当前位置:文档之家› 全国大学生数学建模竞赛2004A题(22-55)

全国大学生数学建模竞赛2004A题(22-55)

全国大学生数学建模竞赛2004A题(22-55)
全国大学生数学建模竞赛2004A题(22-55)

优秀论文选编

A题之一(全国一等奖)

奥运会临时超市网点设计

广西师范大学,吴宗显、单俊辉、谭春亮;

指导教师:数学建模组

摘要:

本文首先根据问卷调查数据计算观众出行、用餐和购物等方面的分布,分析各种分布的特点。然后,根据观众出行、用餐分布,场馆分布情况和最短距离原则,测算出测算20个商区的人流量及其分布。最后,根据商圈分析中零售引力法则(即里利法则)、哈夫概率模型、饱和理论,建立设计MS网点大小规模类型的数学模型。在约定大规模MS网点的面积为1个单位的基础上,经过计算求解,得到小规模MS网点的面积为0.6个单位,并得出20个MS网点的设计方案,具体设计方案是:A区有2个大规模MS网点,分别设在A6小区和A1小区,其余8个小区均为小规模MS网点;B区有2个大规模MS网点,分别设在B6小区和B3小区,其余4个小区均为小规模MS网点;C区有1个大规模MS网点,设在C4小区,其余3个小区均为小规模MS网点。

奥运会临时超市网点设计

一、问题的分析与基本假设

(一)问题的分析

题目要求完成如下工作:

1、根据附录中给出的问卷调查数据,找出了观众在出行、用餐和购物等方面所反映的规律

2、在一天内每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径前提下。依据1的结果,测算图2中20个商区的人流量分布。

3、按照满足奥运会期间的购物需求、分布基本均衡和商业上赢利的要求,根据流量分布规律,在有两种大小不同规模的MS类型供选择情况下,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数)。

(二)基本假设

1、假定A区(国家体育场)容量为10万人,B区(国家体育馆)容量为6万人,C区(国家游泳中心)容量为4万人。三个场馆的每个看台容量均为1万人,出口对准一个商区,各商区面积相同。

2、无论乘坐何种交通工具的观众所持的票号是随机的。

二、问卷调查数据的统计与分布规律

我们把附录中三次调查的数据综合起来并进行的统计和分析得出的观众在出行、用餐和购物等方面的规律如下:

1、整个人群的各种行为的分布规律

除私车方式偏少一些(仅有9.0377%)外,其余方式分布都比较均匀,均为16%-20%,这说明场馆周围布局的交通车站是比较合理的。

观众主要是乘地铁和公交车,所占比例高达71.9999%,而乘地铁的人数占38.0188%,乘交通车的人数占33.9811%。

(2)处于不同的消费档次的人数及其占总人数的比例

消费量在200元-300元居多,占44.0377%,其次是消费量在100元-200元,占24.8019%,再次是消费量在0元-100元,占19.434%。所以消费量在300元以下占绝大多数人,而消费量在300元以上的人数偏少,仅占11.7264%。利用这个消费档次人数的分布表,可以计算出人均消费量为

人均消费量=50×19.434%+150×24.8019%+250×44.0377%

+350×9.2736%+450×1.4811%+550×0.9717%

=201

(3)不同年龄的人的人数及其所占的比例

20.1792%,而在20岁以下年轻人和50岁以上的老年人较少。

(4)不同餐饮类型的人数及其人数所占的比例

的人数约各占1/4.

2、不同性别人群的各种行为分布规律

交通工具为主,而乘私车和出租的观众不到30%,这符合实际。

重餐所占比例基本相同,这符合实际。

(3)在男性、女性中不同的消费层次的人数及其所占的该性别的总人数的比

男女两性消费量在200—300居多,与1中表(2)一致。

3、不同年龄段人群的各种行为的分布规律:

(1)、在不同的年龄段的人的出行方式的人数及其所占该年龄段的总人数的比例

不同年龄段的观众乘地铁和公交车为主,并且乘各类交通工具所占比例基本一致,符合1中表(1)。

(2)、不同的年龄段的不同餐饮类型的人数及其占该年龄段总人数的比例

中餐比例相差不大,而商场饮食所占比例最小,50岁以上的老年人则倾向于中餐和商场饮食,而西餐最少,只占27.44%。此符合不同年龄段人群用餐消费口味。

(3)、不同的年龄阶段的不同消费档次的人数及其占总人数的比例

的年轻人和50岁以上的老年人消费量在0-100和100-200档次所占比例较大——年轻人是因为经济状况不好,老年人是因为年龄原因。符合实际。

三、测算20个商区的人流量及其分布

(一)符号说明:

i

E :第i 区就餐人流量(人流量=经过人数X 2)

i T :第i 区出行人流量

i P :异区经过i 区人流量

W i U :W 场馆i 区总人流量(其中,,W

A B C =)

W U :W

场馆总人流量(其中,,W A B C =)

W i λ:W 场馆第i 区分布(其中,,W

A B C =)

(二)计算流量分布 1、人流的流向方式

无论进出体育场馆还是出去就餐,都遵循最短径原则。按照这一原则,我们认为人流的流向方式如下:

① 乘公交车南北站和地铁东站的观众的流向方式:如果是A 区的观众,

则直接在A 区的南路口(A6)进出;如果是B 区的的观众,则直接在B 区南路口(B6)进出;如果是C 区的观众,则经过A 区到C 区,在C 区南路口(C4)进出。

② 乘地铁西站的观众的流向方式:如果是A 区的观众,则直接在A 区

的南路口(A6)进出;如果是B 区的的观众,则直接在B 区南路口(B6)进出;如果是C 区的观众,则经过A 区到C 区,在C 区南路口(C4)进出,途中不经其他场地。

③ 乘公交汽车东西站下车和乘私车的观众的流向方式:如果是C 区的

观众,则直接在C 区北路口(C2)进出;如果是B 区的观众,则直接在B 区北路口(B3)进出;如果是A 区的观众,则直接在A 区的北路口(A1)进出。

④ 乘出租车的观众的流向方式:如果是A 区的观众,则直接在A 区的

北路口(A1)进出;如果是B 区的观众,则直接在B 区北路口(B3)进出;如果是C 区的观众,则直接在C 区北路口(C2)进出。 ⑤ 观众用餐的流向方式

A 区观众:在西餐馆和商场用餐的观众,直接在A 区的南路口(A6)进出,在中餐馆作餐的观众,直接在A 区的北路口(A1)进出。

B 区观众:在西餐馆和商场用餐的观众,直接在B 区的南路口(B6)进出,在中餐馆作餐的观众,直接在B 区的北路口(B3)进出。

C 区观众:在西餐馆和商场用餐的观众,在C 区的南路口(C4)进出,但途中均经过B 区的南北路口;在中餐馆作餐的观众,直接在C 区的南路口(C4)进出,途中不经其他场地。

⑥ 由于体育场馆看台分布均匀、对称,所以可以约定观众途经场馆路

口左右两侧人流量相等。

2、人流量的计算方法

(1)计算各场馆观众乘各类交通方式的人数,其计算公式为

乘某交通方式的人数=各场馆总容量×乘某交通方式的比例

(2)计算各场馆南路口、北路口的人流量,计算原则按照前面所述的人流的流向方式。

(3)按照前面所述的人流的流向方式,计算每个商业小区的人流量i T 、i P 和

i E 。

(4)各总量的计算公式

W i i i i U T E P =++

10

1

A A

i i U U ==∑,

6

1

B

B

i i U U ==∑

6

1

C C

i i U U ==∑,W

W

i i

W

U U

λ=

3、人流量的具体数据及其分布

注:A 场馆总人流量A U =1571235,最后一行是百分数。

(2)B 区人流量及其分布

注:B 场馆总人流量B U =852119,最后一行是百分数。

(3)C 区人流量及其分布

注:C 场馆总人流量C U 320015,最后一行是百分数。

四、MS 网点的设计模型

(一)建模的思路

求解20个商区内MS 网点的设计方案,就是给20个商区内的MS 网点选择合适的规模和分布策略。题目里假设有两种大小规模不同的MS 类型,所以设计方案的重点就是选择MS 网点的分布策略。

在商圈分析理论中,人们认为影响MS 网点分布策略的主要因素是商圈内的人流量及购物欲望,商圈内人流量及购物欲望与MS 网点的规模和分布密度成正比,同时商圈内的MS 网点相互影响。经过长期的研究,人们提出了许多测定商圈的方法,主要理论有:

零售引力法则,即里利法则。这一法则认为城市人口越多、规模越大,商业越发达,对顾客的吸引力就越大。其具体内容是:两个城市之间存在着一个商圈分界点,两个城市对处于该分界点上的顾客的吸引力是相同的。但是,该分界点距离两个城市的空间距离却是不同的。

饱和理论。通过计算饱和系数来测定商圈潜力的大小的,进而确定某一地区店铺是不足还是过多。

哈夫模型。美国零售学者戴维.哈夫(D.Haff )提出了测定商圈的计量模型--霍夫模型。霍夫认为,一个店铺的商圈取决与店铺对顾客的吸引力,而店铺在一个地区对顾客的吸引力是可以测量的;一个店铺对顾客的吸引力主要取决于两个因素,即店铺的规模和店铺与顾客的距离。

根据这些理论,我们将如下建模型步骤:

第一步,利用零售引力法则(即里利法则)确定MS 网点中相互吸引的范围。

第二步,利用哈夫模型确定MS 网点中相互吸引的概率,从而确定MS 网点中相互吸引的消费者人数,进而确定每商业点拥有消费者人数。

第三步,利用饱和理论确定每商业点的饱和系数。

第四步,模型求解。我们的优化目标是:设计两种不同面积i S 类型MS 网点(如:0.6,1.0),使得每个商业小区的饱和系数基本相同。

(二)建模的具体过程 1、基本假设

题目中未给出商业小区的具体大小,为了实现我们的建模的思路发,我们结合图形情况做如下基本假设:

由于每个商业小区的面积相同,所以我们将每个商业小区的面积看作1个单位。ij d 表示i 商业小区与j 商业小区的中心距离,其设定方法:A1-A10为1个单位距离,A1-A2为2个单位距离,其它类同。ij T 表示从i 商业小区中点到j 商业小区中点所需要的时间,其设定方法:A1-A10为1个单位时间,A1-A2为2个单位时间,其它类同。显然,在数值上有ij d =ij T 。它们的具体数值如下

2、确定每个商业小区的吸引范围

利用量利模型可计算每个商业小区的商圈限度,从而确定每个商业小区的吸引范围。根据里利模型,i 商业小区对于j 商业小区吸引的商圈限度ij D 为

ij d D =

其中i C 表示i 商业小区的人流量。由此得到i 商业小区对于j 商业小区的吸引范围

ij q =ij D -ij d +1(或0.5)

当0ij q ≤时,说明i 商业小区没有吸引到j 商业小区范围内的消费者,此时我们

令0ij q =。为了方便编写程度,我们约定0ii q =。

表:A 区吸引范围ij q 的数值

表:B 区吸引范围ij q 的数值

表:C 区吸引范围ij q 的数值

3、利用哈夫(Haff )模型确定互吸引的概率和i 商业小区拥有消费者总量i W 。

设ij P 表示i 商业区被吸引到j 商业区消费的概率,则根据哈夫(Haff )概率

模型有

j k

ij k i ij ik

S S P T T λ

λ≠=

∑ 其中i S 表示i 商业区的规模(面积),ij T 表示从i 地区到j 商业区所需要的时间,

λ为参数(一般取2λ=),n 表示j 商业区内商业网点个数。

由此模型,i 商业小区消费者被吸引到j 商业小区的人数ij E 为

2

2n

j i ji

k

ij ij i ji k i ij ik

S C q S E P C q T T ≠??=??=

∑ 于是可以计算出i 区被吸引到其它区的消费者人数为

2

2

n n

n

j i ji

k ij j i

j i

k i ij ik

S C q S E T T ≠≠≠??=∑∑

∑ 而i 区吸引来其它区消费者的人数为

2

2n

n

n

i j ij

k ji j i j i k j ij ik S C q S E T T ≠≠≠??

??=?????

?

∑∑∑ 故i 区拥有消费者总量i W =i 区人流量+i 区吸引消费者人数-i 区被吸引消费者人数,即i W =i C +n

ji j i

E ≠∑-n

ij j i

E ≠∑,也就是

i W =i C +2

2n n

i j ij

k j i k j ij ik S C q S T T ≠≠?????????

?∑∑-2

2n n

j i ji

k

j i k i ij ik

S C q S T T ≠≠??∑∑ 4、饱和系数

根据商圈分析中的饱和理论,饱和系数i R 为

i R =顾客人数×每平均顾客消费额÷商业区面积 =/i i W Q S ?

其中Q 表示平均每人流量的消费额。

模型选择的合理性分析:通过适当设计商业区面积大小,使得每小区的饱和

系数基本一致,从面保证所设计的MS 网点满足奥运会期间的购物需求,并兼顾商业区分布的基本均衡性。另外,模型中已含商业区消费额,且饱和系数与商业区消费额成正比,所以该模型也体现了商业赢利。因此,选择饱和模型能较好地反映三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。

由i W 的表达式,有

i R =/i i Q W S ? ={

Q i C /i S +2

2n

n

j ij

k j i k j ij ik C q S T T ≠≠????????

?∑∑-2

2n n

j i ji

k

j i k i ij i ik

S C q S T S T ≠≠???∑∑}

5、优化目标:设计两种不同面积i S 类型MS 网点(如:0.6,1.0),使得每个商业小区的饱和系数基本相同。

注意:根据商圈分析理论,大规模的商业网点有更大的吸引力,所以在考虑饱和系数基本一致时,对大规模的MS 网点对应大一些的饱和系数,对小规模的MS 网点对应小一些的饱和系数。

6、编写程序方法

(i )参数变量: 1,,

,n n S S

(ii)读入人流量i C 的数据,吸引范围ij q 的数据和ij T 的数据。 (iii )计算/i R Q 的值,即

/i R Q =i C /i S +22

n

n

j ij

k j i k j ij

ik C q

S T T ≠≠?????????∑∑-22

n n

j i ji

k

j i k i ij i ik

S C q S T S T ≠≠???∑∑ (iv )输出/i R Q 的值。观察这些是否基本一致?如果基本一致即为所求解;如果不基本一致,重新调整参数1,,,n n S S 的值。

6、模型求解

在约定大规模MS 网点的面积为1个单位的基础上,经过反复计算、求解,得到小规模MS 网点的面积为0.6个单位,能使每个商业小区的饱和系数基本相同,它们的标准差能够兼顾A 区、B 区、C 区的平衡,具体数值见如下表:

表:各区饱和系数的标准差

7、20个MS 网点的设计方案

在约定大规模MS 网点的面积为1个单位的基础上,经过计算求解,得到小规模MS 网点的面积为0.6个单位,并得出20个MS 网点的设计方案,具体设计方案是:

A 区有2个大规模MS 网点,分别设在A6小区和A1小区,其余8个小区均为小规模MS 网点;

B 区有2个大规模MS 网点,分别设在B6小区和B3小区,其余4个小区均为小规模MS 网点;

C区有1个大规模MS网点,设在C4小区,其余3个小区均为小规模MS网点。

8、结果分析

对20个MS网点的设计方案确定后,我们可以计算各网点的拥有消费者人数、消费额。具体数据见如下表:

五、模型评价

现实生活中我们总是喜欢去大并且距离近的商场购物,作为零售的商区MS 网点也不失其一般性。这就会导致规模大且距离近的商区MS网点的人流量的增大。另外大的城市中的商场规模相应的大并且吸引的消费者的数量也大,这就会导致大规模的商区MS网点在人流量大的位置上。根据上述现实,我们可以得出这样的一个结论:商区MS网点的规模和所处的位置对其销售额有很大的影响,同时销售额对商区MS网点的规模和位置也有影响。而里利模型正是反映了商区MS网点吸引消费者的范围,即商区MS网点的规模和位置对人流量的影响。哈夫模型反映的是商区MS网点的规模和人流量对商区MS网点位置的影响。规模越大并且人流量越大的商场MS网点的消费额也是越大的。商区MS网点的规模虽然可

以增大商区MS网点的消费额,但是在人流量很小的地方设立规模大的商场MS 网点也是不切合实际的。这两个因素在哈夫模型中对消费额的影响都是合理的。为了避免在人流量很小的地方设立规模大的商区MS网点,哈夫模型提出了饱和系数理论。饱和系数越大商区MS网点的消费额越大,若各个商区MS网点的饱和系数基本一致则满足了购物需求,并且可以使商区MS网点分布基本均衡性。如果各个商区MS网点的饱和系数相差很大,则有的商区MS网点会出现供不应求的现象,这样就会影响到消费者的购物要求,同时对饱和系数小的商区MS网点则会出现供大于求的现象,则会使这些商区MS网点亏损,就不能满足赢利的目的,其赢利性就无法实现。根据上述分析,认为利用里利模型和哈夫模型来选择商区MS网点的规模和分布情况是合理的、科学的。因为里利模型和哈夫模型正确的反映了商区MS网点规模和商区MS网点位置之间的相互约束关系,达到了满足消费者构物的需求、商区MS网点分布基本合理、实现赢利的三个基本要求。所以,根据里利模型和哈夫模型去选择商区MS网点规模、商区MS网点的分布是合理的、科学的,是具有实际意义的。

参考文献

1、[ISBN7-115-099976-9] 洪维恩编著:〈〈数学运算大师—Mathematica〉〉北京。2002。人民邮电出版社。—2002年第一版

2、 [ISBN 7-5429-1043-4/F。0952] 曹静编著:《连锁店开发与设计》上海市中山西路2230号立信会计出版社 2002年10月第1版

3、〈〈财贸经济〉〉吴小丁〈〈哈夫模型与城市商圈结构分析方法〉〉 2001年第3期

4、〈〈山西财经大学〉〉李卫华〈〈零售网点开发中的商圈分析〉〉 2002年4月第24卷第2期

〈〈商业研究〉〉孟上雄〈〈连锁网点的选择模型〉〉1998年2月

5、[ISBN 7—5633-1909-3/G.1527 王成名等编:〈〈应用概率统计〉〉桂林。广西师大出版社。——2003年6月。

6、[ISBN 7-312-00746—5/O.170] 王树禾编;〈〈数学模型基础〉〉;合肥。中

国科技大学出版社1996。

[ISBN 7-81077-011-X/TP.007]张志涌著;〈〈MATLAB教程〉〉;北京。北京航天大学出版社;2330。

A题之二(全国二等奖)

奥运会临时超市网点设计

广西大学,骆强、禤品滨、潘林琳

指导老师:卢喜森

摘要

本题是关于2008年奥运会临时超市网点的设计,是一个完全开放式的问题。我们在求解过程中用到统计的方法和流量求解模型。在问题一中,我们对历史数据进行统计,并且对统计结果进行合理的分析,得出影响2008年奥运会经济效益最重要的三个因素分别为:○1、20~30岁年龄段的观众群体为重点消费群体,○2、消费者的餐饮方式主要为西餐,○3、主要交通工具是地铁和公交车。问题二,根据第一个问题的结果以及题目给出的地理位置,计算出每个商区的人流量。例如:

问题三,用水流模型求解资金流问题,把模型简化,经过合理的假设,可计算得A场需要44个大型MS和88个小型MS,B场需要27个大型MS和53个小型MS,C场需要18个大型MS和35个小型MS,他们在各自场馆内的分布,符合第

本文特色为:把资金流视为水流,把大型MS和小型MS分别视为大型水槽和小型水槽,水槽出口的流速记为MS每单位时间吸收资金的数量,即v和u。在高峰期时,人流量(水流)来势汹涌,迅速把前面的MS(水槽)填满,人会往后面的MS(下层的水槽)流。在这种状态下,每个MS都保持客满状态,持续到高峰期过后。为了保持自身的赢利,每个MS都会根据最高峰时期的资金流量来决定自己的规模。

水管模型的优点:能够把所有的水在一定的时间流完,保障了题目要求的满足奥运会期间的购物需求;各个节点上的大型水槽相应成比例,小型水槽也相应成比例,保障了分布基本均衡的要求;每个水槽都是满的,反映了盈利性。

最新全国大学生数学竞赛简介

全国大学生数学竞赛 百度简介

中国大学生数学竞赛

该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。 编辑本段竞赛大纲 中国大学生数学竞赛竞赛大纲 (2009年首届全国大学生数学竞赛) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分

一、集合与函数 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学

大学生数学建模竞赛组队方案

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):成都纺织高等专科学校 参赛队员(打印并签名) :1. XXX(机电XXX) 2. XXX国贸XXX) 3. XXX(电商XXX) 指导教师或指导教师组负责人(打印并签名): 日期: 2014 年 06 月 06 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

目录 一、问题的重述 (1) 1.1 背景资料与条件 (1) 1.2 需要解决的问题 (1) 二、问题的分析 (2) 2.1 问题的重要性分析 (2) 2.2问题的思路分析 (3) 三、模型的假设 (4) 四、符号及变量说明 (4) 五、模型的建立与求解 (4) 5.1建立层次结构模型 (4) 5.2构造成对比较矩阵 (5) 5.3成对比较矩阵的最大特征根和特征向量的实用算法 (6) 5.4一致性检验 (7) 5.5层次分析模型的求解与分析 (8) 5.5.1 构造成对比较矩阵 (8) 5.5.2计算25优秀大学生的综合得 (9) 六、模型的应用与推广 (11) 七、模型的评价与改进 (12) 7.1模型的优点分析 (12) 7.2模型的缺点分析 (12) 7.3模型的进一步改进 (12) 八、参考文献 (13) 附件一 (14) 附件二 (16)

全国大学生数学竞赛预赛试题

第一届全国大学生数学竞赛预赛试题 一、填空题(每小题5分,共20分) 1.计算__ ,其中区域由直线与两坐标轴所围成三角形区域. 2.设是连续函数,且满足, 则____________. 3.曲面平行平面的切平面方程是__________. 4.设函数由方程确定,其中具有二阶导数,且,则_____. 二、(5分)求极限,其中是给定的正整数. 三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性. 四、(15分)已知平面区域,为的正向边界,试证: (1);(2) . 五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线过原点.当时,,又已知该 抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小. 七、(15分)已知满足, 且, 求函 数项级数之和. 八、(10分)求时, 与等价的无穷大量.

第二届全国大学生数学竞赛预赛试题 一、(25分,每小题5分) (1)设其中求(2)求。 (3)设,求。 (4)设函数有二阶连续导数,,求。 (5)求直线与直线的距离。 二、(15分)设函数在上具有二阶导数,并且 且存在一点,使得,证明:方程在恰有两个实根。 三、(15分)设函数由参数方程所确定,其中具 有二阶导数,曲线与在出相切,求函数。 四、(15分)设证明:(1)当时,级数收敛; (2)当且时,级数发散。 五、(15分)设是过原点、方向为,(其中的直线,均 匀椭球,其中(密度为1)绕旋转。(1)求其转动惯量;(2)求其转动惯量关于方向的最大值和最小值。 六、(15分)设函数具有连续的导数,在围绕原点的任意光滑的简单闭曲线上,曲线积分的值为常数。(1)设为正向闭曲线

2017全国数学建模竞赛B题

2017年高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B题“拍照赚钱”的任务定价 “拍照赚钱”是移动互联网下的一种自助式服务模式。用户下载APP,注册成为APP的会员,然后从APP上领取需要拍照的任务(比如上超市去检查某种商品的上架情况),赚取APP对任务所标定的酬金。这种基于移动互联网的自助式劳务众包平台,为企业提供各种商业检查和信息搜集,相比传统的市场调查方式可以大大节省调查成本,而且有效地保证了调查数据真实性,缩短了调查的周期。因此APP成为该平台运行的核心,而APP中的任务定价又是其核心要素。如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。 附件一是一个已结束项目的任务数据,包含了每个任务的位置、定价和完成情况(“1”表示完成,“0”表示未完成);附件二是会员信息数据,包含了会员的位置、信誉值、参考其信誉给出的任务开始预订时间和预订限额,原则上会员信誉越高,越优先开始挑选任务,其配额也就越大(任务分配时实际上是根据预订限额所占比例进行配发);附件三是一个新的检查项目任务数据,只有任务的位置信息。请完成下面的问题: 1.研究附件一中项目的任务定价规律,分析任务未完成的原因。 2.为附件一中的项目设计新的任务定价方案,并和原方案进行比较。 3.实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种 考虑是将这些任务联合在一起打包发布。在这种考虑下,如何修改前面的定价模型,对最终的任务完成情况又有什么影响? 4.对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。 附件一:已结束项目任务数据 附件二:会员信息数据 附件三:新项目任务数据

全国大学生数学建模竞赛的准备方法

全国大学生数学建模竞赛的准备方法 全国大学生数学建模竞赛于每年9月上旬(今年是9月7日)举行。但是在此之前,需要做好哪些准备,让各个参赛队员在竞赛中做到有备无患呢?在总结过去多年培训指导各种数学建模竞赛的基础上,仅就个人观点,介绍一些关于如何准备数学建模竞赛的经验和体会,仅供参考。在这里主要向大家介绍竞赛的基本情况,包括如何组队、如何选题以及在竞赛中如何合理分配时间。通过本次学习,希望大家能够了解数学建模竞赛的基本情况,为全国大学生数学建模竞赛以及其他各类数学建模竞赛做好准备。 一、如何组建优秀数学建模队伍 进入大学阶段参加各种科技竞赛,可以体会到一种和中学竞赛不同的感受,这种感受来自团队合作。以前的各项赛事都是以个人为单位参加竞赛,它们都是考查个人的能力。但是在大学中,由于难度和任务量的加重以及对团队合作精神的关注,因此大部分的赛事都是以团队为单位参加的。竞赛在考查个人能力的同时,还考查团队成员的合作精神。在数学建模竞赛中,团队合作精神是能否取得好成绩的最重要的因素,一队三个人要分工合作、相互支持、相互鼓励。从历年的统计数据可以看出,竞赛成绩优秀的队员往往并不是每个人在各个方面都特别擅长的队伍,而是团队相处得最融洽的队伍。从这一点也可以看出团队合作的重要性。 在竞赛的过程中,切勿自己只管自己的那一部分,一定要记住这是一个集体的竞赛。很多时候,往往一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚。因此无论做任何事情,三个人一定要齐心才行,只靠一个人

的力量,要在3天之内写出一篇高水平的论文几乎是不可能的。让三人一组参赛一方面是为了培养合作精神,其实更为重要的原因是这项工作确实需要多人合作,因为一个人的能力是有限的,知识掌握也往往是不全面的。一个人做题,经常会走向极端,得不到正确的解决方案。而三个人相互讨论、取长补短,可以弥补一个人所带来的不足。 在队伍组建的时候,需要强调“队长”这个名词概念。虽然在全国大学生数学建模竞赛中并没有设立队长,作为队长在获得的证书上也没有特别标注。但是在队内设立“队长”是非常有必要的。因为在比赛中可能会碰到各种突发状况,队长是很重要的,他的作用就相当于计算机中的CPU,是全队的核心。如果一个队的队长不得力,往往影响一个队的正常发挥。竞赛是非常残酷的,在3天3夜(72h)的比赛中,大家睡眠时间都得不到保障,怎样合理安排团队时间就是队长需要做的事情。在比赛过程中,由于睡眠不足,大家脾气都会很急躁。在这种情况,往往会为了一些小事而发生争吵,如果没有适当的处理,有些队伍将会放弃比赛,而队长就应该在这个时候担起责任。 在明确“队长”这个概念后,接下去谈谈怎样科学选择队友。在数学建模竞赛中,题目要求完成的工作量是很大的,因此这项任务是必须分工完成的,各有侧重、相互帮助,这样才能获得好成绩。而科学地选择队友则显得非常重要,也是走向成功的第一步。一般情况下选择队友可以从以下几个方面考虑着手: 1. 在组队的时候需要考虑队伍成员的多元化,尽量和不同专业、不同特长的同学组队。因为同系同专业甚至同班的话大家的专业知识一样,如果碰上专业知识以外的背景那会比较麻烦的。所以如果是不同专业组队则有利的多。因为数学建模题有可能出现在各个领域,这也是数学建模适合各个专业学生参加的原因所在,也是数学建模竞赛赛事的魅力所在。

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

全国大学生数学竞赛简介资料

全国大学生数学竞赛 第一届 2009年,第一届全国大学生数学竞赛由中国数学会主办、国防科学技术大学承办。该比赛将推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才。 第二届 2011年3月,历时十个月的第二届全国大学生数学竞赛在北京航空航天大学落幕。来自北京、上海、天津、重庆等26个省(区、市)数百所大学的274名大学生进入决赛,最终,29人获得非数学专业一等奖,15人获数学专业一等奖。这次赛事预赛报名人数达3万余人,已成为全国影响最大、参加人数最多的学科竞赛之一。 竞赛用书 该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。 竞赛大纲 中国大学生数学竞赛竞赛大纲 (2009年首届全国大学生数学竞赛) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 1.竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 1.竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 1.集合与函数 2. 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性 定理、闭区间套定理、聚点定理、有限覆盖定理. 3. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、 上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广.

全国大学生数学竞赛试题及答案

河北省大学生数学竞赛试题及答案 一、(本题满分10 分) 求极限))1(21(1 lim 222222--++-+-∞→n n n n n n Λ。 【解】 ))1(21(12 22222--++-+-= n n n n n S n Λ 因 21x -在]1,0[上连续,故dx x ?1 02-1存在,且 dx x ? 1 2 -1=∑-=∞→-1 21 .)(1lim n i n n n i , 所以,= ∞ →n n S lim n dx x n 1lim -11 2∞→-? 4 -1102π ==?dx x 。 二、(本题满分10 分) 请问c b a ,,为何值时下式成立.1sin 1 lim 22 0c t dt t ax x x b x =+-?→ 【解】注意到左边得极限中,无论a 为何值总有分母趋于零,因此要想极限存在,分子必 须为无穷小量,于是可知必有0=b ,当0=b 时使用洛必达法则得到 22 022 01)(cos lim 1sin 1lim x a x x t dt t ax x x x x +-=+-→→?, 由上式可知:当0→x 时,若1≠a ,则此极限存在,且其值为0;若1=a ,则 21)1(cos lim 1sin 1lim 22 220-=+-=+-→→?x x x t dt t ax x x x b x , 综上所述,得到如下结论:;0,0,1==≠c b a 或2,0,1-===c b a 。 三、(本题满分10 分) 计算定积分? += 2 2010tan 1π x dx I 。

【解】 作变换t x -= 2 π ,则 =I 22 20π π = ?dt , 所以,4 π= I 。 四、(本题满分10 分) 求数列}{1n n - 中的最小项。 【解】 因为所给数列是函数x x y 1- =当x 分别取ΛΛ,,,3,2,1n 时的数列。 又)1(ln 21-=--x x y x 且令e x y =?='0, 容易看出:当e x <<0时,0<'y ;当e x >时,0>'y 。 所以,x x y 1-=有唯一极小值e e e y 1)(-=。 而3 3 1 2 132> ? <

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

中国大学生数学竞赛竞赛大纲(数学专业类).

中国大学生数学竞赛竞赛大纲(数学专业类) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性 定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

为什么要参加大学生数学建模竞赛

为什么要参加大学生数学建模竞赛 大学生数学建模竞赛是培养学生创新能力和竞争能力的极好的、具体的载体。 1.对于学校的领导(校长、教务处长等)来说,全心全意把学校搞好(高质量的教学、高百分比的就业率、高水平的教师队伍以及提高知名度等)肯定是他们追求的办学目标而且会采取各种措施。但是就选派学生参加大学生数学建模竞赛来说,不少领导(甚至数学教师)会非常犹豫:我们数学课时少,教学任务重,即使参加了,拿不到奖的话,不但不能提高学校的知名度,甚至会招致一些负面的议论等等。实际上,领导们有三个问题考虑不够,它们是: ⑴对数学的极端重要性要有充分的认识。学生将来的发展和成就是和他们坚实的数学基础密切相关的。但是现在的数学教学确实有许多不足之处有待改革,特别是怎么做到不仅教知识,而且要教知识是怎样用来解决实际问题的能力是有待加强的。让部分师生参加到数学建模活动,特别是大学生数学建模竞赛肯定是有利于推动教学改革的。 ⑵ 办好学校的关键之一是提高教师的教学水平。怎样提高呢?鼓励教师组织学生参加大学生数学建模竞赛等数学建模活动,既可以帮助教师进一步了解怎样用数学来解决实际问题,更有助于数学教师到其他专业系科了解他们要用什么样的数学以及怎样用这些数学,互相学习,进行切磋,从而对怎样提高自己的教学水平,数学教学怎样更好为其他专业后继课,甚至对专业课题研究服务产生具体的想法,提出切实可行的措施,最终能够提高教师的专业水平和教学水平,从而也就提高了学校的水平。 ⑶ 学生要求参加大学生数学建模竞赛的积极性是很高的,关键是怎样组织好,培训好。实际上,即使是高职高专院校,也一定有一部分学生的数学基础是相当坚实的,他们之间又有一部分对数学,特别是用数学来解决实际问题有强烈的兴趣。为什么不组织他们参赛呢?培养一些数学基础好对应用又有能力的高职高专院校的学生,今后他们在工作中做出好成绩的可能性肯定会比较大。毕业生事业有成者多也标志了学校办得好、有水平。此外,对于怎样贯彻因材施教也会产生一些很好的想法。 2.对于数学教师来说,组织、指导学生参加大学生数学建模竞赛对自己也会有极大的好处。

全国大学生数学竞赛决赛试题(非数学类)

首届全国大学生数学竞赛决赛试卷 (非数学类) 考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分. 一、 计算下列各题(共20分,每小题各5分,要求写出重要步骤). (1) 求极限1 21lim (1)sin n n k k k n n π-→∞=+∑. (2) 计算 2∑其中∑ 为下半球面z =0a >. (3) 现要设计一个容积为V 的一个圆柱体的容器. 已知上下两底的材料费为单位面积a 元,而侧面的材料费为单位面积b 元.试给出最节省的设计方案:即高与上下底的直径之比为何值时所需费用最少? (4) 已知()f x 在11,42?? ???内满足 331()sin cos f x x x '=+,求()f x .

二、(10分)求下列极限 (1) 1lim 1n n n e n →∞????+- ? ? ?????; (2) 111lim 3n n n n n a b c →∞??++ ? ? ???, 其中0,0,0a b c >>>. 三、(10分)设()f x 在1x =点附近有定义,且在1x =点可导, (1)0,(1)2f f '==. 求 220(sin cos )lim tan x f x x x x x →++. 四、(10分) 设()f x 在[0,)+∞上连续,无穷积分0()f x dx ∞?收敛. 求 0 1lim ()y y xf x dx y →+∞?.

五、五、(12分)设函数()f x 在[0,1]上连续,在(0,1)内可微,且 1(0)(1)0,12f f f ??=== ???. 证明:(1) 存在 1,12ξ??∈ ???使得()f ξξ=;(2) 存在(0,)ηξ∈使得()()1f f ηηη'=-+. 六、(14分)设1n >为整数, 20()1...1!2!!n x t t t t F x e dt n -??=++++ ????. 证明: 方程 ()2n F x =在,2n n ?? ???内至少有一个根.

全国大学生数学竞赛大纲(数学专业组)

中国大学生数学竞赛竞赛大纲(数学专业组) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

历届全国大学生数学竞赛预赛试题

全国大学生数学竞赛预赛试卷(非数学类) 2009年 第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分) 1. 计算()ln(1) d y x y x y ++=??____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足2 20()3()d 2f x x f x x =--?,则()f x =____________. 3.曲面2 222 x z y =+-平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则 =2 2d d x y ________________. 二、(5分)求极限x e nx x x x n e e e )( lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,10()()g x f xt dt =?,且A x x f x =→) (lim 0,A 为常数,求()g x '并 讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)?? -=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5 d d π? ≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数 线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22 ++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为3 1 .试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小. 七、(15分)已知)(x u n 满足1()()1,2,n x n n u x u x x e n -'=+=L ,且n e u n =)1(,求函数项级数∑∞ =1 )(n n x u 之和. 八、(10分)求- →1x 时,与∑∞ =0 2 n n x 等价的无穷大量.

全国数学建模竞赛B题CUMCMB

2 0 1 3 高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B 题碎纸片的拼接复原 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。请讨论以下问题: 1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接 复原模型和算法,并针对附件1、附件 2 给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。 2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4 给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果表达要求同上。 3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。附件 5 给出的是一页英文印刷文字双面打印文件的碎片数据。请尝试设计相应的碎纸片拼接复原模型与算法,并就附件 5 的碎片数据给出拼接复原结果,结果表达要求同上。 【数据文件说明】 (1) 每一附件为同一页纸的碎片数据。 (2) 附件1、附件2为纵切碎片数据,每页纸被切为19 条碎片。 (3) 附件3、附件4为纵横切碎片数据,每页纸被切为11X19个碎片。 (4) 附件5为纵横切碎片数据,每页纸被切为11 X 19个碎片,每个碎片有正反两面。该附件中 每一碎片对应两个文件,共有2X 11X 19个文件,例如,第一个碎片的两面分别对应文件000a、000b。 【结果表达格式说明】 复原图片放入附录中,表格表达格式如下: (1) 附件1、附件2的结果:将碎片序号按复原后顺序填入1X 19的表格; (2) 附件3、附件4的结果:将碎片序号按复原后顺序填入11X 19的表格; (3) 附件5的结果:将碎片序号按复原后顺序填入两个11X 19的表格;

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书 及相关题目,主要是一些各大高校的试题。) 2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 11 10 det d d =??? ? ? ?-=, v u u v u u u y x y x x y y x D D d d 1ln ln d d 1) 1ln()(????--= --++ ????----=---=10 2 1 00 0d 1)ln (1ln d )d ln 1d 1ln ( u u u u u u u u u u v v u u v u u u u u ? -=1 2 d 1u u u (*) 令u t -=1,则21t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, ?+--=0 1 42d )21(2(*)t t t ? +-=10 42d )21(2t t t 1516513 2 21 053= ??????+-=t t t 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 解: 令? = 20 d )(x x f A ,则23)(2--=A x x f , A A x A x A 24)2(28d )23(20 2-=+-=--= ? , 解得34= A 。因此3 10 3)(2-=x x f 。 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________.

中国大学生数学建模竞赛历年试题

中国大学生数学建模竞赛(CUMCM)历年赛题一览! CUMCM历年赛题一览!! CUMCM从1992年到2007年的16年中共出了45个题目,供大家浏览 1992年A)施肥效果分析问题(北京理工大学:叶其孝) (B)实验数据分解问题(复旦大学:谭永基) 1993年A)非线性交调的频率设计问题(北京大学:谢衷洁) (B)足球排名次问题(清华大学:蔡大用) 1994年A)逢山开路问题(西安电子科技大学:何大可) (B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此) 1995年:(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾) 1996年:(A)最优捕鱼策略问题(北京师范大学:刘来福) (B)节水洗衣机问题(重庆大学:付鹂) 1997年:(A)零件参数设计问题(清华大学:姜启源) (B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此) 1998年:(A)投资的收益和风险问题(浙江大学:陈淑平) (B)灾情巡视路线问题(上海海运学院:丁颂康) 1999年:(A)自动化车床管理问题(北京大学:孙山泽) (B)钻井布局问题(郑州大学:林诒勋) (C)煤矸石堆积问题(太原理工大学:贾晓峰) (D)钻井布局问题(郑州大学:林诒勋) 2000年:(A)DNA序列分类问题(北京工业大学:孟大志) (B)钢管订购和运输问题(武汉大学:费甫生) (C)飞越北极问题(复旦大学:谭永基) (D)空洞探测问题(东北电力学院:关信) 2001年:(A)血管的三维重建问题(浙江大学:汪国昭) (B)公交车调度问题(清华大学:谭泽光) (C)基金使用计划问题(东南大学:陈恩水) (D)公交车调度问题(清华大学:谭泽光) 2002年:(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (B)彩票中的数学问题(解放军信息工程大学:韩中庚) (C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))

相关主题
文本预览
相关文档 最新文档