发可控硅在180~0°范围内导通。 6、⑦脚为模块内部产生的+5V电源端,当⑤⑥⑦脚外接电位器手动控制时,⑦脚提供电源,当控制信号由外电路提供控制信 号时,⑦脚悬空不用。

双向可控硅原理与应用整理

双向可控硅MAC97A6的电路应用 家电维修2010-08-22 00:08:15 阅读2916 评论2 字号:大中小订阅 MAC97A6为小功率双向可控硅(双向晶闸管),最多应用于电风扇速度控制或电灯的亮度控制,市场上流行的“电脑风扇”或“电子程控风扇”,不外乎是用集成电路控制器与老式风扇相结合的新一代产品。这里介绍的电路就是利用一块市售的专用集成电路RY901及MAC97A6,将普通电扇改装为具有多功能的高档电扇,很适宜无线电爱好者制作与改 装。 这种新型IC的主要特点是:(1)集开关、定时、调速、模拟自然风为一体,外围元件少、电路简单、易于制作;(2)省掉了体积较大的机械定时器和调速器,采用轻触式开关和电脑控制脉冲触发,因而无机械磨损,使用寿命长;(3)各种动作电脑程序具备相应的发光管指示,耗电量少,体积小,重量轻,显示直观,便于操作;(4)适合开发或改造成多路家电的定时控制等。RY901采用双列直插式16脚塑封结构,为低功耗CMOS集成电路。其外形、引出脚排列及各脚功能如图1所示。工作原理

典型应用电路如图2所示([url=https://www.doczj.com/doc/4514636898.html,/ad/ykkz/fsdlkz.rar]点击下载原理图[/url] )。市电220V由C1、R1降压VD9稳压,经VD10、C2整流滤波后, 提供5V-6V左右的直流电源作为RY901IC组成的控制器电压。在刚接通电源时,电脑控制器暂处于复位(静止)状态,面板上所有发光二极管VD1-VD8均不亮,电风扇不转。若这时每按动一次风速选择键SB3,可依次从IC的11-13脚输出控制电平(脉冲信号),经发光管VDl-VD3和限流电阻R2-R4,分别触发双向晶闸管VS1-VS3的G极,用以控制它的导通与截止,再经电抗器L进行阻抗变换,即可按强风、中风、弱风、强风……的顺序来改变其工作状态,并且风速指示管VD1-VD3(红色)对应点亮或熄灭;当按风型选择键SB4,电风扇即按连续风(常风)、阵风(模拟自然风)、连续风……的方式循环改变其工作状态,在连续风状态下,风型指示管VD4(黄色)熄灭,在阵风状态下,VD4闪光;当按动定时时间选择键SB2,定时指示管VD5-VD8依次对应点亮或熄灭,即每按动一次SB2,可选择其中一种定时时间,共有0.5、l、2、4小时和不定时5种工作方式供选择。当定时时间一到,IC内部的定时电路停止工作,相应的定时指示管熄灭同时IC的11-13脚也无控制信号输出,双向晶闸管VS1-VS3截止,从而导致风扇自动停止运转;在风扇不定时工作时,欲停止风扇转动,只要按动一下复位开关SB1,所有指示灯熄灭,电源被切断,风扇停转;如欲启动风扇,照上述方法操作即可。元器件选择与制作图中除降压电容C1用优质的CBB-400V聚苯电容;泄放保护电阻R1用1W金属膜电阻或线绕电阻外,其余元器件均为普通型。电阻为1/8W;电解电容的耐压值取10V-16V,C1取值范围为0.47u-lu之间;稳压管VD9为5V-6V/1W,可选用ZCW104(旧型号为ZCW21B)硅稳压管;VS1-VS3为1A/400V小型塑封双向晶闸管,可选用MAC94A4型或MAC97A6型;L为电抗器,可以自制,亦可采用原调速器中的电抗器;SB1-SB4为轻触型按键开关(也叫微动或点动开关),有条件的可采用导电橡胶组合按键开关。电路焊接无误,一般不用调试就能工作。改装方法该电路对所有普通风扇都能进行改装。将焊接好的电路板装进合适的塑料肥皂盒或原调速器盒中,将原分线器开关拆除不用,留出空余位置便于安装印制板电路。一般风扇用电抗器均采取5挡。不妨利用其中①、③、⑤挡,将强风(第1挡)、中风(第2挡)弱风(第3挡)分别接到电抗器的各挡中。若有的调速器中无电抗器,风扇电机则是采取抽头方式改变风速的,同样将三种风速分别接至分线器的三极引线中。在改装中特别要注意安全,印制板上220V交流电源接线端及所有导电部位应与调整器盒的金属件严格隔离。改装完毕,可用测电笔碰触调速器有否漏电。否则应进一步采取绝缘措施。通电试验时,用万用表DC10V档测C2两端电压应为5V-6V之间,若不正常,应重点检查整流稳压电路,然后再分别按动SB1-SB4开关,观察各路指示管VD1-VD8应按对应的选择功能发光或熄灭,风扇也应同步工作于不同状态。

可控硅元件的工作原理及基本特性

可控硅元件的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 状态条件说明 从关断到导通1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可 维持导通1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可 从导通到关断1、阳极电位低于阴极电位 2、阳极电流小于维持电流 任一条件即可 2 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构 晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <, A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

KC05、06可控硅移相触发器

KC05、06可控硅移相触发器 KC05:适用于双向可控硅或二只反向并联可控硅线路的交流相位控制;移相范围宽,控制方式简单,易于集中控制,有失交保护,输出电流大等优点。是交流调光、调压的理想电路。 KC05电路应用实例 主要技术数据: 1、电源电压:直流+15V 波动±5%(±10%时有功能) 2、电源电流:≤12mA 3、同步电压:≥10V(有效值) 4、移相范围:≥170° 5、移相输入端偏置电流:≤10μA 6、输出脉冲宽度:100μS——2mS(改变脉宽电容) 7、输出脉冲幅度:≥13V(1KΩ负载) 8、最大输出能力:200mA(吸入脉冲电流) 9、输出管反压:BVceo ≥18V 10、正负半周脉冲相位不均衡度:≤±3°

11、使用环境温度:-10℃——+70℃ KC06:适用于双向可控硅或二只反向并联可控硅线路的交流相位控制;移相范围宽,控制方式简单,易于集中控制,有失交保护,输出电流大等优点。是交流调光、调压的理想电路。具有自生直流电源,可由交流电网直接供电,无需外加同步、脉冲变压器和外接直流电源。 KC06电路应用实例 主要技术数据: 1、电源电压:(1)外接直流电源:+15V 波动±5%(±10%时有功能) (2)自生直流电源电压:+12——+14V 2、电源电流:≤12mA 3、同步电压:≥10V(有效值) 4、同步输入端允许最大同步电流:5mA 5、移相范围:≥170°(同步电压220V,同步输入电阻51KΩ) 6、移相输入端偏置电流:≤10μA 7、输出脉冲宽度:100μS——2mS(改变脉宽电容) 8、输出脉冲幅度:≥13V(电源电压15V时,1KΩ负载)

晶闸管的触发方式有移相触发和过零触发两种

过零触发双硅输出光耦-MOC3061的应用 晶闸管的触发方式有移相触发和过零触发两种。常用的触发电路与主回路之间由于有电的联系,易受电网电压的波动和电源波形畸变的影响,为解决同步问题,往往又使电路较为复杂。MOTOROLA 公司生产的MOC3021-3081器件可以很好地解决这些问题。该器件用于触发晶闸管,具有价格低廉、触发电路简单可靠的特点。下面以MOC3061为例介绍其工作原理和应用。 一、内部结构及主要性能参数 MOC3061的内部结构及管脚排列见图1,它采用 双列直插6脚封装。主要性能参数:可靠触发电流 Ift5-15mA ;保持Ih 100μA ;超阻断电压600V ;重 复冲击电流峰值1A ;关断状态额定电压上升率dV/dt 100V/μs 。 MOC3061的管脚排列如下:1、2脚为输入 端;4、6为输出端;3、5脚悬空,详见图1 。 图1 图2、图3分别为MOC3061用于触发双向晶闸管和反并联单向晶闸管的基本 电路。 图2 图3 二、应用电路 图4是一个可简单编程的四路彩灯控制电路。电路中采用一块时基电路产生一脉冲,74LS194产是通过控制P0、P1、P2、P3的电平高低来实现的。采用MOC3061触发晶闸管,强、弱的电之间在电靠地触发50A 或更大的功率的晶闸管。

图4

5是一 个采用 MOC3061 过零触 发晶闸 管构成 的炉温 控制系 统。一 方法都 采用移 相触发 晶闸 管,控 制晶闸 管的导 通角来 控制输 出功 率。触 发电路 要求一 定幅值 且相位 能改变 的脉 冲,而 且还需 图5 要解决 与主回 路电压 同步的 问题, 使电路 较复 杂;采 用移相 触发晶

双向可控硅原理与应用

[转载] 双向可控硅原理与应用 普通晶闸管(VS)实质上属于直流控制器件。要控制交流负载,必须将两只晶闸管反极性并联,让每只SCR控制一个半波,为此需两套独立的触发电路,使用不够方便。双向晶闸管是在普通晶闸管的基础上发展而成的,它不仅能代替两只反极性并联的晶闸管,而且仅需一个触发电路,是目前比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。 构造原理 尽管从形式上可将双向晶闸管看成两只普通晶闸管的组合,但实 际上它是由7只晶体管和多只电阻构成的功率集成器件。小功率 双向晶闸管一般采用塑料封装,有的还带散热板,外形如图l所 示。典型产品有BCMlAM(1A/600V)、 BCM3AM(3A/600V)、 2N6075(4A/600V),MAC218-10(8A/800V)等。大功率双向晶 闸管大多采用RD91型封装。双向晶闸管的主要参数见附表。 双向晶闸管的结构与符号见图2。它属于NPNPN五层器件,三 个电极分别是T1、T2、G。因该器件可以双向导通,故除门极G 以外的两个电极统称为主端子,用T1、T2。表示,不再划分成阳 极或阴极。其特点是,当G极和T2极相对于T1,的电压均为正 时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。双向晶闸管的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。 检测方法 下面介绍利用万用表RXl档判定双向晶闸管电极的方法,同时还检查触发能力。 1. 判定T2极由图2可见,G极与T1极靠近,距T2极较远。因此,G—T1之间的正、反向电阻 都很小。在用RXl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几 十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚和其他两脚都 不通,就肯定是T2极。,另外,采用TO—220封装的双向晶闸管,T2极通常与小散热板连通, 据此亦可确定T2极 2. 区分G极和T1极 (1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。 (2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。接着用红表笔尖把T2与G短路,给G极加 上负触发信号,电阻值应为十欧左右(参见图4(a)),证明管子已经导通,导通方向为T1一T2。再将 红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图4(b))。 3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后, 在T2一T1方向上也能维持导通状态,因此具有双向触 发性质。由此证明上述假定正确。否则是假定与实际不符, 需再作出假定,重复以上测量。显见,在识别G、T1, 的过程中,也就检查了双向晶闸管的触发能力。如果按哪 种假定去测量,都不能使双向晶闸管触发导通,证明管于 巳损坏。对于lA的管子,亦可用RXl0档检测,对于3A 及3A以上的管子,应选RXl档,否则难以维持导通状态。 典型应用 双向晶闸管可广泛用于工业、交通、家用电器等领域,实 现交流调压、电机调速、交流开关、路灯自动开启与关闭、 温度控制、台灯调光、舞台调光等多种功能,它还被用于 固态继电器(SSR)和固态接触器电路中。图5是由双向晶 闸管构成的接近开关电路。R为门极限流电阻,JAG为干式舌簧管。平时JAG断开,双向晶闸管TRIAC也关断。仅当小磁铁移近时JAG吸合,使双向晶闸管导通,将负载电源接通。由于通过 干簧管的电流很小,时间仅几微秒,所以开关的寿命很长. 图6是过零触发型交流固态继电器(AC-SSR)的内部电路。主要包括输入电路、光电耦合器、过零触发电路、开关电路(包括双向晶闸管)、保护电路(RC吸收网络)。当加上输入信号VI(一般为高电平)、并且交流负载电源电压通过零点时,双向晶闸管被触发,将负载电源接通。固态继电器具有驱动功率小、无触点、噪音低、抗干扰能力强,吸合、释放时间短、寿命长,能与TTL\CMOS电路兼容,可取代传统的电磁继电器。

【精品】第七章可控硅及其应用

第七章可控硅及其应用 第一节可控硅的结构和工作原理 教学目的:1、了解单向可控硅与双向可控硅的结构与符号。 2、掌握单向可控硅及双向可控硅的工作原理. 教学重点:单向可控硅及双向可控硅的工作原理。 教学难点:单向可控硅及双向可控硅的工作原理。 教学方法与手段:1、教师讲授与多媒体课件相结合;实习实训相结合。 课时计划:2课时 一、单向可控硅 一)、单向可控硅的结构与符号 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示.

图1可控硅等效图解图二)、单向可控硅的工作原理

当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2.因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2.此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2.这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即 使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的. 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件如下:

三)、单向可控硅的主要参数 可控硅的主要参数有: 1、额定正向平均电流在规定环境温度和散热条件下,允许通过阳极———阴极间电流的平均值。 2、正向阻断峰值电压在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。

双向可控硅的工作原理(全)

双向可控硅的工作原理 双向可控硅的工作原理双向可控硅的工作原理1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以 双向可控硅的工作原理 双向可控硅的工作原理1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN 结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流 ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流 ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。 TRIAC的特性 什么是双向可控硅:IAC(TRI-ELECTRODE AC SWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。 TRIAC为三端元件,其三端分别为T1 (第二端子或第二阳极),T 2(第一端子或第一阳极)和G(控制极)亦为一闸极控制开关,与SCR 最大的不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。因为它是双向元件,所以不管T1 ,T2的电压极性如何,若闸极有信号加入时,则T1 ,T2间呈导通状态;反之,加闸极触发信号,则T1 ,T2间有极高的阻抗。

双向可控硅的原理-二三极管原理

尽管从形式上可将双向可控硅看成两只普通可控硅的组合,但实际上它是由7只晶体管和多只电阻构成的功率集成器件。小功率双向可控硅一般采用塑料封装,有的还带散热板,外形如图l所示。典型产品有BCMlAM(1A/600V)、BCM3AM(3A/600V)、2N6075(4A/600V),MAC218-10(8A/800V)等。大功率双向可控硅大多采用RD91型封装。双向可控硅的主要参数见附表。 双向可控硅的结构与符号见图2。它属于NPNPN五层器件,三个电极分别是T1、T2、G。因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2。表示,不再划分成阳极或阴极。其特点是,当G极和T2极相对于T1,的电压均为正时,T2是阳极,T1是阴极。反之,当G极和T2 极相对于T1的电压均为负时,T1变成阳极,T2为阴极。双向可控硅的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。检测方法 下面介绍利用万用表RXl档判定双向可控硅电极的方法,同时还检查触发能力。 1.判定T2极 由图2可见,G极与T1极靠近,距T2极较远。因此,G—T1之间的正、反向电阻都很小。在肦Xl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚和其他两脚都不通,就肯定是T2极。,另外,采用TO—220封装的双向可控硅,T2极通常与小散热板连通,据此亦可确定T2极。 2.区分G极和T1极 (1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。 (2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。接着用红表笔尖把T2 与G短路,给G极加上负触发信号,电阻值应为十欧左右(参见图4 (a)),证明管子已经导通,导通方向为T1一T2。再将红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图 4(b))。

相关主题
文本预览
相关文档 最新文档