当前位置:文档之家› 基于物理规划的Stewart平台多目标优化第一期

基于物理规划的Stewart平台多目标优化第一期

基于物理规划的Stewart平台多目标优化第一期
基于物理规划的Stewart平台多目标优化第一期

1多目标优化

多目标优化算法 ——11级计算一班 20113745 陆慧玲 近年来,多目标优化问题求解已成为演化计算的一个重要研究方向,而基于Pareto 最优概念的多目标演化算法则是当前演化计算的研究热点。多目标演化算法的研究目标是使算法种群快速收敛并均匀分布于问题的非劣最优域。 最优化问题是工程实践和科学研究中主要的问题形式之一,其中,仅有一个目标函数的最优化问题称为单目标优化问题,目标函数超过一个并且需要同时处理的最优化问题称为多目标优化问题(multiobjectiveoptimizationprob- lems,简称MOPs)。对于多目标优化问题,一个解对于某个目标来说可能是较好的,而对于其他目标来讲可能是较差的,因此,存在一个折衷解的集合,称为Pareto 最优解集(Pareto optimal set)或非支配解集(nondominated set)。起初,多目标优化问题往往通过加权等方式转化为单目标问题,然后用数学规划的方法来求解,每次只能得到一种权值情况下的最优解。同时,由于多目标优化问题的目标函数和约束函数可能是非线性、不可微或不连续的,传统的数学规划方法往往效率较低,且它们对于权重值或目标给定的次序较敏感。进化算法通过在代与代之间维持由潜在解组成的种群来实现全局搜索,这种从种群到种群的方法对于搜索多目标优化问题的Pareto 最优解集是很有用的。 第一代进化多目标优化算法以Goldberg 的建议为萌芽。1989 年,Goldberg 建议用非支配排序和小生境技术来解决多目标优化问题。非支配排序的过程为:对当前种群中的非支配个体分配等级1,并将其从竞争中移去;然后从当前种群中选出非支配个体,并对其分配等级2,该过程持续到种群中所有个体都分配到次序后结束。小生境技术用来保持种群多样性,防止早熟。Goldberg 虽然没有把他的思想具体实施到进化多目标优化中,但是其思想对以后的学者来说,具有启发意义。随后,一些学者基于这种思想提出了MOGA,NSGA 和NPGA。 从20 世纪末期开始,进化多目标优化领域的研究趋势发生了巨大的变化,l999 年,Zitzler 等人提出了SPEA。该方法使精英保留机制在进化多目标优化领域流行起来。第二代进化多目标优化算法的诞生就是以精英保留策略的引入为标志。在进化多目标优化领域,精英保留策略指的是采用一个外部种群(相对于原来个体种群而言)来保留非支配个体。(1)SPEA 和SPEA2 SPEA 是Zitzler 和Thiele 在1999 年提出来的算法。在该算法中,个体的适应度又称为Pareto 强度,非支配集中个体的适应度定义为其所支配的个体总数在群体中所占的比

多目标优化问题

多目标优化方法 基本概述 几个概念 优化方法 一、多目标优化基本概述 现今,多目标优化问题应用越来越广,涉及诸多领域。在日常生活与工程中,经常要求不只一项指标达到最优,往往要求多项指标同时达到最优,大量的问题都可以归结为一类在某种约束条件下使多个目标同时达到最优的多目标优化问题。例如:在机械加工时,在进给切削中,为选择合适的切削速度与进给量,提出目标:1)机械加工成本最低2)生产率低3)刀具寿命最长;同时还要满足进给量小于加工余量、刀具强度等约束条件。 多目标优化的数学模型可以表示为: X=[x1,x2,…,x n ]T----------n维向量 min F(X)=[f1(X),f2(X),…,f n(X)]T----------向量形式的目标函数s、t、g i(X)≤0,(i=1,2,…,m) h j(X)=0,(j=1,2,…,k)--------设计变量应满足的约束条件多目标优化问题就是一个比较复杂的问题,相比于单目标优化问题,在多目标优化问题中,约束要求就是各自独立的,所以无法直接比较任意两个解的优劣。 二、多目标优化中几个概念:最优解,劣解,非劣解。 最优解X*:就就是在X*所在的区间D中其函数值比其她任何点的函数

值要小即f(X*)≤f(X),则X*为优化问题的最优解。 劣解X*:在D中存在X使其函数值小于解的函数值,即f(x)≤f(X*), 即存在比解更优的点。 非劣解X*:在区间D中不存在X使f(X)全部小于解的函数值f(X*)、 如图:在[0,1]中 X*=1为最优解 在[0,2]中 X*=a为劣解 在[1,2]中 X*=b为非劣解 多目标优化 问题中绝对最优 解存在可能性一般很小,而劣解没有意义,所以通常去求其非劣解来解决问题。 三、多目标优化方法 多目标优化方法主要有两大类: 1)直接法:直接求出非劣解,然后再选择较好的解 将多目标优化问题转化为单目标优化问题。 2)间接法如:主要目标法、统一目标法、功效系数法等。 将多目标优化问题转化为一系列单目标优化问题。 如:分层系列法等。

多目标规划

ricanxinghuji实习小编一级|消息 | 我的百科 | 我的知道 | 百度首页 | 退出我的贡献草稿箱我的任务为我推荐 新闻网页贴吧知道MP3图片视频百科文库 帮助设置 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 多目标规划 科技名词定义 中文名称:多目标规划 英文名称:multiple objective program 定义:生态系统管理中,为了同时达到两个或两个以上的目标,需要在许多可行性方案中进行选择的整个过程。 所属学科:

生态学(一级学科);生态系统生态学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。又称多目标最优化。通常记为 MOP(multi-objective programming)。 目录 编辑本段 多目标规划 multiple objectives programming 数学规划的一个分支。研究多于一个目标函数在给定区域上的最优化。又称多目标最优化。通常记为 VMP。在很多实际问题中,例如经济、管理、军事、科学和工程设计等领域,衡量 多目标规划

一个方案的好坏往往难以用一个指标来判断,而需要用多个目标来比较,而这些目标有时不甚协调,甚至是矛盾的。因此有许多学者致力于这方面的研究。1896年法国经济学家 V. 帕雷托最早研究不可比较目标的优化问题,之后,J.冯·诺伊曼、H.W.库恩、A.W.塔克尔、A.M.日夫里翁等数学家做了深入的探讨,但是尚未有一个完全令人满意的定义。求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标或双目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。对多目标的线性规划除以上方法外还可以适当修正单纯形法来求解;还有一种称为层次分析法,是由美国运筹学家沙旦于70年代提出的,这是一种定性与定量相结合的多目标决策与分析方法,对于目标结构复杂且缺乏必要的数据的情况更为实用。 编辑本段 规划简史 多目标最优化思想,最早是在1896年由法国经济学家V.帕雷托提出来的。他从政治 数学规划 经济学的角度考虑把本质上是不可比较的许多目标化成单个目标的最优 化问题,从而涉及了多目标规划问题和多目标的概念。1947年,J.冯·诺伊曼和O.莫根施特恩从对策论的角度提出了有多个决策者在彼此有矛盾的情 况下的多目标问题。1951年,T.C.库普曼斯从生产和分配的活动中提出多目标最优化问题,引入有效解的概念,并得到一些基本结果。同年,H.W.库恩和 A.W.塔克尔从研究数学规划的角度提出向量极值问题,引入库恩-塔克尔有效解概念,并研究了它的必要和充分条件。1963年,L.A.扎德从控制论方面提出多指标最优化问题,也给出了一些基本结果。1968年,A.M.日夫里翁为了排除变态的有效解,引进了真有效解概念,并得到了有关的结果。自70年代以来,多目标规划的研究越来越受到人们的重视。至今关于多目标最优解尚无一种完全令人满意的定义,所以在理论上多目标规划仍处于发展阶段。 编辑本段 求解方法 化多为少的方法 即

MOEAD(基于分解的多目标进化算法)

基于分解的多目标进化算法
摘要:在传统的多目标优化问题上常常使用分解策略。但是,这项策略还没有被广泛的 应用到多目标进化优化中。本文提出了一种基于分解的多目标进化算法。该算法将一个多目 标优化问题分解为一组???单目标优化问题并对它们同时优化。通过利用与每一个子问题 相邻的子问题的优化信息来优化它本身,这是的该算法比 MOGLS 和非支配排序遗传算法 NSGA-Ⅱ相比有更低的计算复杂度。实验结果证明:在 0-1 背包问题和连续的多目标优化问 题上,利用一些简单的分解方法本算法就可以比 MOGLS 和 NSGA-Ⅱ表现的更加出色或者 表现相近。实验也表明目标正态化的 MOEA/D 算法可以解决规模围相异的多目标问题,同 时使用一个先进分解方法的 MOEA/D 可以产生一组分别非常均匀的解对于有 3 个目标问题 的测试样例。最后,MOEA/D 在较小种群数量是的性能,还有可扩展性和敏感性都在本篇 论文过实验经行了相应的研究。
I. 介绍
多目标优化问题可以用下面式子表示:
其中 Ω 是决策空间, 以得到的目标集合成为
,包含了 m 个实值目标方法, 被称为目标区间。对于可 。
如果
,并且所有的目标函数都是连续的,那么 Ω 则可以用
其中 hj 是连续的函数,我们可以称(1)为一个连续的多目标优化问题。 如果目标函数互斥,那么同时对所有目标函数求最优解往往是无意义的。有意义的是获
得一个能维持他们之间平衡的解。这些在目标之间获得最佳平衡的以租借被定义 Pareto 最 优。
令 u, v∈Rm,如果
对于任意的 i,并且至少存在一个
,那
么 u 支配 v。如果在决策空间中,没有一个点 F(y)能够支配 F(x)点,那么 x 就是 Pareto 最优, F(x)则被称为 Pareto 最优向量。换句话说,对于 Pareto 最优点在某一个目标函数上的提高, 都会造成至少一个其余目标函数的退化。所有 Pareto 最优解的集合称为 Pareto 集合,所有 最优向量的集合被称为 Pareto 前沿。
在许多多目标优化的实际应用中,通过选择器选择一个接近 Pareto 最优前沿的解作为 最后的解。大多数多目标优化问题都有许多甚至是无穷个 Pareto 最优向量,如果想要获得 一个完整的最优前沿,将是一件非常耗时的事情。另一方面,选择器可能不会专注于获得一 个过于庞大的最优解向量集合来解决问题,因为信息的溢出。因此,许多多目标优化算法往 往是获得一个均匀分布在 Pareto 最优前沿周围的最优解向量,这样就具有更好的代表性。 许多研究人员也致力于使用数学模型来获得一个近似的最优前沿。
一般来说,在温和控制下多目标优化问题的 Pareto 最优解,可以看做是一个标量优化 问题的最优解(其中目标函数是 fi 的集合)。因此,Pareto 最优前沿的近似求解可以被分解为

用粒子群算法求解多目标优化问题的Pareto解

粒子群算法程序 tic D=10;%粒子群中粒子的个数 %w=0.729;%w为惯性因子 wmin=1.2; wmax=1.4; c1=1.49445;%正常数,成为加速因子 c2=1.49445;%正常数,成为加速因子 Loop_max=50;%最大迭代次数 %初始化粒子群 for i=1:D X(i)=rand(1)*(-5-7)+7; V(i)=1; f1(i)=X(i)^2; f2(i)=(X(i)-2)^2; end Loop=1;%迭代计数器 while Loop<=Loop_max%循环终止条件 %对粒子群中的每个粒子进行评价 for i=1:D k1=find(1==Xv(i,:));%找出第一辆车配送的城市编号 nb1=size(k1,2);%计算第一辆车配送城市的个数 if nb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则 a1=[Xr(i,k1(:))];%找出第一辆车配送城市顺序号 b1=sort(a1);%对找出第一辆车的顺序号进行排序 G1(i)=0;%初始化第一辆车的配送量 k51=[]; am=[]; for j1=1:nb1 am=find(b1(j1)==Xr(i,:)); k51(j1)=intersect(k1,am);%计算第一辆车配送城市的顺序号 G1(i)=G1(i)+g(k51(j1)+1);%计算第一辆车的配送量 end k61=[]; k61=[0,k51,0];%定义第一辆车的配送路径 L1(i)=0;%初始化第一辆车的配送路径长度 for k11=1:nb1+1 L1(i)=L1(i)+Distance(k61(k11)+1,k61(k11+1)+1);%计算第一辆车的配送路径长度end else%如果第一辆车配送的城市个数不大于0则 G1(i)=0;%第一辆车的配送量设为0 L1(i)=0;%第一辆车的配送路径长度设为0 end

Excel规划求解工具在多目标规划中的应用

Excel规划求解工具在多目标规划中的应用 摘要:多目标决策方法是从20世纪70年代中期发展起来的一种决策分析方法。该方法已广泛应用于人口、环境、教育、能源、交通、经济管理等多个领域。文章采用多目标决策方法中分层序列法的思想,应用excel的规划求解工具,对多目标规划问题进行应用研究,并以实例加以说明。 abstract: multi-objective decision method is a kind of decision analysis method from the mid 1970s. the method has been widely used in population, environment, education,energy, traffic, economic management, and other fields. this paper uses the lexicographic method of multi-objective decision method and makes some researches on the multi-objective problem using the excel solver tool and an example to illustrate. 关键词: excel规划求解;多目标规划;分层序列法 key words: excel solver;multi-objective programming;the lexicographic method 中图分类号:tp31 文献标识码:a 文章编号:1006-4311(2013)21-0204-02 0 引言 excel中的规划求解工具只能对单目标的问题进行求解。当遇到多目标问题时,可以把多目标问题先转化为单目标问题,然后求解。

LINGO在多目标规划和最大最小化模型中的应用

LINGO 在多目标规划和最大最小化模型中的应用 在许多实际问题中,决策者所期望的目标往往不止一个,如电力网络管理部门在制定发电计划时即希望安全系数要大,也希望发电成本要小,这一类问题称为多目标最优化问题或多目标规划问题。 一、多目标规划的常用解法 多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有: 1.主要目标法 确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。 2.线性加权求和法 对每个目标按其重要程度赋适当权重0≥i ω,且1=∑i i ω,然后把) (x f i i i ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。 3.指数加权乘积法 设p i x f i ,,2,1),( =是原来的p 个目标,令 … ∏==p i a i i x f Z 1 )]([ 其中i a 为指数权重,把Z 作为新的目标函数。 4.理想点法 先分别求出p 个单目标规划的最优解*i f ,令 ∑-= 2*))(()(i i f x f x h 然后把它作为新的目标函数。 5.分层序列法 将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。

这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。 二、最大最小化模型 在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。 》 最大最小化模型的目标函数可写成 )}(,),(),(max{min 21X f X f X f p X 或 )}(,),(),(min{max 21X f X f X f p X 式中T n x x x X ),,,(21 是决策变量。模型的约束条件可以包含线性、非线性的等式和不等式约束。这一模型的求解可视具体情况采用适当的方法。 三、用LINGO 求解多目标规划和最大最小化模型 1.解多目标规划 用LINGO 求解多目标规划的基本方法是先确定一个目标函数,求出它的最优解,然后把此最优值作为约束条件,求其他目标函数的最优解。如果将所有目标函数都改成约束条件,则此时的优化问题退化为一个含等式和不等式的方程组。LINGO 能够求解像这样没有目标函数只有约束条件的混合组的可行解。有些组合优化问题和网络优化问题,因为变量多,需要很长运算时间才能算出结果,如果设定一个期望的目标值,把目标函数改成约束条件,则几分钟就能得到一个可行解,多试几个目标值,很快就能找到最优解。对于多目标规划,同样可以把多个目标中的一部分乃至全部改成约束条件,取适当的限制值,然后用LINGO 求解,

多目标优化进化算法比较综述

龙源期刊网 https://www.doczj.com/doc/4f14008168.html, 多目标优化进化算法比较综述 作者:刘玲源 来源:《决策与信息·下旬刊》2013年第07期 摘要多目标优化是最优化领域的一个重要研究方向,本文简要介绍了多目标优化的模型和几种多目标优化的进化算法,并对算法进行了简要比较。 关键词多目标优化粒子群遗传算法蚁群算法人工免疫系统 中图分类号:TP391 文献标识码:A 一、背景 多目标优化(Multiobjective OptimizaTionProblem,MOP)是最优化的一个重要分支,多目标问题中的各目标往往是有着冲突性的,其解不唯一,如何获得最优解成为多目标优化的一个难点,目前还没有绝对成熟与实用性好的理论。近年来,粒子群算法、遗传算法、蚁群算法、人工免疫系统、等现代技术也被应用到多目标优化中,使多目标优化方法取得很大进步。本文将其中四种多目标优化的进化算法进行一个简单的介绍和比较。 二、不同算法介绍 (一)多目标遗传算法。 假定各目标的期望目标值与优先顺序已给定,从优先级最高的子目标向量开始比较两目标向量的优劣性,从目标未满足的子目标元素部分开始每一级子目标向量的优劣性比较,最后一级子目标向量中的各目标分量要全部参与比较。给定一个不可实现的期望目标向量时,向量比较退化至原始的Pareto排序,所有目标元素都必须参与比较。算法运行过程中,适应值图景可由不断改变的期望目标值改变,种群可由此被引导并集中至某一特定折中区域。当前种群中(基于Pareto最优概念)优于该解的其他解的个数决定种群中每一个向量解的排序。 (二)人工免疫系统。 人工免疫算法是自然免疫系统在进化计算中的一个应用,将抗体定义为解,抗原定义为优化问题,抗原个数即为优化子目标的个数。免疫算法具有保持个体多样性、搜索效率高、群体优化、避免过早收敛等优点。其通用的框架是:将优化问题的可行解对应抗体,优化问题的目标函数对应抗原,Pareto最优解被保存在记忆细胞集中,并采取某种机制对记忆集进行不断更新,进而获得分布均匀的Pareto最优解。 (三)多目标PSO约束算法。

多目标进化算法总结

i x 是第t 代种群中个体,其rank 值定义为: ()(,)1t i i rank x t p =+ ()t i p 为第t 代种群中所有支配i x 的个体数目 适应值(fitness value )分配算法: 1、 将所有个体依照rank 值大小排序分类; 2、 利用插值函数给所有个体分配适应值(从rank1到 rank * n N ≤),一般采用线性函数 3、 适应值共享:rank 值相同的个体拥有相同的适应值, 保证后期选择时同一rank 值的个体概率相同 最后采用共享适应值随机选取的方法选择个体进入下一代 一种改进的排序机制(ranking scheme ): 向量,1,(,,)a a a q y y y =???和,1,(,,)b b b q y y y =???比较 goal vector :() 1,,q g g g =??? 分为以下三种情况: 1、 ()() ,,1,,1; 1,,; 1,,; a i i a j j k q i k j k q y g y g ?=???-?=????=+???>∧≤ 2、() ,1,,; a i i i q y g ?=???> 当a y 支配b y 时,选择a y 3、() ,1,,; a j j j q y g ?=???≤ 当b y 支配a y 时,选择b y 优点:算法思想容易,效率优良 缺点:算法容易受到小生境的大小影响 理论上给出了参数share σ的计算方法

基本思想: 1、初始化种群Pop 2、锦标赛选择机制:随机选取两个个体1x 和2x 和一个Pop 的 子集CS(Comparison Set)做参照系。若1x 被CS 中不少于一 个个体支配,而2x 没有被CS 中任一个体支配,则选择2x 。 3、其他情况一律称为死结(Tie ),采用适应度共享机制选择。 个体适应度:i f 小生境计数(Niche Count ):(),i j P o p m S h dij ∈ = ??? ?∑ 共享函数:1-,()0,share share share d d Sh d d σσσ? ≤?=??>? 共享适应度(the shared fitness ): i i f m 选择共享适应度较大的个体进入下一代 优点:能够快速找到一些好的非支配最优解域 能够维持一个较长的种群更新期 缺点:需要设臵共享参数 需要选择一个适当的锦标赛机制 限制了该算法的实际应用效果

第五章 目标规划

第五章目标规划

第五章目标规划 (Goal Programming,简称GP) 要求: 1、理解有关概念; 2、学会图解法; 3、学会单纯形解法; 4、学会建模; 5、举一反三,学会应用。 §1目标规划的数学模型 前面我们介绍的线性规划是单目标决策方法,也就是说,只用一个性能指标的大小来衡量方案的好坏。但在实际生活中,确定一个方案的好坏,往往要考虑多个目标。比如,在制定生产计划时,既要求产量高,又要求质量好,还期望成本低。又如,在选择一个新工厂的厂址时,要考虑的问题有生产成本、运输费用、基建投资费用,环境污染等多种因素。而且有些指标之间往往不是那么协调,甚至相互矛盾,使得决策人难以确定最优方案。 目标规划是在线性规划的基础上,为适应企业经营管理中多个目标决策的需要而逐步发展起来的。目标规划是一种多目标决策方法,它是在决策者所规定的若干目标值和要求实现这些目标值的先后顺序,以及在给定有限资源条件下,寻求总的偏离目标值最小的方案,这种方案称为满意方案。 目标规划的有关概念和数学模型是在1961年由美国学者查恩斯(A.Charnes)和库伯 (W.W.Cooper)首次在《管理模型及线性规划的工业应用》一书中提出,当时是作为解一个没有可行解的线性规划而引入的一种方法。这种方法把规划问题表达为尽可能地接近预期的目标。

1965年,尤吉·艾吉里(Yuji · Ijiri )在处理多目标问题,分析各类目标的重要性时,引入了赋予各目标一个优先因子及加权系数的概念;并进一步完善了目标规划的数学模型。表达和求解目标规划问题的方法是由杰斯基莱恩(Jashekilaineu )和桑·李(Sang #Li)给出并加以改进的。 下面我们用例子来介绍目标规划的数学模型和有关概念。 例1 某厂生产I 、II 两种产品,有关数据见表。试求获利最大的生产方案。 这是一个单目标线性规划问题,设x 1、x 2分别为生产产品I 、II 的数量,可得如下线性规划模型: ,102112. .108max 21212121≥≤+≤++=x x x x x x t s x x z 由图解法可求得最优生产方案是:x 1*= 4,x 2*= 3,Z *= 62 千元。 但实际上,工厂作决策时,不仅要考虑利润,而且要考虑市场等一系列因素,如: (1)根据市场信息,产品I 的销售量有下降的趋势,为此,希望产品I 的产量不超过产品II 的产量; (2)超计划使用原材料要高价采购,会使成本增加。为此不希望超用;

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)就是数学规划的一个重要分支,就是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质就是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权与法、极大极小法、理想点法。评价函数法的实质就是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而就是使决策者参与到求解过程,控制优化的进行过程,使分析与决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权与法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要就是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法与蚁群算法、模拟退火算法及人工免疫系统等。 在工程应用、生产管理以及国防建设等实际问题中很多优化问题都就是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其她若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少与总的运输费用最低, 这就是含有两个目标的优化问题。利用首次适配递减算法与标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合

多目标最优化数学模型

第六章最优化数学模型 §1 最优化问题 1.1 最优化问题概念 1.2 最优化问题分类 1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划 §4 最优化问题数值算法4.1 直接搜索法 4.2 梯度法 4.3 罚函数法 §5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法5.5 投资收益风险问题

第六章 最优化问题数学模型 §1 最优化问题 1.1 最优化问题概念 (1)最优化问题 在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量 变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X =表示。 (3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。 例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。在研究问题时,这些限制我们必须用数学表达式准确地描述它们。 用数学语言描述约束条件一般来说有两种: 等式约束条件 m i X g i ,,2,1,0)( == 不等式约束条件 r i X h i ,,2,1, 0)( =≥ 或 r i X h i ,,2,1, 0)( =≤ 注:在最优化问题研究中,由于解的存在性十分复杂,一般来说,我们不考虑不等式约束条件0)(>X h 或0)(

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)是数学规划的一个重要分支,是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权和法、极大极小法、理想点法。评价函数法的实质是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而是使决策者参与到求解过程,控制优化的进行过程,使分析和决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权和法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法和蚁群算法、模拟退火算法及人工免疫系统等。

在工程应用、生产管理以及国防建设等实际问题中很多优化问题都是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其他若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少和总的运输费用最低, 这是含有两个目标的优化问题。利用首次适配递减算法和标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合应用于汽车零件多工序冷挤压工艺的优化。Chung等人也成功应用遗传算法对锻件工艺进行了优化。 3)投资 假设某决策部门有一笔资金要分配给若干个建设项目, 在确定投资方案时, 决策者总希望做到投资少收益大。Branke等人采用基于信封的多目标进化算法成功地解决了计划投资地选择问题。 4)模拟移动床过程优化与控制 一个工业化模拟移动床正常运行时, 一般有七股物料进、出吸附塔, 其中起关键作用的物料口将作为决策量引起目标值的变化。根据实际生产要求通常包括生产率、产品纯度、吸附剂消耗量等多个目标。模拟移动床分离过程由于其过程操作变量的强耦合性、工艺机理的复杂性及分离性能的影响因素繁多性, 需要众多学者对其操作优化和过程控制进行深入的研究。Huang等人利用TPS 算法解决了模拟移动床多个冲突目标的最大最小的问题, 并与NSGA2 算法的结果进行了比较。吴献东等人运用粒子群算法开发出一种非线性模拟移动床( SMB )色谱分离过程的优化策略。 5)生产调度 在离散制造生产系统中, 一个工件一般经过一系列的工序加工完成, 每道工序需要特定机器和其他资源共同完成, 各工件在各机器上的加工顺序(称技术约束条件)通常是事先给定的。车间调度的作用

多目标优化问题(over)

第七章多目标优化问题的求解 优化问题按照目标函数的数量,可以分为单目标优化问题和多目标优化问题,前面我们讲过的线性优化就是一个单目标优化问题,对单目标优化问题进一步突破,将目标函数扩展为向量函数后,问题就转化为多目标优化问题。本节将简要介绍多目标最优化问题的建模与求解方法。 1、多目标优化模型 多目标优化问题一般表示为 ..()min () s t J ≤= x G x 0 x F 其中121()[(),(),,()]T f f f =F x x x x ,下面将通过例子演示多目标优化问题的建模。 例1 设某商店有123,,A A A 三种糖果,单价分别为4,2.8和2.4元/kg ,现在 要举办一次茶话会,要求买糖果的钱不超过20元,但糖果的总重量不少于6kg , 1A 和2A 两种糖果的总重量不低于3kg ,应该如何确定最好的买糖方案。 分析:首先应该确定目标函数如何选择的问题,本例中,好的方案意味着少花钱多办事,这应该是对应两个目标函数,一个是花钱最少,一个是买的糖果最重,其他的可以认为是约束条件。当然,这两个目标函数有些矛盾,下面考虑如何将这个问题用数学描述。 设123,,A A A 三种糖果的购买重量分别为123,,x x x kg ,这时两个目标函数分别为花钱:1123min ()4 2.8 2.4f x x x =++x ,糖果总重量:2123max ()f x x x =++x ,如果统一用最小值问题表示,则有约束的多目标优化问题可以表示为 123123123123121234 2.8 2.4min -4 2.8 2.4206.. +3,,0 x x x x x x x x x x x x s t x x x x x ++?? ??++??++≤??++≥?? ≥??≥?()模型建立以后,可以考虑用后面的方法进行求解。

相关主题
文本预览
相关文档 最新文档