当前位置:文档之家› 陶瓷激光器及其工作原理

陶瓷激光器及其工作原理

陶瓷激光器及其工作原理
陶瓷激光器及其工作原理

陶瓷激光器及其工作原理

新型激光陶瓷是继单晶和玻璃之后又一种优秀的激光介质,它不仅具备良好的材料和光学特性,而且具有强大的制备优势,伴随激光透明陶瓷先进制造技术的不断发展,光学级、高掺杂、大尺寸、多功能透明陶瓷越来越多的被应用在固体激光器设计和制造中,凭借优异光电功能的特性,激光透明陶瓷的研发和应用不仅延伸至传统固体激光器的各个领域,并表现出比传统激光晶体更加优异的性能,而且不断突破现有固体激光技术的局限,有力的推动了新型固体激光器的发展。

按工作物质形状来分类,透明陶瓷激光器可以分为棒状激光器、板条激光器, 碟片激光器和光纤激光器等4类。

1、高效陶瓷棒状激光器

采用与传统Nd:YAG固体激光器相同的谐振腔结构,可分为侧面泵浦(见图1)和端面泵浦(见图2)两种类型。由于将高掺杂浓度的透明陶瓷圆棒作为激光介质,从而使光-光转换效率有显著提高。

图1 侧面泵浦激光器结构

图3 高效率Nd:YAG透明陶瓷激光器

对于侧面泵浦结构,泵浦源可以是灯泵浦,也可以采用激光二极管。图3所示为中科院上海光学精密机械研究所采用超均匀侧面泵浦技术在1 at.% Nd:YAG陶瓷棒中获得输出功率236 W,斜率效率62% 的连续激光输出。图中(a)为侧面泵浦Nd:YAG陶瓷棒激光器的实验装置原理,图(b)为Nd:YAG陶瓷激光器的截面示意图,采用超均匀侧面激光二极管阵列泵浦。

2、陶器板条激光器

普通固体激光器激光工作物质的几何形状为圆棒状,温度梯度的方向与光传播方向垂直,在热负荷条件下运转时,将产生严重的热透镜效应和热光畸变效应,使得光束质量降低,并限制了激光功率的进一步提高。板条激光器(见图4、5)的工作物质为板条形状,该激光器从结构上克服了激光棒的热变形(热透镜效应),故有功率大(达2kW以上)、光束发散角小(接近衍射极限),可获得高质量激光输出,从而提高了加工能力,可进行超深加工,如钻孔深达76mm,切割厚度达40mm。

图4 单板条DPL激光器结构示意图

图5 双板条串接DPL激光器结构示意图

在陶瓷板条激光器中,温度梯度发生在板条厚度方向上(板条宽度方向上的两侧面被热绝缘),而光在厚度方向的两侧面(即泵浦面)上发生内全反射,呈锯齿形光路在两泵浦面之间传播,光传播方向近似与温度梯度方向平行,可基本避免热透镜效应和热光畸变效应,大幅度提高了激光输出功率。其发展方向是用大功率半导体列阵激光器侧向面泵浦,以获得更高的效率和更好的光束质量。

美国达信公司用其特有的ThinZag技术和大尺寸的陶瓷Nd∶YAG薄板条作为激光增益介质,六个增益模块串联(见图6)形成谐振腔单口径实现100 kW的激光输出,单模块可实现17KW的激光输出。

图6 ThinZag增益模块结构示意图

3、碟片激光器

碟片式激光器(Disk Laser)的晶体形状为薄碟片,增益介质通常是Yb:YAG晶体、Nd:YAG晶体和用于宽波长调谐的掺镱增益介质。激光透明陶瓷作为性能相近的光电功能材料,有望应用于碟片激光器设计和制造。

碟片激光器增益介质通常厚度为200μm,直径为10mm,由半导体激光器从晶体的前表面进行泵浦,近似于常用的端泵技术。薄片晶体整个粘接在热沉上,所以晶体的冷却效率非常高(见图7)。

图7 碟片激光器原理图

由于晶体的厚度很薄所以每次半导体激光器的泵浦光穿过激光晶体时只有一部分泵浦光被其吸收为了提高它的泵浦效率在其前部放置一块抛物面镜使未被吸收的泵浦光多次通过晶体来提高泵浦效率,一般的次数为32次,从而产生很强的激光辐射(见图8)。

图8 端面泵浦碟片激光器结构示意图

薄碟片中的增益介质是晶体,通常是Yb:YAG、Nd:YAG和用于宽波长调谐的掺镱增益介质。

碟片激光器设计理念的提出,有效地解决了固体激光器的热效应问题,实现了固

体激光器高平均功率、高峰值功率、高效率、高光束质量的完美结合。目前全球仅有德国Trumpf公司具有生产高功率碟片激光器的技术,最高功率达到16千瓦,光束质量达到8毫米/毫弧度,实现了机械手的激光远程焊接和大幅面激光高速切割,为固体激光在高功率激光加工领域开辟了广阔的应用市场。

4、陶瓷光纤激光器

陶瓷光纤激光器由日本WorldLabo.Co实验室Ikesue 课题组提出构想,并成功制备出双端冷却帽结构的Nd:YAG陶瓷光纤,如图9所示。由于YAG陶瓷的热机械性能远优于传统光纤所用的石英基质,陶瓷光纤单位长度所能承受的功率密度8 W/cm 远高于石英光纤(约1.3 W/cm) ,探索高功率陶瓷光纤激光器将有广阔的应用前景。目前国内相关报道比较少见。

图9 Nd:YAG陶瓷光纤的形态

此外,超短脉冲陶瓷激光器和复合结构陶瓷激光器也将是陶瓷激光器的重要研究方向。

激光器激励原理

激光器激励原理 —固体激光器 1311310黄汉青 1311343张旭日辅导老师:

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。介绍固体激光器的工作原理及应用,更能够加深对其的了解。本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 1引用 世界上第一台激光器—红宝石激光器(固体激光器)于1960年7月诞生了,距今已有整整五十年了。在这五十年时间里固体激光的发展与应用研究有了极大的飞跃,并且对人类社会产生了巨大的影响。 固体激光器从其诞生开始至今,一直是备受关注。其输出能量大,峰值功率高,结构紧凑牢固耐用,因此在各方面都得到了广泛的用途,其价值不言而喻。正是由于这些突出的特点,其在工业、国防、医疗、科研等方面得到了广泛的应用,给我们的现实生活带了许多便利。 未来的固体激光器将朝着以下几个方向发展: a)高功率及高能量 b)超短脉冲激光 c)高便携性 d)低成本高质量 现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 2激光与激光器

2.1激光 2.1.1激光(LASER) 激光的英文名——LASER,是英语词组Light Amplification by Stimulated Emission of Radiation(受激辐射的光放大)的缩写[1]。2.1.2产生激光的条件 产生激光有三个必要的条件[2]: 1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构; 2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转; 3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。 3固体激光器 3.1工作原理和基本结构 在固体激光器中,由泵浦系统辐射的光能,经过聚焦腔,使在固体工作物质中的激活粒子能够有效的吸收光能,让工作物质中形成粒子数反转,通过谐振腔,从而输出激光。 如图1所示,固体激光器的基本结构(有部分结构没有画出)。固体激光器主要由工作物质、泵浦系统、聚光系统、光学谐振腔及冷却与滤光系统等五个部分组成[4]。

固体激光器原理固体激光器

固体激光器原理-固体激光器 固体激光器发展历程 固体激光器发展历程 固体激光器用固体激光材料作为工作物质的激光器。1960年,梅曼发明的红宝石激光器就是固体激光器,也是世界上第一台激光器。固体激光器一般由激光工作物质、激励源、聚光腔、谐振腔反射镜和电源等部分构成。 这类激光器所采用的固体工作物质,是把具有能产生受激发射作用的金属离子掺入晶体而制成的。在固体中能产生受激发射作用的金属离子主要有三类:(1)过渡金属离子;(2)大多数镧系金属离子;(3)锕系金属离子。这些掺杂到固体基质中的金属离子的主要特点是:

具有比较宽的有效吸收光谱带,深圳市星鸿艺激光科技有限公司专业生产激光打标机,激光焊接机,深圳激光打标机,东莞激光打标机比较高的荧光效率,比较长的荧光寿命和比较窄的荧光谱线,因而易于产生粒子数反转和受激发射。用作晶体类基质的人工晶体主要有:刚玉 、钇铝石榴石、钨酸钙、氟化钙等,以及铝酸钇、铍酸镧等。用作玻璃类基质的主要是优质硅酸盐光学玻璃,例如常用的钡冕玻璃和钙冕玻璃。与晶体基质相比,玻璃基质的主要特点是制备方便和易于获得大尺寸优质材料。对于晶体和玻璃基质的主要要求是:易于掺入起激活作用的发光金属离子;http://具有良好的光谱特性、光学透射率特性和高度的光学均匀性;具有适于长期激光运转的物理和化学特性。晶体激光器以红宝石和掺钕钇铝石榴石为典型代表。玻璃激光器则是以钕玻璃激光器为典型代表。

工作物质 固体激光器的工作物质,由光学透明的晶体或玻璃作为基质材料,掺以激活离子或其他激活物质构成。这种工作物质一般应具有良好的物理-化学性质、窄的荧光谱线、强而宽的吸收带和高的荧光量子效率。 玻璃激光工作物质容易制成均匀的大尺寸材料,可用于高能量或高峰值功率激光器。但其荧光谱线较宽,热性能较差,不适于高平均功率下工作。常见的钕玻璃有硅酸盐、磷酸盐和氟磷酸盐玻璃。80年代初期,研制成功折射率温度系数为负值的钕玻璃,可用于高重复频率的中、小能量激光器。 晶体激光工作物质一般具有良好的热性能和机械性能,窄的荧光谱线,但获得优质大尺寸材料的晶体生长技术复杂。60年代以来已有300种以上掺入各种稀土金属或过渡金属离子氧化物和氟化物晶体实现了激光振荡。常用的激光晶体有红宝石(Cr:Al2O3,波长6943

固体激光器原理及应用

固体激光器原理及应用

————————————————————————————————作者: ————————————————————————————————日期:

编号 赣南师范学院学士学位论 文 固体激光器原理及应用 教学学院物理与电子信息学院 届别2010届 专业电子科学与技术 学号 060803013 姓名丁志鹏 指导老师邹万芳 完成日期 2010.5.10

目录 摘要 ............................................................................... 错误!未定义书签。关键词 ........................................................................... 错误!未定义书签。Abstract ....................................................................... 错误!未定义书签。Key words ................................................................... 错误!未定义书签。1引用2? 2激光与激光器 ........................................................ 错误!未定义书签。 2.1?激光 ........................................................................ 错误!未定义书签。 2.2激光器 ............................................................... 错误!未定义书签。3?固体激光器 .............................................................. 错误!未定义书签。3.1?工作原理和基本结构 ........................................ 错误!未定义书签。3.2?典型的固体激光器?错误!未定义书签。 3.3典型固体激光器的比较?错误!未定义书签。 3.4固体激光器的优缺点?错误!未定义书签。 4固体激光器的应用?错误!未定义书签。 4.1?军事国防?错误!未定义书签。 4.2?工业制造?错误!未定义书签。 4.3医疗美容?错误!未定义书签。 5结束语 .................................................................... 错误!未定义书签。参考文献 ....................................................................... 错误!未定义书签。

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

CO2激光器原理及应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 1引言 (2) 2激光 (2) 2.1激光产生的三个条件 (3) 2.2激光的特点 (3) 2.3激光器 (3) 3 CO2激光器的原理 (5) 3.1 CO2激光器的基本结构 (5) 3.2 CO2激光器基本工作原理 (7) 3.3 CO2激光器的优缺点 (8) 4 CO2激光器的应用 (9) 4.1军事上的应用 (9) 4.2医疗上的应用 (10) 4.3工业上的应用 (12) 5 CO2激光器的研究现状与发展前景 (14) 5.1 CO2激光器的研究现状 (14) 5.2 CO2激光器的发展前景 (15) 6 结束语 (17) 参考文献 (19) 致谢 (20)

摘要:本文从引言出发介绍了CO2激光技术的基本情况,简单介绍了激光和激光器的一些特点,重点介绍了气体激光器中的CO2激光器的相关应用,目前CO2激光器是用最广泛的激光器之一,它有着一些非常突出的高功率、高质量等优点。论文首先介绍了应用型CO2激光器的基本结构和工作原理,着重介绍了应用型CO2激光器在军事、医疗和工业三个主要领域的应用,最后介绍应用型CO2激光器的研究前景和现状。通过这些介绍使得人们能够加深对CO2激光器的了解和认识。 关键词: CO2激光器;基本原理;基本结构;应用; Abstract: This departure from the introduction of CO2 laser technology, introduced the basic situation, briefly introduced some of the characteristics of laser and laser to highlight the CO 2gas laser in laser-related applications, the current CO 2 laser was one of the most extensive laser, it had some very prominent high-power, high quality and so on. Paper introduced the application of CO 2 laser-type basic structure and working principle, focusing on the application type CO 2 laser in the military, medical and industrial application of the three main areas, Finally, applied research prospects for CO 2 laser and status. Through these presentations allowed people to deepen their knowledge and understanding of CO s lasers. Keywords:CO2Laser Basic Principle Basic Structure Application

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

2020年常用激光器简介

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,

固体激光器原理及应用

固体激光器原理及应用 摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。本论文先从基本原理和结构介绍固体激光器,最后介绍其在监测,检测,制造业,医学,航天等五个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 1激光与激光器 1.1激光 1.1.1激光(LASER) 激光是在 1960 年正式问世的。但是,激光的历史却已有 100多年。确切地说,远在 1893年,在波尔多一所中学任教的物理教师布卢什就已经指出,两面靠近和平行镜子之间反射的黄钠光线随着两面镜子之间距离的变化而变化。他虽然不能解释这一点,但为未来发明激光发现了一个极为重要的现象。 1917年爱因斯坦提出“受激辐射”的概念,奠定了激光的理论基础。激光,又称镭射,英文叫“LASER”,是“Light Amplification by Stimu Iatad Emission of Radiation”的缩写,意思是“受激发射的辐射光放大”。激光的英文全名已完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。 1.1.2产生激光的条件 产生激光有三个必要的条件: 1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分 子或离子)有适合于产生受激辐射的能级结构; 2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产 生粒子数反转; 3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择 被放大的受激辐射光频率以提高单色性。 1.1.3激光的特点 与普通意义上的光源相比较,激光主要有四个显著的特点:方向性好、亮度极高、单色性好、相干性好。

半导体激光器工作原理

半导体激光器工作原理 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb (锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。

目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 1.波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 2.阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数十毫安。 3.工作电流Iop:激光二极管达到额定输出功率时的驱动电流,此

激光的原理及激光器分类

激光器的原理及分类 一、基础原理 量子理论认为,所有物质都是由各种微观”粒子”组成,如分子,原子,质子,中子,电子等。在微观世界里,各种粒子都有其固有的能级结构。当一个粒子从高能级掉到低能级时,根据能量守恒定律,它要把两个能级相差部分的能量释放出来,通常这个能量以光和热两种形式释放出来。 二、自发辐射、受激辐射 1、自发辐射 普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。激发的过程是一个“受激吸收”过程。但是处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量=E2-E1。过程各自独立、互补关联,所有辐射的光在发射方向上是无规律的

射向四面八方,并且频率不同、偏振状态和相位不同。 2、受激辐射 在原子中也存在这样一些特定高能级,一旦电子被激发到这个高能级之上,却由于不满足跃迁的条件,发生跃迁的几率很低,电子能够在高能级上的时间很长,就所谓的亚稳定状态。但在能在外界光场的照射下发生往下跃迁,并且向下跃迁时释放出一个与射入光场相同的光子,在同一个方向、有同一个波长。这就是受激辐射,激光正是利用这一原理激发出来。 二、粒子数反转 通过受激辐射出来的光子,不仅可以引起其他粒子受激辐射,也可以引起受激吸收。只有在处于高能级的原子数量大于处于低能级原子数时,所产生的受激辐射才能大于受激吸收。但是在自然条件下,原子都是都处于稳定的基态,只能通过技术手段将大量的原子都调整到高能级的状态,才能有多余的辐射向外产生。这个技术叫粒子数反转。

实验十二 压电陶瓷压电性能测定

实验十二压电陶瓷压电性能测定 实验名称:压电陶瓷压电性能测定 实验项目性质:普通实验 所涉及课程:电子材料 计划学时:2学时 一、实验目的 1.了解压电常数的概念和意义; 2.掌握压电陶瓷压电常数的测定方法。 3.学会操作ZJ-3AN型准静态d33测量仪。 二、实验内容 1. 实验老师介绍使用压电常数测量仪测试d33的原理与步骤; 2. 测试压电陶瓷的压电常数。 三、实验(设计)仪器设备和材料清单 ZJ-3AN型准静态d33测量仪、压电陶瓷晶片等。 四、实验原理 压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,是一种具有压电效应的材料。 当在某一特定方向对晶体施加应力时,在与应力垂直方向两端表面能出现数量相等、符号相反的束缚电荷,这一现象被称为“正压电效应”。 逆压电效应:当一块具有压电效应的晶体置于外电场中,由于晶体的电极化造成的正负电荷中心位移,导致晶体形变,形变量与电场强度成正比。 压电常数是反映力学量(应力或应变)与电学量(电位移或电场)间相互耦合的线性响应系数。通常用d ij 表示,下标中第一个数字代表电场方向或电极面的垂直方向,第二个数字代表应力或应变方向。 五、实验步骤 (1)用两根多芯电缆把测量头和仪器本体连接好,接通电源。 (2)把Φ20尼龙片插入测量头的上下探头之间,调节手轮,使尼龙片刚好压住为止。(3)把仪器后面板上的“显示选择”开关置于“d33”一侧,此时面板右上方绿灯亮。(4)把仪器后面板上的“量程选择”开关置于“×1”档。 (5)按下“快速模式”,仪器通电预热10分钟后,调节“调零”旋钮使面板表指示在“0”与“-0”之间跳动。调零即完成,撤掉尼龙片开始测量。 (6)依次接入待测元件,表头显示d33结果及正负极性,记录。 (7)取三次测量的平均值。 六、实验报告要求

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为CR I I C R ωδ1tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: 机械品质因数可根据等效电路计算而得 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。 S=dE 两式中的压电应变常数 d 在数值上是相同的,即E S D d ==σ 另一个常用的压电常数是压电电压常数 g ,它表示应力与所产生的电场的关系,或应变与所引起的电位移的关系。常数 g 与 d 之间有如下关系: εd g = 式中ε为介电系数。在声波测井仪器中,压电换能器希望具有较高的压电应变常数和压电电压常数,以便能发射较大能量的声波并且具有较高的接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电的方法把能量加到压电材料上时,由于压电效应和逆压电效应,机械能(或电能)中的一部分要转换成电能(或机械能)。这种转换的强弱用机电耦合系数 k 来表示,它是

CO2激光器基本原理.

CO2 激光器基本原理 CO2 激光器基本原理、机构介绍 CO2激光器效率高,不造成工作介质损害,发射出10.6μm波长的不可见激光,是一种比较理想的激光器。按气体的工作形式可分封闭式及循环式,按激励方式分电激励,化学激励,热激励,光激励与核激励等。在医疗中使用的CO2 激光器几乎百分之百是电激励。 CO2激光器的工作原理:与其它分子激光器一样,CO2激光器工作原理其受激发射过程也较复杂。分子有三种不同的运动,即分子里电子的运动,其运动决定了分子的电子能态;二是分子里的原子振动,即分子里原子围绕其平衡位置不停地作周期性振动——并决定于分子的振动能态;三是分子转动,即分子为一整体在空间连续地旋转,分子的这种运动决定了分子的转动能态。分子运动极其复杂,因而能级也很复杂。 CO2分子为线性对称分子,两个氧原子分别在碳原子的两侧,所表示的是原子的平衡位置。分子里的各原子始终运动着,要绕其平衡位置不停地振动。根据分子振动理论,CO2有三种不同的振动方式:①二个氧原子沿分子轴,向相反方向振动,即两个氧在振动中同时达到振动的最大值和平衡值,而此时分子中的碳原子静止不动,因而其振动被叫做对称振动。②两个氧原子在垂直于分子轴的方向振动,且振动方向相同,而碳原子则向相反的方向垂直于分子轴振动。由于三个原子的振动是同步的,又称为变形振动。③三个原子沿对称轴振动,其中碳原子的振动方向与两个氧原子相反,又叫反对称振动能。在这三种不同的振动方式中,确定了有不同组别的能级。 CO2激光的激发过程:CO2激光器中,主要的工作物质由CO2,氮气,氦气三种气体组成。其中CO2是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020 的抽空。氮气加入主要在CO2激光器中起能量传递作用,为CO2激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。 CO2分子激光跃迁能级图 CO2激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这

固体激光器原理及应用

编号 赣南师范学院学士学位论文固体激光器原理及应用 教学学院物理与电子信息学院 届别 2010届 专业电子科学与技术 学号 060803013 姓名丁志鹏 指导老师邹万芳 完成日期 2010.5.10

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1引用 (2) 2激光与激光器 (2) 2.1激光 (2) 2.2激光器 (3) 3固体激光器 (4) 3.1工作原理和基本结构 (4) 3.2典型的固体激光器 (8) 3.3典型固体激光器的比较 (11) 3.4固体激光器的优缺点 (12) 4固体激光器的应用 (13) 4.1军事国防 (13) 4.2工业制造 (15) 4.3医疗美容 (17) 5结束语 (17) 参考文献 (19)

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。介绍固体激光器的工作原理及应用,更能够加深对其的了解。本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 Abstract:Solid-state laser is currently one of the most extensive laser,it has some very obvious advantages.The working principle of solid-state lasers and applications were described in the paper and it can enhance the understanding.In this paper, starting with the basic principles and structure of the introduced solid-state laser,and then some typical solid-state lasers and a presentation on its military defense,industrial technology,medical and cosmetic applications in three areas and future development direction were introduced. Key words:Solid-state Laser Basic Principle Basic Structure Application

压电陶瓷实验报告

压电陶瓷微位移性能测量实验报告 一、实验目的: 1、了解压电陶瓷的性能参数; 2、了解电容测微仪的工作原理,掌握电容测微仪的标定方法; 3、掌握压电陶瓷微位移测量方法; 二、实验仪器: 电容测微仪一台:型号JDC-2000测微台架一台:型号BCT-5C,斜度1:50直流调压器一台:电压量程(0~300V)标定平铁板一块压电陶瓷管一根 三、实验原理: (一)利用测微台架标定电容测微仪 在测微台架的台架上放置一金属平板,将电容测微仪探头用测微台架夹紧,使探头的端面与平板平行,见图1,移动测微台架的旋钮,分别读出测微仪移动示值和电容测微仪的示值。这样得到一组数据即可对电容测微仪进行标定。 图1 电容侧微仪标定原理图 (二)用标定后的电容测微仪测量压电陶瓷管的线性度 在电容测微仪的线性区(对应机械标定仪的某个位置),通过可调直流电源按一定间隔改变直流电压(见图2),分别对压电陶瓷加压,使之分别产生轴向变形(见图3)和弯曲变形(见图4),从而得到压电陶瓷的伸长与偏转量与施加其上的电压的关系。

图2 可调高压电源图3 测压电陶瓷轴向伸缩图4测压电陶瓷侧向弯曲 四、实验步骤 (一)标定电容测微仪的线性度 1、实验前,了解实验原理及其实验注意事项,并检查实验仪器是否齐全。 2、使用仪器前,将传感器端面与被测物(标定平铁板)表面用汽油认真清洗干净,以清洗掉杂质及灰尘微粒;而后将电源线和传感器与电缆分别连接好并拧紧。 3、将标定平铁板安放在测微台架的台架上,而后用夹具将电容传感器探头夹紧,接着上下调整探头使探头与标定平铁板距离接近测量区。 4、为便于进行数据分析,可将测微台架示值调至某一合适值,并将电容测微仪示值调零,而后进行实验;实验采用一人细调(等间距)测微台架,另一人记录的方式,为了标定线性区,测定线性误差,调值采用先等间距调至140μm,再等间距调回的方法。(为了节约时间,调值范围为0~140μm,调值间距为5μm,共计读29个数。)5、实验完成后,调整测微台架使探头远离标定平板到合适位置,取下标定平板(并估算找出电容测微仪的线性工作区,我们找的较为好的线性工作区是0~100μm)以进行压电陶瓷的性能及其微位移测量的实验。 (二)、压电陶瓷加电时的性能及其微位移测量 测压电陶瓷轴向伸缩: 1、将压电陶瓷的中线(Z)接至变压器的U+端,两边的两个接线头均接至变压器的地接口端(GND)。 2、将压电陶瓷小心垂直轻放在测微台架的台架上(如图3),并将探头靠近压电陶瓷至电容测微仪线性工作区(注:应先粗调而后细调以使电容测微仪示值在6~94μm以内,

固体激光器的应用

固体激光器的应用 所谓固体激光器就是用固体激光材料作为工作物质的激光器。1960年,梅曼发明的红宝石激光器就是固体激光器,也是世界上第一台激光器。距今已有整整五十年了,在这五十年固体激光的发展与应用研究有了极大的飞跃并且对人类社会产生了巨大的影响。固体激光器在军事、加工、医疗和科学研究领域有广泛的用途。 固体激光器从其诞生开始至今一直是备受关注。其输出能量大峰值功率高结构紧凑牢固耐用因此在各方面都得到了广泛的用途其价值不言而喻。正是由于这些突出的特点其在工业、国防、医疗、科研等方面得到了广泛的应用给我们的现实生活带了许多便利。现在激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域它标志着新技术革命的发展。诚然如果将激光发展的历史与电子学及航空发展的历史相比我们不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 一、固体激光器的类别: 固体激光器的工作物质,主要由光学透明的晶体或玻璃作为基质材料,掺以激活离子或其他激活物质构成。常见的有红宝石(掺铬的刚玉,Cr:Al2O3)、掺钛的磷酸盐玻璃(简称钕玻璃)、掺钛的忆铝石榴石(Nd:YAG)、掺钛的铝酸忆(Nd:Y ALO)、掺钛的氟化忆锂(Nd:YLF)等多种。它们发出激光的波长主要取决于掺杂离子,如掺铬的红宝石,室温下的工作波长为694.3纳米,深红色;又如掺钕的多种晶体和玻璃,工作波长为1微米多,为近红外。 二、固体激光器的构造及原理: 在固体激光器中,能产生激光的晶体或玻璃被称为激光工作物质。激光工作物质由基质和激活离子两部分组成,基质材料为激活离子提供了一个合适的存在与工作环境,而由激活离子完成激光产生过程。常用的激活离子主要是过渡金属离子,如铬、钻、镍等离子以及稀土金属离子,如钕离子等。 固体激光器主要由闪光灯、激光工作物质(如红宝石激光晶体)和反射腔镜片组成,反射镜表面镀有介质膜,一片为全反射镜,另一片为部分反射镜。掺铬红宝石是一种最早发现和使用的激光工作物质。现在已研制成功了数十种可供应用的激光晶体。当采用不同的激活离子、不同的基质材料和不同波长的光激励,会发射出各种不同波长的激光。 早期的固体激光器都是用闪光灯或其他激光器,来完成激光工作物质内原子的受激辐射过程的,这基本上是由一种形式的光能转化为激光能量的过程。如何把电能直接转化为激光的能量,一直是人们梦寐以求的事情。近年来,科学家成功地研制出了半导体激光器,一旦接通电源,便会发出激光。选用不同的半导体材料和不同制造工艺可以制造出功率不同、发射不同波长激光的激光器。半导体激光器的出

相关主题
文本预览
相关文档 最新文档