当前位置:文档之家› 均值不等式公式总结及技巧、应用典例解析

均值不等式公式总结及技巧、应用典例解析

均值不等式公式总结及技巧、应用典例解析
均值不等式公式总结及技巧、应用典例解析

均值不等式应用

知识梳理:

1. (1)若R b a ∈,,则ab b

a 22

2

≥+ (2)若R b a ∈,,则2

2

2

b a

ab +≤

(当且仅当b a =时取“=”) 2. (1)若*

,R b a ∈,则

ab b a ≥

+2

(2)若*

,R b a ∈,则ab b a 2

≥+

(当且仅当b a =时取“=”)

(3)若*

,R b a ∈,则2

2??

?

??+≤b a ab (当且仅当b a =时取“=”

) 3.若0x >,则12x x

+

≥ (当且仅当1x =时取“=”

) 若0x <,则12x x

+≤- (当且仅当1x =-时取“=”

) 若0x ≠,则11122-2x x x x x

x

+

≥+

≥+

≤即或 (当且仅当b a =时取“=”

) 4.若0>ab ,则

2≥+

a

b b

a (当且仅当

b a =时取“=”

) 若0a b ≠,则

22-2a b a b a b b

a

b

a

b

a

+

≥+

≥+

≤即

(当且仅当b a =时取“=”

) 5.若R b a ∈,,则2

)2

(

2

22

b a

b a +≤

+(当且仅当b a =时取“=”)

『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所

谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值

例1:求下列函数的值域

(1)y =3x 2+

12x

2

(2)y =x +1

x

解:(1)y =3x 2+

1

2x 2

≥23x 2·1

2x 2 =

6 ∴值域为[ 6 ,+∞)

(2)当x >0时,y =x +1

x

≥2

x ·1

x

=2; 当x <0时, y =x +1

x = -(- x -1

x )≤-2

x ·1

x

=-2 ∴值域为(-∞,-2]∪[2,+∞)

解题技巧

技巧一:凑项 例1 已知54

x <

,求函数14245

y x x =-+

-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45

x x --

不是常数,所以对42x -要进行拆、凑项,

5,5404

x x <

∴-> ,1

142543

4554y x x x x ??

∴=-+

=--++ ?--?

?231≤-+= 当且仅当15454x x

-=

-,即1x =时,上式等号成立,故当1x =时,m a x 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数

例2 当

时,求(82)y x x =-的最大值。

解析:由

知,

,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形

式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2

30<

解:∵23

0<-x ∴2

922322)23(22)23(42

=

?

?

?

??-+≤-?=-=x x x x x x y

当且仅当,232x x -=即??? ?

?

∈=23,043

x 时等号成立。

技巧三: 分离

例3. 求2

710

(1)1

x x y x x ++=

>-+的值域。

解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

,即

时,59y ≥=(当且仅当x =1时取“=”号)。

技巧四:换元

解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 2

2

(1)7(1+10

54

4=

5t t t t y t t

t

t

-+-++=

=+

+)

当,即t=时,59y ≥=(当t=2即x =1时取“=”号)。

评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为()(0,0)()

A y m g x

B A B g x =+

+>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。

技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数()a f x x x

=+

的单调性。

例:求函数2

5x y +=

的值域。

(2)t t =≥,则2

y =1(2)t t t

==+

因10,1t t t

>?

=,但1t t

=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。

因为1y t t

=+

在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52

y ≥

所以,所求函数的值域为

5,2??

+∞????

。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)2

31

,(0)x x y x x

++=

> (2)12,33

y x x x =+

>- (3)12sin ,(0,)sin y x x x

π=+

2.已知01x <<,求函数y =.;3.203

x <<

,求函数y =.

条件求最值

1.若实数满足2=+b a ,则b

a

33

+的最小值是 .

分析:“和”到“积”是一个缩小的过程,而且b

a

33?定值,因此考虑利用均值定理求最小值, 解: b

a

33和都是正数,b

a

33+≥63

23

32==?+b

a b

a

当b a

33

=时等号成立,由2=+b a 及b

a

33=得1==b a 即当1==b a 时,b

a

33+的最小值是6.

变式:若44lo g lo g 2x y +=,求11x

y

+

的最小值.并求x,y 的值

技巧六:整体代换

多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且

191x y

+=,求x y +的最小值。

错解

..

: 0,0x y >>,且19

1x

y +

=,∴()1912x y x y x

y ??

+=++≥ ??? 故

()m in

12x y += 。

错因:解法中两次连用均值不等式,在x y +≥x y =,

在19x

y

+

≥19x

y

=

即9y x =,取等号的条件的不一致,产生错误。因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。 正解:190,0,

1x y x y

>>+= ,()1991061016y x

x y x y x

y x y

??∴+=

++

=

++≥+=

??? 当且仅当

9y x x

y

=

时,上式等号成立,又

191x

y

+

=,可得4,12x y ==时,()

m in

16x y += 。

变式: (1)若+

∈R

y x ,且12=+y x ,求y

x

11+的最小值

(2)已知+

∈R

y x b a ,,,且

1=+

y

b x

a ,求

y x +的最小值

技巧七

已知x ,y 为正实数,且

x 2+

y 2

2

=1,求x 1+y 2 的最大值.

分析:因条件和结论分别是二次和一次,故采用公式ab ≤

a 2+

b 2

2

同时还应化简

1+y 2 中y 2前面的系数为 1

2 , x

1+y 2 =x

2·1+y 22

2 x ·

12

y 2

2

下面将x ,12

y 2

2

分别看成两个因式:

x ·

12

y 2

2

x 2+(

12 +y 2

2

)22

x 2+y 22 +1

2

2

=3

4

即x

1+y 2 = 2 ·x

12

y 2

2

≤ 3

4

2

技巧八:

已知a ,b 为正实数,2b +ab +a =30,求函数y =

1

ab

的最小值.

分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

法一:a =30-2b

b +1 , ab =30-2b

b +1 ·b =-2 b 2+30b

b +1

由a >0得,0<b <15 令t =b +1,1<t <16,ab =

-2t 2+34t -31

t =-2(t +

16

t )+34∵t +

16t

≥2

t ·

16

t

=8

∴ ab ≤18 ∴ y ≥ 118

当且仅当t =4,即b =3,a =6时,等号成立。

法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥22 ab

令u =ab 则u 2+2 2 u -30≤0, -5

2 ≤u ≤3

2

ab ≤3 2 ,ab ≤18,∴y ≥

118

点评:①本题考查不等式

ab b a ≥

+2

)(+

∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式

230a b a b =++)(+

∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式ab b a ≥

+2

)(+

∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围.

变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。

2.若直角三角形周长为1,求它的面积最大值。

技巧九、取平方

5、已知x ,y 为正实数,3x +2y =10,求函数W =

3x +

2y 的最值.

解法一:若利用算术平均与平方平均之间的不等关系,

a +b

2

a 2+

b 2

2

,本题很简单

3x +2y ≤ 2 (3x )2+(2y )2 = 2 3x +2y =2 5

解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。 W >0,W 2=3x +2y +2

3x ·

2y =10+2

3x ·

2y ≤10+(

3x )2·(

2y )2 =10+(3x +2y )=20

∴ W ≤

20 =2

5

变式: 求函数15

)22

y x =

<<

的最大值。

解析:注意到21x -与52x -的和为定值。

2

2

44(21)(52)8y

x x ==+≤+-+-=

又0y >,所以0y <≤

当且仅当21x -=52x -,即32

x =

时取等号。 故m ax y =

评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。

总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。

应用二:利用均值不等式证明不等式

1.已知c b a ,,为两两不相等的实数,求证:ca bc ab c

b

a

++>++2

2

2

1)正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc

例6:已知a 、b 、c R +

∈,且1a b c ++=。求证:1111118a b c ??????---≥ ? ? ???????

分析:不等式右边数字8,使我们联想到左边因式分别使用均值不等式可得三个“2”连乘,又111a b c a

a

a

a

-+-=

=

可由此变形入手。

解: a 、b 、c R +

∈,1a b c ++=。∴111a b c a

a

a

a

-+-=

=

。同理

11b

b

-≥

11c

c

-≥

述三个不等式两边均为正,分别相乘,得

1111118a b c a b c ??????

---≥= ? ? ?

??????

。当且仅当13a b c ===时取等号。 应用三:均值不等式与恒成立问题

例:已知0,0x y >>且

191x y

+=,求使不等式x y m +≥恒成立的实数m 的取值范围。

解:令,0,0,

x y k x y +=>>191x

y

+

=,99 1.x y x y k x

k y

++∴

+

=1091y x k

k x

k y

+

+

=

10312k

k

∴-

≥?

。16k ∴≥ ,(],16m ∈-∞

应用四:均值定理在比较大小中的应用:

例:若)2

lg(

),lg (lg 2

1,lg lg ,1b a R b a Q b a P b a +=+=

?=

>>,则R Q P ,,的大小关系是 .

分析:∵1>>b a ∴0lg ,0lg >>b a

2

1=

Q (p b a b a =?>+lg lg )lg lg Q ab ab b a R ==

>+=lg 2

1lg )2

lg( ∴R>Q>P 。

均值不等式八法

运用均值不等式的八类拼凑方法 利用均值不等式求最值或证明不等式是高中数学的一个重点。在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。均值不等式等号成立条件具有潜在的运用功能。以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。笔者把运用均值不等式的拼凑方法概括为八类。 一、 拼凑定和 通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。 例1 已知01x <<,求函数321y x x x =--++的最大值。 解:()()()()()()2 2 2111111y x x x x x x x =-+++=+-=+- ()()3 11111322241422327x x x x x x ++?? ++- ?++=???-≤= ? ? ?? 。 当且仅当 112x x +=-,即13x =时,上式取“=”。故max 32 27 y =。 评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系, 求“积”的最大值。 例2 求函数)01y x x =<<的最大值。 解: y == 因()()3 2222221122122327x x x x x x ??++- ???-≤= ? ? ? ?? , 当且仅当()2212x x =-,即3 x =时,上式取“= ”。故max 9y =。 评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。 例3 已知02x <<,求函数()264y x x =-的最大值。 解:() ()()2 2 2 222236418244y x x x x x =-=?-- ()()3 2223 24418818327x x x ??+-+-???≤=???? 。

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

均值不等式应用(技巧)

均值不等式应用(技巧) Wekede 整理 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2 b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。

均值不等式应用(技巧)学生版

均值不等式应用(技巧) 22 11 1 11 n n n a a a a n n a a ++++ ≤≤≤ ++ 其中,2,3 n=等的各式及其变式公式均可供选用。 1.(1)若R b a∈ ,,则ab b a2 2 2≥ + (2)若R b a∈ ,,则 2 2 2b a ab + ≤(当且仅当b a=时取“=”)2. (1)若* ,R b a∈,则ab b a ≥ + 2 (2)若* ,R b a∈,则ab b a2 ≥ +(当且仅当b a=时取“=”) (3)若* ,R b a∈,则 2 2 ? ? ? ? ?+ ≤ b a ab (当且仅当b a=时取“=”) 3.若0 x>,则 1 2 x x +≥ (当且仅当1 x=时取“=”);若0 x<,则 1 2 x x +≤- (当且仅当1 x=-时取“=”)若0 x≠,则111 22-2 x x x x x x +≥+≥+≤ 即或 (当且仅当b a=时取“=”) 3.若0 > ab,则2 ≥ + a b b a (当且仅当b a=时取“=”) 若0 ab≠,则22-2 a b a b a b b a b a b a +≥+≥+≤ 即或 (当且仅当b a=时取“=”) 4.若R b a∈ ,,则 2 ) 2 ( 2 2 2 b a b a+ ≤ +(当且仅当b a=时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y=3x 2+ 1 2x 2(2)y=x+ 1 x

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

基本不等式及其应用(优秀经典专题及答案详解)

专题7.3 基本不等式及其应用 学习目标 1.了解基本不等式的证明过程; 2.会用基本不等式解决简单的最大(小)值问题. 知识点一 基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R);(4)????a +b 22≤a 2+b 2 2(a ,b ∈R); (5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 知识点四 利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【特别提醒】 1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立. 2.连续使用基本不等式时,牢记等号要同时成立. 考点一 利用基本不等式求最值

【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5 的最大值为_______ 【答案】1 【解析】因为x <54 ,所以5-4x >0, 则f (x )=4x -2+ 14x -5=-????5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+ 14x -5 的最大值为1. 【方法技巧】 1.通过拼凑法利用基本不等式求最值的实质及关键点 拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键. 2.通过常数代换法利用基本不等式求解最值的基本步骤 (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1; (3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. 【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【答案】6 【解析】由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy , 所以3xy ≤????x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 【方法技巧】通过消元法利用基本不等式求最值的策略 当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值. 考点二 利用基本不等式解决实际问题 【典例2】 【2019年高考北京卷理数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

高中数学x基本不等式--三项注意

基本不等式----三大注意事项例题解答 基本不等式是高中阶段的重要内容,是学生不容易掌握的重点知识之一,关键是其变形灵活,形式多姿多样,基本不等式“(0,0)2 a b ab a b +≥>>”沟通了两个正数的“和”与“积”之间的关系,利用它可以解决求最值或者不等式证明问题.在运用基本不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形,造条件满足应用情境后再解决问题. 因此需要掌握一些变形技巧,注意三大方面. 一个技巧: 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如22 2a b ab +≥逆用就是22 2a b ab +≤,2a b ab +≥ (0,0)a b >>逆用就是2()2 a b ab +≤等. 两个变形: (1) 222 1122a b a b ab a b ++≤≤≤+ (,)a b R +∈,即调和平均数≤几何平均数≤算术平均数≤平方平均数;(当且仅当a b =时取等号) (2) 22 2()22 a b a b ab ++≤≤ (,)a b R ∈(当且仅当a b =时取等号). 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 例题. 一、注意运用不等式链 例1 已知0a >,0b >,1a b +=,求 11a b +的最大值. 解析:由0a >,0b >,又2 112a b a b +≤+,因为1a b +=,所以21112a b ≤+,所以11a b +4≥,当且仅当12 a b ==时,等号成立. 评注:本题利用基本不等式链简化了问题,是题目的证明思路一目了然.

基本不等式及其应用

基本不等式及其应用 一、教学分析设计 【教材分析】 人教版普通高中课程标准试验教科书分不同的章节处理不等式问题。在必修5的第三章中,首先介绍了不等关系与不等式;然后是一元二次不等式及其解法,二元一次不等式(组)与简单的线性规划问题;最后在第四节介绍基本不等式。在选修教材《不等式选讲》中对不等式与绝对值不等式、证明不等式的基本方法、柯西不等式与排序不等式、数学归纳法证明不等式作了更详细的介绍。并在书中还安排章节复习了基本不等式,并将其推广到三元的形式。基本不等式从数学上凸显了沟通基础数学知识间的内在联系的可行性。 基本不等式的课程标准内容为:探索并了解基本不等式的证明过程;会用基本不等式解决简单的最值问题。教学要求为:了解基本不等式的代数背景、几何背景以及它的证明过程;理解算数平均数、几何平均数的概念;会用基本不等式解决简单的最值问题;通过基本不等式的实际应用,感受数学的应用价值(说明:突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形)。《考试说明》中内容为:会用基本不等式解决简单的最值问题。通过对比分析,他们的共同都有“会用基本不等式解决简单的最值问题”。基本不等式与函数(包括三角函数)、数列、解析几何等内容均有丰富的联系,在《考试说明》中属于C及内容(含义:对该知识有实质性的理解并能与已有知识建立联系,掌握内容与形式的变化;相关技能已经形成,能用它来解决简单的相关问题)。 【学生分析】 从知识储备上看,高三学生已经基本掌握了不等式的简单性质和证明,并能用不等式及不等式组抽象出实际问题中的数学模型,也具备一定的几何知识。 从思维特点看,学生了解了不等关系的数学模型是解决实际问题的重要工具,具备一定的归纳、猜想、演绎证明和抽象思维的水平。 【目标分析】 结果性目标: 1、能在具体的问题情景中,通过抽象概括、数学建模以及逻辑推理获得基本不等式; 2、掌握基本不等式应用的条件“一正二定三相等”,和基本不等式的常见变形; 3、会用基本不等式解决一些简单的实际问题。 体验性目标: 1、在解决实际问题的过程中,体验基本不等式的本质是求二元的最值问题; 2、在解决实际问题中,体验“形”与“数”间的关联。 重点:创设基本不等式使用的条件。 难点:基本不等式的简单应用,以及使用过程中定值的取得。 【核心问题分析】 核心问题:在学校文化厘清过程中,拟对一块空地实行打造,现对其规划如下:将这块空地建成一个广场,在广场中间建一个长方形文化长廊,在其正中间造一个长方形景观池,并利用长廊内部左下角的那颗古树打造一条直线型景观带。请同学们按照以下要求实行数据设计: 问题1:文化长廊的周长为480米,要求文化长廊所围成的长方形面积最大,应怎样设计其长和宽? 问题2:已知景观池的容积为4800米,深为3米。已知景观池底每平米的造价是150元,池壁每平方米的造价是120元,问怎样设计,使造价最低,最低造价是多少? 问题3:设文化长廊为ABCD,现在长廊ABCD的左下角点E处有颗古树,且点E距左边AB和下边AD的D距离各为20米、10米,为保护古树,现经过古树E建造一直线型的景观带

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2 (22 2b a b a +≤+(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值 例1:求下列函数的值域 (1)y=3x 2+1 2x 2(2)y=x+ 1 x

解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由 知, ,利用均值不等式求最值,必须和为定值或积为 定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当 ,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

基本不等式及其应用-沪教版必修1教案

基本不等式是每年的高考热点,主要考察命题的判定,不等式的证明以及求 最值问题。特别是求最值问题往往在基本不等式的使用条件上设置一些问题。 考 察学生恒等变形的能力,运用基本不等式的和与积转化作用的能力。 教学目标 1. 知识与技能 理解基本不等式,了解变式结构;理解基本不等式的“和”、“积”放缩作用。 会运用基本不等式解决相关的问题。 2. 过程与方法 通过师生互动、学生主动的探究过程,让学生体会研究数学问题的基本思想 方法,学会学习,学会探究。 3. 情感态度与价值观 鼓励学生大胆探索,增强学生的信心,获得探索问题的成功情感体验。逐步 养成学生严谨的科学态度及良好的思维习惯。 重点:运用基本不等式求最值 难点:恰当变形转化,构建出满足运用基本不等式的条件 教学过程: 一、 要点梳理 1、基本不等式 若a 、b € R,则a 2+b 2> 2ab,当且仅当a=b 时取“=” b 2(a 、b 同号) a 3、求最大值、最小值问题 (1) __________________________________________________________ 如果x 、y € (0,+ g ),且xy=p(定值),那么当x=y 时,x+y 有 _______________ (2) __________________________________________________________ 如果x 、y € (0,+ g ),且x+y=s(定值),那么当x=y 时,xy 有 _______________ 例题精讲 例1、若正数a 、b 满足ab=a+b+3,求ab 的取值范围, 1 9 例2、已知x>0、y>0,且一 一 1,求x+y 的最小值 x y 2、 若 a 、b € R',则 常用变形形式: 宁,ab ,当且仅当a=b 时取 ■- ab 2 b 2 ——b a 0,b 0 ④ 2 b 2 2ab ab 2 a 2 b 2 2 概括为:

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2)2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则 22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d a c b d ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:

相关主题
文本预览
相关文档 最新文档