当前位置:文档之家› 化学竞赛——晶体结构

化学竞赛——晶体结构

化学竞赛——晶体结构
化学竞赛——晶体结构

体结构

(2002年)3.(5分) 石墨晶体由如图(1)所示的C 原子平面层堆叠形成。有一种常见的2H 型石墨以二层重复的堆叠方式构成,即若以A 、B 分别表示沿垂直于平面层方向(C 方向)堆叠的两个不同层次,它的堆叠方式为ABAB……。图(2)为AB 两层的堆叠方式,O 和●分别表示A 层和B 层的C 原子。

⑴ 在图(2)中标明两个晶胞参数a 和b 。

⑵ 画出2H 型石墨晶胞的立体示意图,并指出晶胞类型。

3.(共5分)

可有多种选取方式,其中一种方式如下图所示:

(2) 请自行设计两个实验(简单说明实验操作和实验现象)来验证Ba 2+确实能使平衡向左移动。 (2002年)8.(9分)

有一离子晶体经测定属立方晶系,晶胞参数a =?(1?=10-

8cm),晶胞的顶点位置为Mg 2+,体心位置

为K +,所有棱边中点为F -。

⑴ 该晶体的化学组成是 ;

⑵ 晶胞类型是 ;

⑶ Mg 2+的F -配位数是 ,K +的F -配位数是 ;

⑷ 该晶体的理论密度是 g·cm -3。

⑸ 设晶体中正离子和负离子互相接触,已知F -的离子半径为?,试估计Mg 2+的离子半径

是 ?,K +的离子半径是 ?。

8.(共9分)

⑴ MgKF 3 (2分)

⑵ 简单立方晶胞 (1分)

⑶ 6 (1分) 12 (1分)

⑷ 3.12 g·cm -3 (2 分)

⑸ ? (1 分) ? (1 分)

(2002年)11.(4分)

NiO 晶体为NaCl 型结构,将它在氧气中加热,部分Ni 2+被氧化为Ni 3+,晶体结构产生镍离子缺位的缺

陷,其组成成为Ni x O(x<1),但晶体仍保持电中性。经测定Ni x O 的立方晶胞参数a=?,密度为6.47g·cm -3。

⑴ x 的值(精确到两位有效数字)为 ;写出标明Ni 的价态的Ni x O 晶体的化学式 。 ⑵ 在Ni x O 晶体中Ni 占据 空隙,占有率是 。

11.(共4分)

⑴ (1分) O Ni Ni ++316.0276.0 (1分) [或Ni(Ⅱ)(Ⅲ)]

⑵ 八面体 (1分) 92% (1分)

(2003年)第6题(共8分)

⑴ 两种铜溴配合物晶体中的一维聚

合链结构的投影图 (其中部分原子

给出标记)如下。①分别指出两种结

构的结构基元由几个Cu 原子和几个

Br 原子组成:

图 ⑴ 为 个Cu 原子,

Br 原子;

图 ⑵ 为 个Cu 原子, 个Br 原子。

② 用笔在图中圈出相应的一结构基元。

⑵图⑶是由氯苯分子构成的平面点阵结构。

① 在图中标出一个正当单位来,并标明两个基本向量a ω和b ?;

② 指出正当单位的组成 (内容);

③ 指出这种平面格子的正当单位的形式。

6. (共8分)

⑴①6 12 …………………………(1分)

2 4 …………………………(1分)

②结构基元如图中实线或虚线所围,也可另取。(2分)

图1 图2

⑵ ①此结构的正当单位和基本向量如下图所示。 (可有各种不同取法,但形式不变。) ……………(2分)

② 图(3)所示结构的正当单位由两个取向相反的氯苯分子构成。 …………………… (1分) ③矩形P 格子…………………………………… (1分)

(2003年)第12题 (共9分)

甲烷水合物(nCH 4 · 46H 2O)是一种具有重要经济价值的化合物,在海洋深处蕴藏量非常大,是未来的重要能源之一。它的晶体结构可看作由五角十二面体[512]和十四面体[51262]共面连接堆积形成。在立方晶胞中,[512]的中心处在顶角和体心位置;[51262]中心位置坐标为(0,1/4,1/2)、(0,3/4,1/2)、(1/2,0,1/4)、(1/2,0,3/4)、(1/4,1/2,0)、(3/4,1/2,0)共计6个。它们彼此共用六角形面连成柱体,再和五角十二面体共面连接。右图所示为甲烷水合物中水骨架的结构。

⑴ CH 4分子由于体积较小,可包合在这两种多面体中,若全部充满时,确定晶胞的组成(即n 值) 。 ⑵ 已知该晶胞参数a = 1180 pm ,计算1 m 3甲烷水合物晶体中可释放CH 4的体积 (标准状况下)。

⑶ 有的文献中报导开采1 m 3的甲烷水合物晶体可得到164 m 3的甲烷气体,请将此文献值与(2)的计算结果比较,并给出合理的解释。

12. (共9分)

⑴ 8CH 4·46H 2O 或n = 8 ………………………(3分)

⑵ 按晶体的理想组成和晶胞参数,可算得晶胞体积V 和晶胞中包含CH 4的物质的量n (CH 4): V (晶胞) = a 3 = (1180 pm)3 =×l09pm 3 = ×10

27-m 3 n (CH 4)= 1231002.68-?mol

=×1023- mol 1 m 3甲烷水合物晶体中含CH 4的物质的量为:

n =3273

1064.11m

m -?××1023- mol = ×103 mol 它相当于标准状态下的甲烷气体体积:V= ×103××103-m 3=182 m 3…………(4分)

⑶ 文献报导值比实际值小,说明甲烷分子在笼形多面体中并未完全充满,即由于它的晶体中CH 4没有达到理想的全充满的结构。(实际上甲烷水合物晶体结构形成时,并不要求[512]全部都充满CH 4分子。它的实际组成往往介于6CH 4 · 46H 2O 和8CH 4 · 46H 2O 之间。) …(2分)

(2004年)第5题(共10分)

长期以来人们一直认为金刚石是最硬的物质,但这种神话现在正在被打破。1990年美国伯克利大学的A .Y .Liu 和M .L .Cohen 在国际着名期刊上发表论文,在理论上预言了一种自然界并不存在的物质β-C 3N 4,理论计算表明,这种C 3N 4物质比金刚石的硬度还大,不仅如此,这种物质还可用作蓝紫激光材料,并有可能是一种性能优异的非线性光学材料。这篇论文发表以后,在世界科学领域引起了很大的轰动,并引发了材料界争相合成β-C 3N 4的热潮,虽然大块的β-C 3N 4晶体至今尚未合成出来,但含有β-C 3N 4晶粒的薄膜材料已经制备成功并验证了理论预测的正确性,这比材料本身更具重大意义。其晶体结构见图1和图2。

⑴ 请分析β-C 3N 4晶体中,C 原子和N 原子的杂化类型以及它们在晶体中的成键情况: ;

⑵ 请在图1中画出β-C 3N 4的一个结构基元,该结构基元包括 个碳原子和 个氮原子; ⑶ 实验测试表明,β-C 3N 4晶体属于六方晶系,晶胞结构见图2(图示原子都包含在晶胞内),晶胞参数a=,c=,请列式计算其晶体密度。

ρ= ;

⑷ 试简要分析β-C 3N 4比金刚石硬度大的原因(已知金刚石的密度为3.51g·cm -

3)。

5.(共10分)

⑴ β-C 3N 4晶体中,C 原子采取sp 3杂化,N 原子采取sp 2杂化;1个C 原子与4个处于四面体顶点的N 原子形成共价键,1个N 原子与3个C 原子在一个近似的平面上以共价键连接 (2分)

⑵ ⑶ 从图2可以看出,一个β-C 3N 4晶胞包括6个C 原子和8个N 原子,其晶体密度为:

3727236.3]

1024.060sin )1064.0[(1002.6814612---?=???????+?=cm g ορ (2分) ⑷ β-C 3N 4比金刚石硬度大,主要是因为:①在β-C 3N 4晶体中,C 原子采取sp 3杂化,N 原子采取sp 2杂化,C 原子和N 原子间形成很强的共价键;②C 原子和N 原子间通过共价键形成网状结构;③密度计算结果显示,β-C 3N 4的密度大于金刚石,即β-C 3N 4,

晶体中原子采取更紧密的堆积方式,说明原子间的共价键长很短而

有很强的键合力(3分)

(2004年)第11题(共9分)

BaTiO 3是一种重要的无机功能材料,工业上常用以下方法制

得:将BaCl 2、TiCl 4、H 2O 和H 2C 2O 4混合反应后,经洗涤、干燥后

得一组成为Ba %、Ti %、C %、H %的白色粉末A ,进一步热

分解A 即可得BaTiO 3。用热分析仪测定A 的热解过程,得下图所

示的质量—温度关系曲线:

图中400K 、600K 和900K 时对应的样品的质量分别为、和

试回答:

⑴ A 的化学式为 ;

⑵ 在600K 时样品的组成为 ;

⑶ 晶体结构分析表明,BaTiO 3为立方晶体,晶胞参数a=?,一个晶胞中含有一个BaTiO 3‘‘分子”。画出BaTiO 3的晶胞结构示意图,分别指出Ba 2+、Ti(IV)、O 2-三种离子所处的位置及其配位情况。

11.(共9分)

⑴ BaTiO (C 2O 4)2·4H 2O (2分)

⑵ 21BaTi 2O 5+21BaCO 3(2分) ⑶

Ba 2+:12个O 2-

形成的多面体 (1分)

Ti(Ⅳ):6个O 2-形成的八面体 (1分),

O 2-:2个Ti(Ⅳ)和4个Ba 2+形成的八面体 (1分)

(2005年)第6题 (共4分)

铌酸锂(LiNbO 3)是性能优异的非线性光学晶体材料,有多种性能,用途广泛,在滤波器、光波导、表面声波、传感器、Q -开关以及激光倍频等领域都有重要的应用价值,因而是一种重要的国防、工业、科研和民用晶体材料。铌酸锂的优异性能与它的晶体结构是密不可分的,单晶X -射线衍射测试表明,铌酸锂属三方晶系,晶胞参数a=b=?,c=?;密度为4.64g/cm 3沿着c 轴方向的投影见下图,其中Li 和Nb 原子投影重合,它们处于氧原子投影的六边形中心。

⑴ 请在下图表示的二维晶体结构上画出一个结构基元。

⑵ 假设下图是某新型晶体材料LiNbA 2沿c 轴的投影图(A 原子取代氧的位置),在这种晶体中,沿a 方向两层Nb 原子之间夹着两层A 原子和一层Li 原子。请写出这种新型晶体材料的晶胞类型,并画出它的一个三维晶胞的透视图。 6.(共4分)

(2分) ⑵ 简单六方晶胞

(2分)

(2005年)第12题 (共11分)

2005年1月美国科学家在Science 上发表论文,宣布发现了Al 的超原子结构,并预言其他金属原子也可能存在类似的结构,这是一项将对化学、物理以及材料领域产生重大影响的发现,引起了科学界的广泛关注。这种超原子是在Al 的碘化物中发现的,以13个Al 原子或14个Al 原子形成Al 13或Al 14超原子结构,量子化学计算结果表明,Al 13形成12个Al 在表面,1个Al 在中心的三角二十面体结构,Al 14可以看作是一个Al 原子跟Al 13面上的一个三角形的3个Al 形成Al —Al 键而获得的。文章还指出,Al l3和Al l4超原子都是具有40个价电子时最稳定。

⑴ 根据以上信息可预测Al 13和Al 14的稳定化合价态分别为 和 。A114应具有元素周期表中 类化学元素的性质,理由是: 。

⑵ 对Al 13和A114的Al —Al 键长的测定十分困难,而理论计算表明,Al 13,和Al 14中的Al —Al 键长与金属铝的Al —Al 键长相当,已知金属铝的晶体结构采取面心立方最密堆积,密度约为2.7g/cm 3,请估算Al 13和Al 14:中Al —Al 的键长。 。

⑶ Al 13三角二十面体中有多少个四面体空隙,假设为正四面体空隙,如果在其中搀杂其他原子,请通过计算估计可搀杂原子的半径最大为多少

12.(共11分)

⑴-1 +2 (Al 13- Al 142+) (2分,各1分)

碱土金属 因为Al 14容易失去2个电子而呈现+2价 (1分)

⑵ 根据晶体密度公式可得:3237

.21002.6427a N MZ V A =???==ρ 故晶胞参数α=405pm 因为金属铝形成面心立方晶胞,所以原子半径与晶胞参数之间的关系为:

所以估计Al-Al 键长约为:2r=2×143pm=286pm (3分)

⑶ 有20个四面体空隙 (2分)

设Al 的半径为R ,正四面体空隙可以填充的内切球半径为r ,

则正四面体边长b=2R ,立方体边长

R 2, 立方体对角线为:R R R 6])2()2[(2122=

+ 所以Pm pm R R r 2.32143225.0225.0)12

6(=?==-= (3分) (2006年)第9题(7分)

1987年,研究者制出一种高温超导材料钆钡铜氧,其近似化学式为

YBa 2Cu 3O 7-(根据正负价平衡,实际上O 的个数在6、7之间。故写为7-或

6+),其临界温度(Tc)达到92K 。

20多年来,此类研究不断深入,2006年5月,有研究者称制得了Tc

达150K 的氧化物超导材料,图A 为该超导材料的一个晶胞,其中四方锥

和四边形的元素组成如图B 所示,且四方锥的顶点和四边形的中心均落在

晶胞的棱上。仔细观察图,回答下列问题:

9-1 研究表明这类超导体中都有金属-氧层,即晶胞中在c 轴几乎同一高度

上排列着金属原子和氧原子。此晶胞中有 个Cu-O 层,

在Cu-O 层中Cu 的配位数是 ,O 的配位数是 。

9-2 除了Cu-O 层以外,此晶体中还有的金属-氧层是 。

9-3 该晶体的近似化学式为 。

9-4 研究还发现(1)当该晶体中金属-氧层完全对称排列时,其临界温度只有

87K 。(2)高温超导材料YBa 2Cu 3O 7-中也有Cu-O 层。请据此提出研制新的高

温超导材料的一个建议:

第9题(7分)

9-1 6 (1分) 4 2 (每空分,共1分)

9-2 Ba-O 层, (In,Sn)-O 层 (2分)

9-3 (In,Sn)Ba 4Tm 4Cu 6O 18+ [(In,Sn) Ba 4Tm 4Cu 6O 18也算对。In,Sn 个

数可用其他方式表达,之和为2即可](2分)

9-4 改变金属-氧层的排列方式或用其他元素替换Y 或In (1分)

(2006年)第10题(9分)

锂离子电池、金属氢化物-镍电池(MH-Ni)、无水碱性锌-锰电池、燃料电池、太阳能电池等是21世纪理想的绿色环保电源。其中液态锂离子电池是指Li+嵌入化合物为正负电极的二次电池。正极采用锂化合物LiCoO2、LiNiO2或LiMn2O4,负极采用碳电极,充电后成为锂-碳层间化合物Li x C6(0

10-1 在电池放电时,Li+在两个电极之间往返嵌入和脱嵌。写出该电池的充放电反应方程式:

10-2 金属锂放电容量(3861mAh·g-1)最大。其中mAh的意思是指用1毫安(mA)的电流放电1小时(h)。则:理论上LiMn2O4的放电容量是mAh·g-1。

10-3 1965年,Juza提出石墨层间化合物组成是LiC6,锂离子位于石墨层间,其投影位于石墨层面内碳六圆环的中央。试在下图中用“·”画出Li的位置。并在此二维图形上画出一个晶胞。

10-4 LiC6的晶胞参数a=b=。锂插入后,石墨层间距为。试以此计算LiC6的密度。

第10题(9分)

10-1 LiCoO2+6C Li1-x CoO2+Li x C6(2分)

10-2 96500×1000÷3600÷181=148 mAh·g-1(2分)

10-3 位置正确(1分) 晶胞(2分)

10-4 V=abcsin60°=×10-23cm3

m=+×6)/×1023=×10-22g

ρ=m/V=2.25g·cm-3(2分)

(2006年)第11题(8分)

C60的发现开创了国际科学的一个新领域,除C60分子本身具有诱人的性质外,人们发现它的金属掺杂体系也往往呈现出多种优良性质,所以掺杂C60成为当今的研究热门领域之一。经测定C60晶体为面心立方结构,晶胞参数a=1420pm。在C60中掺杂碱金属钾能生成盐,假设掺杂后的K+填充C60分子堆积形成的全部八面体空隙,在晶体中以K+和C60-存在,且C60-可近似看作与C60分子半径相同的球体。已知C的范德华半径为170pm,K+的离子半径133pm。

11-1 掺杂后晶体的化学式为;晶胞类型为;

如果为C60-顶点,那么K+所处的位置是;处于八面体空隙中心的K+到最邻近的C60-中心的距离是pm。

11-2 实验表明C60掺杂K+后的晶胞参数几乎没有发生变化,试给出理由。

11-3 计算预测C60球内可容纳的掺杂原子的半径。

第11题(8分)

11-1 KC60面心立方晶胞体心和棱心710pm (各1分,共4分)

11-2 C60分子形成面心立方最密堆积,由其晶胞参数可得C60分子的半径:

所以C60分子堆积形成的八面体空隙可容纳的球半径为:

r(容纳)=×r(堆积)=×502=208pm

这个半径远大于K+的离子半径133pm,所以对C60分子堆积形成的面心立方晶胞参数几乎没有影响(2分)

11-3 因r(C60)=502pm,所以C60球心到C原子中心的距离为:502-170=332 pm

所以空腔半径,即C60球内可容纳原子最大半径为:332-170=162 pm

(2007年)第10题(8分)

利用氢能离不开储氢材料。利用合金储氢的研发,以获得重大进展。研究发现LaNix是一种很好的储氢合金。(相对原子质量:)

LaNix属六方晶系(图c),晶胞参数a 0=511pm,c 0=397pm。储氢位置有两种,分别是八面体空隙(“■”)和四面体空隙(“▲”),见图a、b,这些就是氢原子存储处。有氢时,设其化学式为LaNixHy。

10-1 合金LaNix中x的值为________;晶胞中和“■”同类的八面体空隙有______个,并请在图a中标出;和“▲”同类的四面体空隙有______个,并请在图b中标出。

10-2 若每个八面体空隙中均储有H,LaNixHy中y的值是_______。

10-3 若H进入晶胞后,晶胞的体积不变,H的最大密度是____________ g · cm-3

第10题(8分)

10-1 5 (1分) 3 (1分)6(1分)

10-2 3 (1分)

10-3 (2分)

(2007年)第11题(7分)

同时具备几种功能的多功能材料往往具有特殊的用途而成为材料领域的热点。南京师大结构化学

实验室最近设计合成了一种黄色对硝基苯酚水合物多功能晶体材料:

(1分)(1分)

C6H5NO3·。实验表明,加热至94℃时该晶体能由黄色变成鲜亮的红色,在空气中温度降低又变为黄色,即具有可逆热色性;同时实验还表明它具有使激光倍频的二阶非线性光学性质。X-射线衍射结果

表明该晶体属于单斜晶系,晶胞参数a= pm,b= pm,c=,α=γ=°,β=°,密度1.535 g · cm-3,在晶体中水分子通过氢键把对硝基酚分子连接起来而形成层状结构。

11-1 在上述晶体中形成氢键的氧原子坐标为(,,;,,;,,),请计算晶体中氢键的键长。

11-2 预期上述晶体材料可以作为掺杂材料的主体,在层间嵌入某种金属离子而形成具有特殊功能的掺杂材料,嵌入离子的密度与材料性质密切相关。假设在晶体中每个苯环通过静电与一个嵌入离子相互作用,试计算每立方厘米上述晶体能嵌入离子的数目。

11-3 热分析试验表明,当温度升高到94℃时该晶体开始失重,到131℃重量不再变化,比原来轻了%。试给出该晶体完全变色后的化学式;并据此分析具有可逆热色性的原因;设计一个简单的实验

来验证这种分析。

第11题(7分)

11-1

γ氢键 = pm(2分)

11-2 晶胞体积V=**(180—=

根据密度计算公式可得每个晶胞中含苯环数:

每立方厘米包含的嵌入离子数:

(2分)

11-3C6H5NO3 ·的相对分子质量是166,166的%刚好是个H2O的重量,

说明从变色开始到完全变色是因为该晶体失去全部结晶水,从而变色后的化学式为C6H5NO3。具有可逆热色性的原因是:晶体加热到某一温度失去结晶水,晶体结果发生变化;温度降低,晶体又

可以吸收空气中的水而是晶体结果幅员从而颜色复原。验证实验:把加热变色后的晶体防入实验室的

干燥器中,会发现在温度降低后颜色不能复原,而拿到空气下晶体颜色很快就能复原,说明吸收了空

气中的水而使晶体结构得到了还原。所以失水和吸水是该晶体呈现可逆热色性的根本原因(3分)(2008年)11.(共10分)

热电材料又称温差电材料,是一种利用材料本身温差发电和制冷的功能材料,在能源与环境危机

加剧和提倡绿色环保的21世纪,具有体积小、重量轻、无传动部件和无噪声运行等优点的热电材料引起了材料研究学者的广泛重视。近来,美国科学家在国际着名学术期刊Science上报道了一种高效低温的热电材料,下图是其沿某一方向的一维晶体结构。

11-1在上图中画出它们的结构基元;结构基元的化学式分别为图1_________,图2___________。 11-2现在,热材料的研究主要集中在金属晶体上,Ti 就是制备热电材料的重要金属之一,已知Ti 的原子半径为145pm ,作A3型堆积,请计算金属晶体Ti 的晶胞参数和密度。

11-3电热晶体NiTiSn 是着名的Half-Heusler 化合物结构,Sn 作A1型堆积,Ti 填充Sn 的八面体空隙,Ni 在Ti 的周围形成四面体,并且相邻Ni-Ti 和 Ni-Sn 距离相等,试画出一个NiTiSn 的晶胞结构图,并用文字说明Ni 的位置。

11-4纳米粒子的量子尺寸可以显着提高材料的热电性能,表面原子占总原子数的比例是其具有量子尺寸效应的重要影响因素,假设某NiTiSn 颗粒形状为立方体,边长为NiTiSn 晶胞边长的2倍,试计算表面原子占总原子数的百分比(保留一位小数)。

第11题 (10分)

参考答案:

11-1

(1分)

(1分)

注:实线或虚线部分画一个即可。

结构基元的化学式分别是图1 CdBr 3 ,图2 Bi 2Te 3 。(各1分)

11-2 晶胞参数:Ti 作A3型堆积,所以为如图所示六方晶胞。

在A3型堆积中取出六方晶胞,平行六面体的底是平行四边形,则晶胞参数:

a =

b = 2r = 2?145 = 290pm

由晶胞可以看出,六方晶胞的边长c 为四面体高的两倍,即:

晶体密度: 平行四边形的面积:

()3

310-23/61.41014528106.0247.922cm g NV M =?????==晶胞

ρ(2分) 11-3 NiTiSn 的晶胞结构图:

Ni 处在Sn 的一半四面体空隙中,(或Ni 处在一半小立方体中)。(2分)

11-4 边长为NiTiSn 晶胞边长2倍的纳米颗粒的总原子数=53+4×8=157

表面原子数=52×6-8×2-12×3=98 或:表面原子数=53-33=98

表面原子数/总原子数=98/157=%(2分) 图1

图2 22360sin a a a S =?=ο

高中化学竞赛-晶体结构-10年真题加完整答案

(2000)4.理想的宏观单一晶体呈规则的多面体外形。多面体的面叫晶面。今有一枚 MgO单晶如附图1所示。它有6个八角形晶面和8个正三角形晶面。宏观晶体的晶面 是与微观晶胞中一定取向的截面对应的。已知MgO的晶体结构属NaCl型。它的单晶 的八角形面对应于它的晶胞的面。请指出排列在正三角形晶面上的原子(用元素符号表示原子,至少画出6个原子,并用直线把这些原子连起,以显示它们的几何关系)。(6分) 【答案】 ; 所有原子都是Mg(3分)所有原子都是O(3分) 注:画更多原子者仍应有正确几何关系;右图给出了三角形与晶胞的关系,不是答案。 (2000)5.最近发现一种由钛原子和碳原子构成的气态团簇分子,如右图所示,顶角 和面心的原子是钛原子,棱的中心和体心的原子是碳原子,它的化学式是______。 【答案】Ti14C13(2分)说明:凡按晶胞计算原子者得零分。 (2001)第5题(5分)今年3月发现硼化镁在39K呈超导性,可能是人类对超导认识的新里程碑。在硼化镁晶体的理想模型中,镁原子和硼原子是分层排布的,像维夫饼干,一层镁一层硼地相间,图5-1是该晶体微观空间中取出的部分原子沿C轴方向的投影,白球是镁原子投影,黑球是硼原子投影,图中的硼原子和镁原子投影在同一平面上。 5-1 由图5-1可确定硼化镁的化学式为:。 5-2 在图5-l右边的方框里画出硼化镁的一个晶胞的透视图,标出该晶胞内面、棱、顶角上可能存在的所有硼原子和镁原子(镁原子用大白球,硼原子用小黑球表示)。 图5-1硼化镁的晶体结构示意图 第5题(5分)5-1 MgB2(2分)(注:给出最简式才得分)

或 a = b ≠ c,c轴向上(3分) 5-2 (注:任何能准确表达出Mg︰B=1︰2的晶胞都得满分,但所取晶胞应满足晶胞是晶体微观空间基本平移单位的定义,例如晶胞的顶角应完全相同等。) (2001)第10题(5分)最近有人用一种称为“超酸”的化合物H(CB11H6Cl6) 和C60反应,使C60获得一个质子,得到一种新型离子化合物[HC60]+[CB11H6Cl6]-。回答如下问题: 10-1 以上反应看起来很陌生,但反应类型上却可以跟中学化学课本中的一个化学反应相比拟,后者是:。 10-2 上述阴离子[CB11H6Cl6]-的结构可以跟图10-1的硼二十面体相比拟,也是一个闭合的纳米笼,而且,[CB11H6Cl6]-离子有如下结构特征:它有一根轴穿过笼心,依据这根轴旋转360°/5的度数,不能察觉是否旋转过。请在图10-1右边的图上添加原子(用元素符号表示)和短线(表示化学键)画出上述阴离子。 图10-1 第10题(5分)NH3+HCl = NH4Cl (2分) (注:答其他非质子转移的任何“化合反应”得1分)。(3分)(注:硼上氢氯互换如参考图形仍按正确论,但上下的C、B分别连接H和Cl,不允许互换。) (2001)第11题(10分)研究离子晶体,常考察以一个离子为中心时,其周围不同距离的离子对它的吸引或排斥的静电作用力。设氯化钠晶体中钠离子跟离它最近的氯离子之间的距离为d,以钠离子为中心,则: 11-1 第二层离子有个,离中心离子的距离为 d,它们是离子。 11-2 已知在晶体中Na+离子的半径为116pm,Cl-离子的半径为167pm,它们在晶体中是紧密接触的。求离子占据整个晶体空间的百分数。 11-3 纳米材料的表面原子占总原子数的比例极大,这是它的许多特殊性质的原因,假设某氯化钠纳米颗粒的大小和形状恰等于氯化钠晶胞的大小和形状,求这种纳米颗粒的表面原子占总原子数的百分比。

晶体结构解析基本步骤

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为sss.f2, 并更名为sss.hkl)文件; 对CCD 收录的数据, 检查是否有同名的p4p和hkl(设为sss.hkl)文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从total reflections项中,记下总点数;从R merge项中,记下Rint=?.???? % (IP收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRA V AIS和SYMM项中,记下BRA V AIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如sss.hkl),?单击Project Open,?最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除 8. 用EDIT 打开sss.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长,更正测量温度TEMP ?? C)。?(单位已设为

晶体结构分析的历史发展

晶体结构分析的历史发展 (一)X射线晶体学的诞生 1895年11月8日德国维尔茨堡大学物理研究所所长伦琴发现了X射线。自X射线发现后,物理学家对X射线进行了一系列重要的实验,探明了它的许多性能。根据狭缝的衍射实验,索末菲(Som-merfeld)教授指出,X射线如是一种电磁波的话,它的波长应当在1埃上下。 在发现X射线的同时,经典结晶学有了很大的进展,230个空间群的推引工作使晶体构造的几何理论全部完成。当时虽没有办法测定晶胞的形状和大小以及原子在晶胞中的分布,但对晶体结构已可臆测。根据当时已知的原子量、分子量、阿伏伽德罗常数和晶体的密度,可以估计晶体中一个原子或一个分子所占的容积,晶体中原子间距离约1—2埃。1912年,劳厄(Laue)是索末菲手下的一个讲师,他对光的干涉现象很感兴趣。刚巧厄瓦耳(P.Ewald)正随索末菲进行结晶光学方面的论文,科学的交流使劳厄产生了一种极为重要的科学思想:晶体可以用作X射线的立体衍射光栅,而X射线又可用作量度晶体中原子位置的工具。刚从伦琴那里取得博士学位的弗里德里克(W.Friedrich)和尼平(P.Knipping)亦在索末菲教授处工作,他们自告奋勇地进行劳厄推测的衍射实验。他们使用了伦琴提供的X射线管和范克罗斯(Von.Groth)提供的晶体,最先对五水合硫酸铜晶体进行了实验,费了很多周折得到了衍射点,初步证实了劳厄的预见。后来他们对辉锌矿、铜、氯化钠、黄铁矿、沸石和氯化亚铜等立方晶体进行实验,都得到了正面的结果,为了解释这些衍射结果,劳厄提出了著名的劳厄方程。劳厄的发现导致了X射线晶体学和X射线光谱学这二门新学科的诞生。 劳厄设计的实验虽取得了正面的结果,但X射线晶体学和X射线光谱学成为新学科是一些得力科学家共同努力的结果。布拉格父子(W.H.Bragg,W.L.Bragg)、莫塞莱(Moseley)、达尔文(Darwin)完成了主要的工作,通过他们的工作认识到X射线具有波粒二重性;X射线中除了连续光谱外,还有波长取决于阴极材料的特征光谱,发现了X射线特征光谱频率和元素在周期表中序数之间的规律;提出了镶嵌和完整晶体的强度公式,热运动使衍射线变弱的效应,发展了X射线衍射理论。W·L·布拉格在衍射实验中发现,晶体中显得有一系列原子面在反射X射线。他从劳厄方程引出了布拉格方程,并从KCl和NaCl的劳厄衍射图引出了晶体中的原子排列方式,W·L·布拉格在劳厄发现的基础上开创了X射线晶体结构分析工作。 伦琴在1901年由于发现X射线成为世界上第一个诺贝尔物理奖获得者,而劳厄由于发现X射线的晶体衍射效应也在1914年获得了诺贝尔物理奖。 (二)X射线晶体结构分析促进了化学发展 W·L·布拉格开创的X射线晶体结构分析工作把X射线衍射效应和化学联系在一起。当NaCl等晶体结构被测定后,使化学家恍然大悟,NaCl的晶体结构中没有用NaCl表示的分子集团,而是等量的Na+离子和Cl-离子棋盘交叉地成为三维结构。当时X射线结构分析中的位相问题是通过强度数据和强度公式用试差法来解决的,只能测定含二三十个参数的结构,这些结构虽简单,但使无机物的结构化学有了真正的开始。 从1934年起,帕特孙(Patterson)法和其他应用付里叶级数的方法相继提出,位相问题可通过帕特孙函数找出重原子的位置来解决,使X射线晶体结构分析摆脱了试差法。1940年后计算机的使用,使X射线晶体结构分析能测定含重原子的复杂的化合物的结构。X射线晶体结构分析不但印证了有机物的经典结构化学,也为有机物积累了丰富的立体化学数据,

浅谈有关晶体结构的分析和计算

浅谈有关晶体结构的分 析和计算 Revised as of 23 November 2020

浅谈有关晶体结构的分析和计算 摘要:晶体结构的分析和计算是历年全国高考化学试卷中三个选做题之一,本文从晶体结构的粒子数和化学式的确定,晶体中化学键数的确定和晶体的空间结构的计算等方面,探讨有关晶体结构的分析和计算的必要性。 关键词:晶体、结构、计算、晶胞 在全国统一高考化学试卷中,有三个题目是现行中学化学教材中选学内容,它们分别《化学与生活》、《有机化学基础》和《物质结构与性质》。虽然三个题目在高考时只需选做一题,由于是选学内容,学生对选学内容往往重视不够,所以在高考时学生对这部分题目得分不够理想。笔者对有关晶体结构的分析和计算进行简单的归纳总结,或许对学生学习有关晶体结构分析和计算有所帮助,若有不妥这处,敬请同仁批评指正。 一、有关晶体结构的粒子数和化学式确定 (一)、常见晶体结构的类型 1、原子晶体 (1)金刚石晶体中微粒分布: ①、每个碳原子与4个碳原子以共价键结合,形成正四面体结构。 ②、键角均为109°28′。 ③、最小碳环由6个碳组成并且六个碳原子不在同一平面内。 ④、每个碳原子参与4条C-C 键的形成,碳原子与C-C 键之比为1:2。 (2)二氧化硅晶体中微粒分布 ①、每个硅原子与4个氧原子以共价键结合,形成正四面体结构。 ②、每个正四面体占有1个Si ,4个“2 1氧”,n(Si):n(O)=1:2。 ③、最小环上有12个原子,即:6个氧原子和6个硅原子.

2、分子晶体:干冰(CO 2)晶体中微粒分布 ①、8个CO 2分子构成立方体并且在6个面心又各占据1个CO 2分子。 ②、每个CO 2分子周围等距离紧邻的CO 2分子有12个。 3、离子晶体 (1)、NaCl 型晶体中微粒分布 ①、每个Na +(Cl -)周围等距离且紧邻的Cl -(Na +)有6个。每 个Na +周围等距离紧邻的Na +有12个。 ②、每个晶胞中含4个Na +和4个Cl -。 (2)、CsCl 型晶体中微粒分布 ①、每个Cs +周围等距离且紧邻的Cl -有8个,每个Cs +(Cl -) 周围等距离且紧邻的Cs +(Cl -)有6个。 ②、如图为8个晶胞,每个晶胞中含有1个Cs +和1个Cl - 。 3、金属晶体 (1)、简单立方晶胞:典型代表Po ,空间利用率52%,配位数为6 (2)、体心立方晶胞(钾型):典型代表Na 、K 、Fe ,空间利用率60%,配位数为8。 (3)、六方最密堆积(镁型):典型代表Mg 、Zn 、Ti ,空间利用率74%,配位数为12。 (4)、面心立方晶胞(铜型):典型代表Cu 、Ag 、Au ,空间利用率74%,配位数为12。 (二)、晶胞中微粒的计算方法——均摊法 1、概念:均摊法是指每个图形平均拥有的粒子数目,如某个粒子为n 个晶胞所共有,则 该粒子有n 1属于一个晶胞。 2、解题思路:首先应分析晶胞的结构(该晶胞属于那种类型),然后利用“均摊法”解题。

晶体结构解析的过程XP

晶体结构解析的过程 (2010-06-10 16:49:31) 转载 分类:晶体解析 标签: 杂谈 1、挑选直径大约为0.1–1.0mm的单晶。 CCD的准直管直径有0.3mm,0.5mm,0.8mm;分别对应得晶体大小是0-0.3mm, 0.3-0.5mm, 0.5-0.8mm. 2、选择用铜靶还是钼靶? 铜靶要求θmax〉=66度,最大分辨率是0.77埃 钼靶要求θmax〉=25度,最大分辨率是0.36埃 3、用smart程序收集衍射数据:得到大约一千张倒易空间的衍射图像,300M 大小。其中matrix图像45张,分成三组,每组15张,用以判定晶体能否解析。 4、用saint程序还原衍射数据:得到很多文件,但是只有三个文件是我们需要的:-ls,p4p,raw。 -ls文件中包含有最大的和最小的θ角,有效地精修衍射点数目。好像不同的机器或者还原程序得到的文件不同,有的是hkl,abs。 5、用shelxtl程序处理上述数据,并画出需要的图形。 5.1 装好shelxtl程序,新建一个project,输入要建立工程的名字,然后打开要解析的p4p或者raw文件。 5.2 用xprep程序确立空间群,建立指令文件 这个过程基本上是一直按回车键的过程(除了在要输入化学成分的时候改动一下和在是否建立指令文件的时候输入Y即可),一般不会出错。如果出错,那就要重新对空间群进行指认(出错可能是出现在下面的精修过程中)。 一般Mean(I/sigma)〉2才可以,越大越好。

得到ins,hkl,pcf三个重要数据文件。 其中ins文件:包含分子式,空间群等信息; hkl文件:包含的是衍射点的强度数据; pcf文件:记录了晶体物理特征,分子式,空间群,衍射数据收集的条件以及使用的相关软件等信息。 5.3 选择要解析的方法:直接法(TREF)还是帕特深法(PATT)? 如果晶体中含有重原子如金属原子,那就要用PATT法;如果晶体中没有原子量差异特别大的原子,就用TREF法。默认的方法是直接法。 5.4 用xs程序解析粗结构 得到res文件:包含了ins文件的内容和所有的Q峰信息。 5.5 用xp程序与xl程序完成原子的指认,付利叶加氢或理论加氢,画图等。 达到比较好的结果标准: A 化学上合理(键长、键角、价态) B R1 <0.08(0.06),wR2 <0.18(0.16),goof=S=1+-0.2(1.00) C R(int)<0.1,R(singma)<0.1 D Maximum=0.000 5.5.1 原子的指认 打开xp 输入fmol

化学竞赛晶体结构综合例题

晶体结构综合例题 一.有一立方晶系的离子晶体,其结构如右图所示,试回答: 1.晶体所属的点阵形式及结构基元; 2.已知=169,=181,试问此两种离于联合组成了何种型式 的密堆积; 3.2+处在何种空隙里? 4.指出各离子的配位情况? 解:1. 立方P,3 ; 2. A1型(立方面心)堆积, +,-离子半径大致相近; 3. 八面体空隙中; 4. 2+周围-配位数6,+配位数8;-周围2+配位数2,+配位数4;+周围-配位数12,2+配位数8。 二.黄铜矿是最重要的铜矿,全世界的2/3的铜是由它提炼 的。 1.右图为黄铜矿的晶胞。计算晶胞中各种原子的数目,写出 黄铜矿的化学式; 2.在高温下,黄铜矿晶体中的金属离子可以发生迁移。若铁 原子与铜原子发生完全无序的置换,可将它们视作等同的金属离 子,请说出它的晶胞。 3.在无序的高温型结构中,硫原子作什么类型的堆积? 金属原子占据什么类型的空隙?该空隙被金属原子占据的分数是 多少? 4.计算黄铜矿晶体的密度; (晶胞参数:52.4,103.0;相对 原子量:63.5 55.84 S 32.06)。 解:1. 各种原子的数目, , S: 4, 4, 8; 黄铜矿的化学式2 ; 2.它的晶胞与晶胞相同;但金属离子随机性为50%; (如图); 3.硫原子作A1型(立方F)堆积; 金属原子占据四面体空 隙; 该空隙被金属原子占据的分数1/2; 4.容易计算黄铜矿晶体的密度4.313 . 1/21/2 S

三.冰晶石(36)用作电解法炼铝的助熔剂。冰晶石晶胞是以大阴离子(63- )构成的面 心立方晶格,+ 可看作是填充在晶格的空隙中,已知冰晶石的密度为2.953,—F 键长181 ,相对原子质量: 23.0; 27.0;F 19.0。 1.指出63- 配离子中心离子的杂化轨道类型、配离子空间构型和所属分子点群。 2.指出36的点阵形式;阴离子作何种形式的堆积,阳离子占据何种空隙及占有率;写出它们的分数坐标。 3.计算冰晶石晶体的晶胞参数。 4. 计算+ 的半径。 解:1. 63- 配离子中心离子的杂化轨道类型为 3d 2杂化; 配离子空间构型为正八面体; 所属分子点群为 。 2. 36的点阵形式为立方F ;阴离子作A 1型堆积,阳离子占据100%八面体空及 100%四面体空隙;它们的分数坐标为 63-: (0,0,0) (1/2,1/2,0) (1/2,0,1/2) (0,1/2,1/2)(1分); : (1/4,1/4,1/4) (1/4,1/4,3/4) (1/4,3/4,1/4) (1/4,3/4,3/4) (3/4,1/4,1/4) (3/4,1/4,3/4) (3/4,3/4,1/4) (3/4,3/4,3/4) (1/2,1/2,1/2) (0,0,1/2) (0,1/2,0) (1/2,0,0). 3.晶胞内含4个[36]单元,36摩尔质量为210。设晶胞边长为a ,则95.21 1002.642103 23=???a 780 4. 181, 按四面体空隙计算 pm R a 1564 3 =--;按八面体空隙计算为209(舍去); 真实值为157. 四.合金可看作由下图所示的a 、b 两种原子层交替堆积排列而成:a 是由和共同组成的层,层中-之间由实线相连;b 是完全由原子组成的层,-之间也由实线相连。图中由虚线勾出的六角形,表示由这两种层平行堆积时垂直于层的相对位置。c 是由a 和b 两种原子层交替堆积成的晶体结构图。在这结构中:同一层的-为294;相邻两层的-为327。 1.确定该合金的化学式; 2.有几个原子配位(周围的原子数,不一定要等距最近); 的配位情况如何,列式计算的平均配位数; 3.该晶体属何种晶系;写出各原子的分数坐标;计算晶胞参数。 4.计算该合金的密度( 40.1 63.5) 5.计算、原子半径。

晶体结构的分析与计算训练题

晶体结构的分析与计算训练题 1.(2015·全国卷Ⅰ)碳有多种同素异形体,其中石墨烯与金刚石的晶体结构如图所示: (1)在石墨烯晶体中,每个C 原子连接________个六元环,每个六元环占有________个C 原子。 (2)在金刚石晶体中,C 原子所连接的最小环也为六元环,每个C 原子连接______个六元环,六元环中最多有______个C 原子在同一平面。 解析:(1)由石墨烯的结构可知,每个C 原子连接3个六元环,每个六元环占有的C 原子数为1 3 ×6=2。 (2)由金刚石的结构可知,每个C 可参与形成4条C —C 键,其中任意两条边(共价键)可以构成2个六元环。根据组合知识可知四条边(共价键)任选其中两条有6组,6×2=12。因此每个C 原子连接12个六元环。六元环中C 原子采取sp 3 杂化,为空间六边形结构,最多有4个C 原子位于同一平面。 答案:(1)3 2 (2)12 4 2.(2016·全国卷Ⅱ)某镍白铜合金的立方晶胞结构如图所示。 (1)晶胞中铜原子与镍原子的数量比为________。 (2)若合金的密度为d g·cm -3 ,晶胞参数a =________nm 。 解析:(1)由晶胞结构图可知,Ni 原子处于立方晶胞的顶点,Cu 原子处于立方晶胞的面心,根据均摊法,每个晶胞中含有Cu 原子的个数为6×12=3,含有Ni 原子的个数为8×1 8= 1,故晶胞中Cu 原子与Ni 原子的数量比为3∶1。 (2)根据m =ρV 可得, 1 mol 晶胞的质量为(64×3+59)g =a 3 ×d g·cm -3 ×N A ,则a =? ????2516.02×1023×d 1 3 cm =? ?? ??2516.02×1023×d 1 3×107 nm 。 答案:(1)3∶1 (2)? ?? ? ?2516.02×1023×d 1 3×107 3.(2017·全国卷Ⅰ)(1)KIO 3晶体是一种性能良好的非线性光学材料,具有钙钛矿型的立方结构,边长为a =0.446 nm ,晶胞中K 、I 、O 分别处于顶角、体心、面心位置,如图所示。K 与O 间的最短距离为______

整理晶体结构解析步骤

晶体结构解析步骤Steps to Crystallographic Solution (基于SHELXL97结构解析程序和DOS版SHELXTL画图软件。在DOS下操作) 注意:1. 每一个晶体数据必须在D:/STRUCT下建立一子目录(如D:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORG; 2. 此处用了STRUCT.BA T批文件,它存在于C:\根目录下,内有path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct为工作目录,exe为SHELXL97程序,nix为SHELXTL画图) 3. 在了解DOS下操作之后,可在WIN的WINGX界面下进行结构解析工作,画图可用XP 或DIAMOND软件进行。 一. 准备 1. 检查是否有inf、dat和f2(设为sss.f2)文件 2. 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从R merge项中,记下Rint=?.???? %; ⊕从total reflections项中,记下总点数; ⊕从unique reflections项中,记下独立点数 3. 双击桌面的DOS图标(或Win2000与WinNT的“命令提示符”) 4. 键入STRUCT(属于命令,大小写均可。下同) 5. 进入欲处理的数据所在的文件夹(上面的1~2工作也可在这之后进行) 6. 键入XPREP sss.f2 (屏幕显示DOS的选择菜单) 7. 选择[4],回车(下记为) 8. 输入晶胞参数(建议在一行内将6个参数输入,核对后) 9. 一系列运行(对应的操作动作均为按)之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦) 10. 退出XPREP运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 11. 检查是否产生有PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明) 12. 更名:REN aaa.f2 aaa.hkl 13. 用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。 二.解结构 14. 键入SHELXS aaa或XS aaa,(INS文件中, TREF为直接法,PATT为Pattersion法) 15. XP,(进入XP程序)(可能产生计算内址冲突问题,注意选择处理) 16. READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如aaa.ins) 17. FMOL, (不要H原子时,为FMOL LESS $H,或FMOL后,KILL $H, ) (读取各参数,屏幕上显示各原子的键合情况) 18. MPLN/N, (机器认为最好取向) 19. PROJ, (随意转动,直至你认为最理想取向)

高中化学竞赛初赛有关晶体结构的试题及答

1998-2008年高中化学竞赛(初赛)有关晶体结构的试题及答案解析 2008第3题(8分) X-射线衍射实验表明,某无水MgCl2晶体属三方晶系,呈层形结构,氯离子采取立方最密堆积(ccp),镁离子填满同层的八面体空隙;晶体沿垂直于氯离子密置层的投影图如下。该晶体的六方晶胞的参数:a=363.63pm,c=1766.63pm;p=2.53g·cm-3。 3-1 以“”表示空层,A、B、C表示Cl-离子层,a、b、c表示Mg2+离子层,给出三方层 型结构的堆积方式。 3-2计算一个六方晶胞中“MgCl2”的单元数。 3-3 假定将该晶体中所有八面体空隙皆填满Mg2+离子,将是哪种晶体结构类型? 第3题(10分) 3-1 ··· AcB CbA BaC A ···(5分) 大写字母要体现出Cl-层作立方最密堆积的次序,镁离子与空层的交替排列必须正确,镁离子层与氯离子层之间的相对位置关系(大写字母与小写字母的相对关系)不要求。必须表示出层型结构的完整周期,即至少写出包含 6 个大写字母、3 个小写字母、3个空层的排列。若只写对含 4 个大写字母的排列,如“··· AcB CbA ···”,得2.5 分。 3-2 (3分)

Z 的表达式对,计算过程修约合理,结果正确(Z =3.00—3.02,指出单元数为整数 3),得 3 分。Z 的表达式对,但结果错,只得 1 分。 3-3 NaCl 型 或 岩盐型(2 分) 2007第1题 (14分) 1-1 EDTA 是乙二胺四乙酸的英文名称的缩写,市售试剂是其二水合二钠盐。 (1)画出EDTA 二钠盐水溶液中浓度最高的阴离子的结构简式。 C H 2N C H 2H 2C N H 2C CH 2 H 2C COO -COO - -OOC -OOC H H (2分) 答(- OOCCH 2)2NCH 2CH 2N(CH 2COO -)2H H 或CH 2NH(CH 2COO -)22 得2分,质子 必须在氮原子上。 (2) Ca(EDTA)2-溶液可用于静脉点滴以排除体内的铅。写出这个排铅反应的化学方程 式(用Pb 2+ 表示铅)。 Pb 2+ + Ca(EDTA)2- = Ca 2+ + Pb (EDTA)2- (1分) (3)能否用EDTA 二钠盐溶液代替Ca(EDTA)2-溶液排铅?为什么? 不能。若直接用EDTA 二钠盐溶液,EDTA 阴离子不仅和Pb 2+反应, 也和体内的Ca 2+结合造成钙的流失。 (答案和原因各0.5 分,共 1 分) 1-2 氨和三氧化硫反应得到一种晶体,熔点205o C ,不含结晶水。晶体中的分子有一个三重 旋转轴,有极性。画出这种分子的结构式,标出正负极。 (2分) 硫氧键画成双键或画成S →O ,氮硫键画成N →S ,均不影响得分。结构式1分,正负号1分。答H 3NSO 3、H 3N-SO 3等不得分。正确标出了正负号,如+H 3NSO 3-、+H 3N-SO 3-得1分。其他符合题设条件(有三重轴,有极性)的结构,未正确标出正负极,得1分,正确标出正负极,得2分。 1-3 Na 2[Fe(CN)5(NO)]的磁矩为零,给出铁原子的氧化态。Na 2[Fe(CN)5(NO)]是鉴定S 2-的 试剂,二者反应得到紫色溶液,写出鉴定反应的离子方程式。 Fe(II) 答II 或+2也可 (2分) [Fe(CN)5(NO)]2-+S 2- = [Fe(CN)5(NOS)]4- 配合物电荷错误不得分 (1分) 1-4 CaSO 4 ? 2H 2O 微溶于水,但在HNO 3 ( 1 mol L -1)、HClO 4 ( 1 mol L -1)中可溶。写出能够 解释CaSO 4在酸中溶解的反应方程式。 CaSO 4 + H + = Ca 2+ + HSO 4 (1分)

浅谈有关晶体结构的分析和计算讲解学习

浅谈有关晶体结构的分析和计算

浅谈有关晶体结构的分析和计算 摘要:晶体结构的分析和计算是历年全国高考化学试卷中三个选做题之一,本文从晶体结构的粒子数和化学式的确定,晶体中化学键数的确定和晶体的空间结构的计算等方面,探讨有关晶体结构的分析和计算的必要性。 关键词:晶体、结构、计算、晶胞 在全国统一高考化学试卷中,有三个题目是现行中学化学教材中选学内容,它们分别《化学与生活》、《有机化学基础》和《物质结构与性质》。虽然三个题目在高考时只需选做一题,由于是选学内容,学生对选学内容往往重视不够,所以在高考时学生对这部分题目得分不够理想。笔者对有关晶体结构的分析和计算进行简单的归纳总结,或许对学生学习有关晶体结构分析和计算有所帮助,若有不妥这处,敬请同仁批评指正。 一、有关晶体结构的粒子数和化学式确定 (一)、常见晶体结构的类型 1、原子晶体 (1)金刚石晶体中微粒分布: ①、每个碳原子与4个碳原子以共价键结合,形成正四面体 结构。 ②、键角均为109°28′。 ③、最小碳环由6个碳组成并且六个碳原子不在同一平面内。 ④、每个碳原子参与4条C-C键的形成,碳原子与C-C键之比为1:2。 (2)二氧化硅晶体中微粒分布

①、每个硅原子与4个氧原子以共价键结合,形成正四面体结构。 ②、每个正四面体占有1个Si ,4个“2 1氧”,n(Si):n(O)=1:2。 ③、最小环上有12个原子,即:6个氧原子和6个硅原子. 2、分子晶体:干冰(CO 2)晶体中微粒分布 ①、8个CO 2分子构成立方体并且在6个面心又各占据1个 CO 2分子。 ②、每个CO 2分子周围等距离紧邻的CO 2分子有12个。 3、离子晶体 (1)、NaCl 型晶体中微粒分布 ①、每个Na +(Cl -)周围等距离且紧邻的Cl -(Na +)有6个。每 个Na +周围等距离紧邻的Na +有12个。 ②、每个晶胞中含4个Na +和 4个Cl -。 (2)、CsCl 型晶体中微粒分布 ①、每个Cs +周围等距离且紧邻的Cl -有 8个,每个Cs +(Cl -) 周围等距离且紧邻的Cs +(Cl -)有6个。 ②、如图为8个晶胞,每个晶胞中含有1个Cs +和1个Cl - 。 3、金属晶体 (1)、简单立方晶胞:典型代表Po ,空间利用率52%,配位数为6

化学竞赛——晶体结构

晶 体结构 (2002年)3.(5分) 石墨晶体由如图(1)所示的C 原子平面层堆叠形成。有一种常见的2H 型石墨以二层重复的堆叠方式构成,即若以A 、B 分别表示沿垂直于平面层方向(C 方向)堆叠的两个不同层次,它的堆叠方式为ABAB……。图(2)为AB 两层的堆叠方式,O 和●分别表示A 层和B 层的C 原子。 ⑴ 在图(2)中标明两个晶胞参数a 和b 。 ⑵ 画出2H 型石墨晶胞的立体示意图,并指出晶胞类型。 3.(共5分) 可有多种选取方式,其中一种方式如下图所示: (2) 请自行设计两个实验(简单说明实验操作和实验现象)来验证Ba 2+确实能使平衡向左移动。 (2002年)8.(9分) 有一离子晶体经测定属立方晶系,晶胞参数a =?(1?=10- 8cm),晶胞的顶点位置为Mg 2+,体心位置 为K +,所有棱边中点为F -。 ⑴ 该晶体的化学组成是 ; ⑵ 晶胞类型是 ; ⑶ Mg 2+的F -配位数是 ,K +的F -配位数是 ; ⑷ 该晶体的理论密度是 g·cm -3。 ⑸ 设晶体中正离子和负离子互相接触,已知F -的离子半径为?,试估计Mg 2+的离子半径 是 ?,K +的离子半径是 ?。 8.(共9分) ⑴ MgKF 3 (2分) ⑵ 简单立方晶胞 (1分) ⑶ 6 (1分) 12 (1分) ⑷ 3.12 g·cm -3 (2 分) ⑸ ? (1 分) ? (1 分) (2002年)11.(4分) NiO 晶体为NaCl 型结构,将它在氧气中加热,部分Ni 2+被氧化为Ni 3+,晶体结构产生镍离子缺位的缺 陷,其组成成为Ni x O(x<1),但晶体仍保持电中性。经测定Ni x O 的立方晶胞参数a=?,密度为6.47g·cm -3。 ⑴ x 的值(精确到两位有效数字)为 ;写出标明Ni 的价态的Ni x O 晶体的化学式 。 ⑵ 在Ni x O 晶体中Ni 占据 空隙,占有率是 。 11.(共4分) ⑴ (1分) O Ni Ni ++316.0276.0 (1分) [或Ni(Ⅱ)(Ⅲ)] ⑵ 八面体 (1分) 92% (1分) (2003年)第6题(共8分) ⑴ 两种铜溴配合物晶体中的一维聚 合链结构的投影图 (其中部分原子 给出标记)如下。①分别指出两种结 构的结构基元由几个Cu 原子和几个 Br 原子组成: 图 ⑴ 为 个Cu 原子, Br 原子;

高中化学 晶体结构的分析与计算

晶体结构的分析与计算 1.(2015·全国卷Ⅰ)碳有多种同素异形体,其中石墨烯与金刚石的晶体结构如图所示: (1)在石墨烯晶体中,每个C 原子连接________个六元环,每个六元环占有________个C 原子。 (2)在金刚石晶体中,C 原子所连接的最小环也为六元环,每个C 原子连接______个六元环,六元环中最多有______个C 原子在同一平面。 解析:(1)由石墨烯的结构可知,每个C 原子连接3个六元环,每个六元环占有的C 原子数为13 ×6=2。 (2)由金刚石的结构可知,每个C 可参与形成4条C —C 键,其中任意两条边(共价键)可以构成2个六元环。根据组合知识可知四条边(共价键)任选其中两条有6组,6×2=12。因此每个C 原子连接12个六元环。六元环中C 原子采取sp 3杂化,为空间六边形结构,最多有4个C 原子位于同一平面。 答案:(1)3 2 (2)12 4 2.(2016·全国卷Ⅱ)某镍白铜合金的立方晶胞结构如图所示。 (1)晶胞中铜原子与镍原子的数量比为________。 (2)若合金的密度为d g·cm - 3,晶胞参数a =________nm 。 解析:(1)由晶胞结构图可知,Ni 原子处于立方晶胞的顶点,Cu 原子处于立方晶胞的 面心,根据均摊法,每个晶胞中含有Cu 原子的个数为6×12=3,含有Ni 原子的个数为8×18 =1,故晶胞中Cu 原子与Ni 原子的数量比为3∶1。 (2)根据m =ρV 可得, 1 mol 晶胞的质量为(64×3+59)g =a 3×d g·cm - 3×N A ,则a =????2516.02×1023×d 13cm =??? ?2516.02×1023×d 1 3×107 nm 。 答案:(1)3∶1 (2)??? ?2516.02×1023×d 13×107 3.(2017·全国卷Ⅰ)(1)KIO 3晶体是一种性能良好的非线性光学材 料,具有钙钛矿型的立方结构,边长为a =0.446 nm ,晶胞中K 、I 、O 分别处于顶角、体心、面心位置,如图所示。K 与O 间的最短距离为 ______ nm ,与K 紧邻的O 个数为_____。

晶体解析的步骤

晶体解析的步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序和DOS版SHELXTL画图软件。在DOS下操作) 注意: 1. 每一个晶体数据必须在D:/STRUCT下建立一子目录(如D:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORG; 2. 此处用了STRUCT.BAT批文件,它存在于C:\根目录下,内有path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct为工作目录,exe为SHELXL97程序,nix为SHELXTL 画图) 3. 在了解DOS下操作之后,可在WIN的WINGX界面下进行结构解析工作,画图可用XP 或DIAMOND软件进行。 一. 准备 1. 检查是否有inf、dat和f2(设为sss.f2)文件 2. 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从R merge项中,记下Rint=?.???? %; ⊕从total reflections项中,记下总点数; ⊕从unique reflections项中,记下独立点数 3. 双击桌面的DOS图标(或Win2000与WinNT的“命令提示符”) 4. 键入STRUCT(属于命令,大小写均可。下同) 5. 进入欲处理的数据所在的文件夹(上面的1~2工作也可在这之后进行) 6. 键入XPREP sss.f2 (屏幕显示DOS的选择菜单) 7. 选择[4],回车(下记为) 8. 输入晶胞参数 (建议在一行内将6个参数输入,核对后) 9. 一系列运行(对应的操作动作均为按)之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦) 10. 退出XPREP运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 11. 检查是否产生有PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明) 12. 更名:REN aaa.f2 aaa.hkl 13. 用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。 二.解结构 14. 键入SHELXS aaa或XS aaa, (INS文件中, TREF为直接法,PATT为Pattersion 法) 15. XP, (进入XP程序)(可能产生计算内址冲突问题,注意选择处理) 16. READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如aaa.ins)

化学竞赛辅导练习6---晶体结构

化学竞赛辅导练习6 ——晶体结构(2018-07-1) 一、求晶体的化学式和原子坐标 1.(2000)5.最近发现一种由钛原子和碳原子构成的气态团簇分子,如右图所示, 顶角和面心的原子是钛原子,棱的中心和体心的原子是碳原子,它的化学式是 ______。 2.(2005)第2题2-2右图是化学家合成的能实现热电效应的一种晶体的晶胞模型。 图中的大原子是稀土原子,如镧;小原子是周期系第五主族元素,如锑;中等 大小的原子是周期系VIII 族元素,如铁。按如上结构图写出这种热电晶体的化 学式。给出计算过程。提示:晶胞的6个面的原子数相同。设晶体中锑的氧化 态为-1,镧的氧化态为+3,问:铁的平均氧化态多大? 3.2008第5题(5分) 1963年在格陵兰Ika峡湾发现一种水合碳酸钙矿物ikaite。它形成于冷的海水中,温度达到8o C即分解为方解石和水。1994年的文献指出:该矿物晶体中的Ca2+ 离子被氧原子包围,其中2个氧原子来自同一个碳酸根离子,其余6个氧原子来自6个水分子。它的单斜晶胞的参数为:a = 887 pm, b = 823 pm, c = 1102 pm, β = 110.2°,密度d = 1.83 g cm 3,Z = 4。 5-1 通过计算得出这种晶体的化学式。 4.(2008)第8题(9分) 由烷基镁热分解制得镁的氢化物。实验测定,该氢化物中氢的质量分数为7.6%,氢的密度为0.101 g cm 3,镁和氢的核间距为194.8 pm。已知氢原子的共价半径为37pm,Mg2+ 的离子半径为72 pm。 8-2将上述氢化物与金属镍在一定条件下用球磨机研磨,可制得化学式为Mg2NiH4的化合物。 X-射线衍射分析表明,该化合物的立方晶胞的面心和顶点均被镍原子占据,所有镁原子的配位数都相等。推断镁原子在Mg2NiH4晶胞中的位置(写出推理过程)。 二、画晶胞(同一种晶体可以取不同的晶胞,但习用晶胞有规定,是平行六面体(三维)和平行四边形(二维)) 5.(2003)第6题(12分)2003年3月日本筑波材料科学国家实验室一个研究小组发现首例带结晶水的晶体在5K下呈现超导性。据报道,该晶体的化学式为Na0.35CoO2? 1.3H2O,具

晶体结构分析与计算

晶体结构分析与计算 湖南省浏阳市第一中学潘丹张水强410300 在2005年高考考纲中,在思维能力中增加了“对原子、分子、化学键等 微观结构有一定的三维想象能力”的要求。三维想象能力可能通过“晶体结构”试题来体现,而“晶体结构”这一知识点前几年是高考的热点之一(如 92年的金刚石、96年的SiO2 、97年的C60、98年的GBO、99年的NiO等等)。间隔了几年,笔者认为有必要引起广大考生足够的重视。本文从最常见的几 种晶体结构题型入手,分析晶体结构有关的问题,帮助同学们更好地掌握晶 体结构的内容,培养空间想象能力和形象思维能力。 一、常见的几种晶体结构分析 (一)、氯化钠晶体 1、NaCl晶体是一种简单立方结构——Na+和Cl-交替占据立 方体的顶点而向空间延伸。 2、在每个Na+周围最近且等距离(设边长为a)的Cl-有6 个,在每个Cl-周围最近且等距离的Na+有6个。 3、在每个Na+周围最近且等距离(平面对角线为2a)的Na+有12 个,在每个Cl-周围且最近等距离(平面对角线为2a)的Cl-有12 个。 (二)、氯化铯晶体 1、CsCl晶体是一种立方体心结构—— 每8个Cs+、8个Cl-各自构成立方体。 在每个立方体的中心有一个异种离子 (Cl-或Cs+)。 2、在每个Cs+周围最近且等距离的Cl- (设为3a/2)有8个。在每个Cl-周 围最近且等距离的Cs+有8个。 3、在每个Cs+周围最近且等距离(必为a)的Cs+有6个,在每个Cl-周围最近且等距离的Cl-有6个。 (三)、金刚石晶体 1、金刚石晶体是一种空间网状结构——每个C原子与另4个C原子以共价键结 合,前者位于正四面体中心,后者位于正四面体顶点。 2、晶体中所有C—C键键长相等(1.55×10-10m),键角 相等(均为109028'),晶体中最小碳环由6个C组成 且六者不在同一平面内。 3、晶体中每个C原子参与了4条C—C键的形成,而 在每条键中的贡献只有一半,故C原子个数与C—C键

相关主题
文本预览
相关文档 最新文档