当前位置:文档之家› 变频恒压供水系统设计

变频恒压供水系统设计

变频恒压供水系统设计
变频恒压供水系统设计

摘要

供水工程往往成为高层建筑或工矿企业和小型企业中最重要的基础设施之一。任何时候都能提供足够的水量、平稳的水压、合格的水质是对给水系统提出的基本要求。就目前而言,多数工业、生活供水系统都采用水塔、层顶水箱等作为基本储水设备,由一级或二级水泵从地下市政水管供给。因此,如何建立一个可靠安全、又易于维护的供水系统是值得我们研究的课题。本文将研究和介绍利用PLC/PID/单片机等来检测它的水位状况,结合可编程控制技术、变频控制技术、电机泵组控制技术的新型机电一体化供水装置,通过PLC/PID解决控制系统的稳定性和准确性。从而取得较好的控制效果。

关键词:PLC 变频控制/恒压供水恒压测试

目录

摘要

目录

第1章前言 1

第2章变频恒压供水工作原理 2

第3章变频恒压供水系统技术方案 4

3.1 系统介绍 4

3.2 PLC功能 4

3.2.1 控制信号采集 4

3.2.2 被自动控制的工作对象 4

第4章建筑给水系统超压出流的实测分析 6

4.1 测试对象 6

4.2 测试装置 6

4.3 测试内容和方法 7

4.3.1 测试点和测试时间 7

4.3.2 测试方法 7

4.4 普通水龙头半开状态 7

4.5 节水龙头半开状态 8

4.6 结语 8

第5章变频恒压供水系统的设计 10

5.1 变频恒压供水技术概述 10

5.1.1 系统构成与控制方式选择 10

5.1.2 各条件下供水具体控制方式 11

5.2 实际系统的设计 12

5.2.1 实际系统中应考虑的其他因素 12

5.2.2 管网水压控制点的选择 13

5.3 抗干扰问题 13

5.4故障时的问题 13

第6章专用变频器在恒压供水装置中的应用 15 6.1 回顾 15

6.2 变频控制恒压供水控制方式 16

6.2.1 逻辑电子电路控制方式 16

6.2.2 单片微机电路控制方式 17

6.2.3 新型变频调速供水设备 18

第7章PLC控制变频器恒压供水系统 21

7.1 概述 21

7.2 控制系统构成 21

7.3 PLC控制系统简介 22

7.4 恒压供水的控制原理 23

7.5 相关控制功能实现 25

7.6.1 运行效果分析 26

7.6.2 高效节能 27

7.7 提高自动化水平 27

第8章小区变频恒压供水系统 28

8.1 概述 28

8.2 变频节能理论 28

8.2.1 交流电机变频调速原理 28

8.3 变频恒压供水系统及控制参数选择 29

8.3.1 变频恒压供水系统组成 29

8.3.2 变频恒压供水系统的参数选取 30

8.4 变频恒压供水系统的优点 30

第9章结论 33

致谢 34

参考文献 35

第1章前言

为了使用户用水的多少是经常变动的,因此供水不足或供水过剩的情况时有发生。而用水和供水的平衡集中反映在供水的压力上,即用水多而供水少,则压力低;用水少而供水多,则压力大。保持供水压力的恒定,可使供水和用水之间保持平衡,即用水多时用水也多,用水少时用水也少,从而提高了供水的质量。

恒压供水是指在供水网中用水量发生变化的时候,出口压力保持不变的供水方式。供水网系出口压力值是根据用户需求确定的。传统的恒压供水方式是采用水塔、高位水箱、气压管等设施实现的。随着变频调速技术的日益成熟和广泛应用,利用内部包含有PID调节器、单片机、PLC等器件有机结合的供水专用变频器,构成控制系统,调节水泵的输出流量,实现恒压供水。

此外,这次课程设计对我还有以下意义:

(1) 通过这次课程设计,加深对PLC等理论方面的理解。

(2) 了解和掌握PLC应用系统的软硬件设计过程、方法及实现,为以后设计和实现PLC 应用系统打下良好基础。

(3) 通过简单的课题设计练习,了解必须提交的各项工程文件,也达到巩固、充实和综合运用所学知识解决实际问题的目的。

第2章变频恒压供水工作原理

全自动变频调速供水设备是应用先进的现代控制理论,结合可编程控制技术、变频控制技术、电机泵组控制技术的新型机电一体化供水装置。该设备通过安装在水泵出水总管上的远传压力表(内为一滑动电阻),将出口压力转换成0-5V电压信号,经A/D转换模块将模拟电压信号转换成数字量并送入可编程序控制器,经可编程内部PID运算,得出一调节参量并将该参量送入D/A转换模块,经数摸转换后将得出模拟量传送变频器,进而控制其输出频率

的变化。设备采用多泵并联的供水方式,用户用水量的大小决定了投入运行的水泵的数量,当用水量较小时,单台泵变频工作,当用水量增加,水泵运行频率随之增加,如达到水泵额定输出功率仍无法满足用户供水要求时,该泵自动转换成工频运行状态,并变频启动下一台水泵。反之,当用水量减少,则降低水泵运行频率直至设定下限运行频率,如供水量仍大于用水量,则自动停止工频运行泵同时变频泵转速增加。当用水量降至某一程度时(如夜间用水很少时),变频主泵停止工作,改由辅泵及小型气压罐供水。节能运行:变频恒压供水控制器采用最新微电脑设计处理器设计制造配备液晶中文显示,参数显示、设定就一目了然了。产品特点:

(1)外部接线简单:用户只需通过菜单设置,即可使控制器适用于不同的供水控制系统;无需改变复杂的外部接线。

(2)可靠性:由于控制器已将各种功能模块集成于内部,外部配件少,、进一步降低了整个系统出现故障的机会。

(3)调试简单方便:丰富而完美的汉字提示。使一般的操作人员无需经过复杂的培训,也能对各种操作应用自如。

(4)系统功能完善:与目前国内同类设备比较,本设备更显示出其独特的优点。在设备工作现场,工程人员可根据泵组的实际情况在显示下,随时改变各种控制参数,由于保证泵组处于最优化的运行状态。

(5)控制精度高本控制程序中所有的模拟量均为数码处理。改良的PID数字控制系统能够避免一般PID死区(对水泵控制而言)所带来的控制误差,使系统的供水压力更加稳定。

(6)睡眠功能的最新应用可使机组在每天的零流量的区域中自动启、停,间歇型的供水方式,使节电效果更佳。

(7)控制功能先进控制系统可在汉字显示屏上明确显示其工频、变频、转换的运行工况。

(8)维修简单方便独有的系统故障检测、明确的故障部位(中文)提示,使工程人员能够清楚地了解故障所在,帮助维修人员检查故障发生的部位的部位和原因。

1 引言

恒压供水系统对于某些工业或特殊用户是非常重要的,例如在某些生产过程中,若自来水供水压力不足或短时断水,可能会影响产品质量,严重时使产品报废和设备损坏。又如当发生

火警时,若供水压力不足或无水供应,不能迅速灭火,可能引起重大经济损失和人员伤亡。所以,某些用水区采用恒压供水系统,具有较大的经济和社会意义。

基于上述情况对某生活区供水系统进行了改造,采用PLC作为中心控制单元,利用变频器与PID相结合,根据系统状态可快速调整供水系统的工作压力,达到恒压供水的目的,提高了系统的工作稳定性,得到了良好的控制效果。

2 系统结构与工作原理

供水系统由主供水回路、备用回路、储水池及泵房组成,其中泵房装有1#~3#共3台150kW 泵机。另外,还有多个电动闸阀或电动蝶阀控制各供水回路和水流量。由于该供水网较大,系统需要供水量每小时开2台泵机向管网充压,供水量大时,开3台泵机同时向管网充压。要想维持供水网的压力不变,在管网系统的管道上安装了压力变送器作为反馈元件,为控制系统提供反馈信号,由于供水系统管道长、管径大,管网的充压比较慢,故系统是一个大滞后系统,不宜直接采用PID调节器进行控制,而应采用PLC参与控制的方式来实现对控制系统调节作用。可编程序控制器选择日本松下FP1-C40型,且配有A/D和D/A模块,其原理框图如图1所示。变频器选择FRN1 60G7P-4实现电动机的调速运行。

控制系统主要由PLC、变频器、切换继电器、压力传感器等部分组成。控制核心单元PLC根据手动设定压力信号与现场压力传感器的反馈信号经PLC的分析和计算,得到压力偏差和压力偏差的变化率,经过PID运算后,PLC将0~5V的模拟信号输出到变频器,用以调节电机的转速以及进行电机的软起动;PLC通过比较模拟量输出与压力偏差的值,通过I/O端口开关量的输出驱动切换继电器组,以此来协调投入工作的电机台数,并完成电机的起停、变频与工频的切换。通过调整电机组中投入工作的电机台数和控制电机组中一台电机的变频转速,使动力系统的工作压力稳定,进而达到恒压供水的目的。

图1 恒压供水系统原理图

3 系统程序设计和PLC的I/O分配

系统程序包括起动子程序和运行子程序,其流程图如图2所示。运行子程序又包括模拟调节子程序(其流程图如图3所示)和电机切换子程序(流程图略),电机切换子程序又包括加电机子程序和减电机子程序(程序设计略)。PLC的输入、输出端子分配情况如附表所示。

图 2 起动程序流程图

图3 模拟调节流程图

附表可编程序控制器(C40)部分输入、输出端子分配

4 系统工作过程

加上起动信号(X4)后,此信号被保持,当条件满足(即X2为“1”)时,开始起动程序,此时由PLC控制1# 电机变频运行(此时Y0、Y6、Y7亮),同时定时器T0开始计时(10s),若计时完毕X2仍亮,则关闭Y0、Y6(Y7仍亮),T2延时1s(延时是为了两方面的原因:一是使开关充分熄弧,防止电网倒送电给变频器,烧毁变频器;二是让变频带器减速为零,以重新起动另一台电机)。延时完毕,则有1#机投入工频运行,2#机投入变频运行,此时Y1、Y2、Y6、Y7亮,同时定时器T1开始计时(10s),若计时完毕X2仍未灭,则关闭Y2、Y6,(Y1、Y7仍亮,)T3延时1s,延时完毕,将2#机投入工频运行,3#机投入变频运行,(此时Y1、Y3、Y4、Y6、Y7亮,)再次等待Y7灭掉后,则整个起动程序执行完毕,转入正常运行调节程序,此后起动程序不再发生作用,直到下一次重新起动。在起动过程中,无论几台电机处于运行状态,X2一旦灭掉,则应视为起动结束(Y7灭掉),转入相应程序。综合整个起动过程,完成3台电机的起动最多需要22s的时间。

运行过程中,若模拟调节器节上、下限值均未达到(即X1、X2灭),则此时变频器处于模拟

调节状态(此时相应电机运行信号和Y6亮)。

若达到模拟调节上限值(X1亮),则定时器T4马上开始定时(5s)。定时过程中监控X1,若

X1又灭掉,则关闭定时器,继续摸拟调节;若T4定时完毕,X1仍亮,则起动一低速(Y8亮),进行多段速调节,同时定时器T5开始定时(3s),定时完毕。若X1仍亮,则关闭此多段速,起动一更低速(Y9),同时定时器T6定时(10s)。定时完毕,若X1仍亮,则关掉Y9,此后X0很快会通,转入切换动作程序。在此两级多段速调节过程中,无论何时,若X0亮,则会关闭相应多段速和定时器,同时进行切换动作,即转入切换程序。同样,若无论何时,X1灭掉,则关闭运行多段速和定时器,转入模拟调节。

若达到模拟调节下限值(X2亮),则定时器T7马上开始定时(5s),定时过程中监控X2,若

X2又灭掉,则关闭定时器,继续摸拟调节,若T7定时完毕,X2仍亮,则起动一高速(Y7、Y2),进行多段速调节,同时定时器T8开始定时(3s),定时完毕。若X2仍亮,则关闭此多段速,起动一更高速(Y8、Y9),同时定时器T9定时(10s),定时完毕。若X2仍亮,则关掉Y8、Y9,此后X3很快会通,转入加电机动作程序。在此两级多段速调节过程中,无论何时,若X3亮,则会关闭相应多段速和定时器,同时进行加电机动作,即转入加电机程序。同样,若无论何时,X2灭掉,则关闭运行多段速和定时器,转入模拟调节。

电机切换程序分为电机切除程序和加电机程序两部分。此程序动作的条件是:起动结束后无论何时X0亮,一旦条件满足,即由PLC根据电动机的运行状态来决定相应切换哪台电机,切换时只能切换工频运行电机。

若工作状态是1台变频1台工频,则立即切除工频电机,然后计数值减1,即完成此过程,再由调节程序运行,调节至满足要求为止。

若3台电机同时工作,则应由PLC来决定切除哪台工频运行电机。切除依据是3台电机对应计数器的大小,谁大切谁,切除掉一台后,要由定时器定时(5s)等待,以便变频器调节一段时间,防止连续切除动作。这主要是考虑到本系统的非线性和大小惯性因素而采取的措施。图3运行时模拟调节子程序流程图加电机程序,其动作程序是:起动结束后无论何时X2亮,一旦条件满足,立即关掉变频运行电机和变频器,延时一段时间后(原因同上),将原变频运

行电机投入工频运行,同时打开变频器和将要起动电机的变频开关,完成加电机。

同样,若原有2台电机工频工作,则X2一亮,立即开始加另一台电机(无延时),(加电机依据是判断计数值,谁小加谁)但加电机完成以后,定时器要开始定时(5s)等待,让变频器调节一段时间,防止连续加电机动作。其过程分为:1# → 2#、1# → 3#、2# → 3#、2# → 1#、3# → 2#、3# → 1#。

5 结束语

用变频调速来实现恒压供水,与用调节阀门来实现恒压供水相比较,节能效果十分显著。其优点是:起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等的使用寿命;可以消除起动和停机时的水锤效应;在锅炉和其他燃烧重油的场合,恒压供油可使油的燃烧更加充分,大大地减轻了对环境的污染。

参考文献

[1] FP1型可编程控制器C24/C40/C60操作手册[Z].

[2] 变频器说明手册[Z]. 富士电机有限公司.

[3] 曾毅等.变频调速控制系统的设计与维护[M]. 济南:山东科学技术出版社,2000.

[4] 陈国呈.PWM变频调速技术[M].北京:机械工业出版社,2001。

摘要:

本文介绍了我们生活小区供水系统的要求,讲述了现供水系统存在的问题,为了解决存在的问题,提高供水系统的安全性和稳定性,采用PLC与变频器构成恒压变频供水系统来进行改造,改造后的系统完全可以达到各用户用水的要求。

一、引言:

生活小区有近千用户,现在的供水系统,在用水量大的时间段,出现严重的供水不足,水压下降,严重影响住户的生活质量。现供水系统采用水泵定速控制,通过改变阀门的大小

的方法调节流量和压力,以达水压恒定。这种方式在运行中存在以下问题。

1.人工操作存在调节滞后,整个系统稳定性差,自动化程度低,使得溢水管经常排水造成资源浪费;

2.水泵定速运行,不仅造成电能的浪费,而且由于泵长期高速运行,易使轴承损坏,影响泵的使用寿命,且备用水泵出现过锈死的现象;

3.每年夏天用水高峰时段水压不能得到保证,当出现了突发性电网故障时,由于水量不足给住户生活造成不便;

为了提供恒压供水,因而对生活小区供水系统进行改造就显得非常重要。

二、系统要求:

1.原供水系统

原供水系统采用两台(一台备用)7.5KW电机控制水塔水位,通过改变阀门的大小的方法调节流量和压力,以达到调节水压供水,系统中电机采用硬启动,且供水中只有一种压力。

2.改造后供水系统要求

(1)供水管网压力按时间自动变化如图一曲线所示。

(2)水泵工作时可由变频运行转换为工频运行,也可由工频运行转换为变频运行,工频

运行与变频运行之间有连锁控制。

(3)当电机由变频运行切换至工频电网运行和由工频电网切换到变频器电动运行时,必须有一定的延时,进行速度稳定后接触器才自动合闸,以防止操作过电压和电机高速产生的感应电势损坏电力电子器件。

(4) 具有自动、稳定、节能、经济等。

三、改造方案确定及系统的构成

1.改造方案

(1)根据系统节能、经济的要求选用三台10KW电机控制三台水泵进行供水。其中一台备用,当用水高峰时两台水泵运行以满足水压要求,用水低峰时一台水泵运行,实现节能目的。

(2)选用PLC、变频器、压力传感器、时控开关作为控制单元,实现出水管网压力的自动化控制,水泵之间的自动切换和阀门的自动开关等,大幅度提高设备的自动化水平和可靠度。

2.系统构成

变频器是调速核心设备,其主要作用是通过改变输出电源频率而对电机,水泵实现无级调速,达到随用水量变化而自动调节电机、水泵转速,使管网保持恒压的目的。另外,系统通过软硬件实现过压过流过热等较齐全的保护功能,以及对电机实施热启动,每台水泵均具有变频,手动等操作功能。从而,根据用水所需的压力来调节电机速度控制压力,达到节能的目的。

四、系统改造

1.元件选型

(1)时控开关选用LT311A型时控开关。它为单片机可编程时间控制器,具有24个可预置的时间程序,按顺序设置可组成12对定时开关。其中1~8程序组成4对定时开关为第一路输出,9~16程序组成4对定时开关为第二路输出,17~24程序组成4对定时开关为第三路输出,若将三路输出合并为一路使用,可实现每天12次开12次关的定时控制。其使用接线如图三所示。

(2)压力传感器选用PS4型压力传感器,该传感器具有开关量与模拟量输出功能,传感器的测量范围为0.3~0.8Mpa,外形引脚如图四所示。其开关量输出可通过压力预置,当检测到的压力达到预置压力时开关闭合。

(3) PLC选型:根据系统输入输出点数选择。时控开关有三个时控输出信号,再加上启动、停止,手动控制三台电机及六个电磁阀等共计有22个输入点,22个输出点;另整个系统对PLC没有特殊功能指令要求,因此可选择经济小型的FXON-60MR型PLC。

(4)根据电机的功率选择变频器:电机功率为10KW,可选择日本三菱公司的

FR-A540-10KW变频器,其变频器本身具有制动功能,可不用外接制动元件。

2.全系统控制

(1)时间压力匹配控制

①时控开关时间设定:0:00~5:00,11:00~14:00,21:00~24:00为1~6组时间程序,由第一路输出;5:00~8:00,14:00~17:00为8~11组时间程序,由第二路输出;

8:00~11:00,17:00~21:00为17~20组时间程序由第三路输出。然后接于PLC输入端的X10、X11、X12端子。

②压力设置分别为0.38MPa、0.5MPa、0.47MPa、0.52MPa、0.48MPa、0.53MPa、0.42MPa,其实现可通过PLC输出的开关量信号来控制变频器2端子输入电压大小以达到实现的目的。其电气接线图如图五所示。

③变频器在某一时段给定压力后,与压力传感器检测到的压力信号反馈到变频器的4

端子进行比较,可随时调整变频器输出频率,以达到实际压力与给定压力相等,从而实现了变频器的PID控制。

(2)变频运行与工频运行的转切换

当电机的变频供电频率上升到工频运行时,则PLC控制继电器断开变频器的供电,直接

由电网进行供电,当供水管压力还达不到要求时,第二台电机变频启动运行。根据现场实测情况有如下特点:当压力达到0.5Mpa时变频器输出频率为工频,此时要求将变频运行切换成电网供电运行。其实现是将压力传感器设定值为50Hz,通过传感器开关量的输出来控制PLC,实现电机变频与电网运行的切换。PLC控制变频及电机运行的情况如下表:

(3)PLC输入、输出分配表

(4)PLC梯形图如图七所示。

(5)变频器程序设置如下:

Pr79=2;(操作模式选择外部操作模式)

Pr128=20;(PID控制动作选择负反馈)

Pr129=300%;(PID比例范围)

Pr130=180s;(PID积分时间)

Pr134=3s;(PID微分时间)

Pr1=10Hz;(下限频率)

Pr2=50Hz;(上限频率)

Pr904=0mA;0Hz;(传感器输出校正)

Pr905=16mA;50Hz;(传感器输出校正)

五、结束语:

采用该PLC控制的恒压变频供水系统肯定能保证小区用户的用水,同时很大程度上降低了维修的劳动强度和延长了设备的使用寿命,实现了真正的自动控制,不仅可解决了现供水系统存在的问题,而且节能效果显著。因此,从节能和改善用户的生活条件上有着重大的价值。

系统简介

为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。

鉴于以上特点,从技术可靠和经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递较经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。

2 系统方案

系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。

2.1 抽水泵系统

整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台150KW和一台90KW的软起动150KW 和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。

系统为每台电机配备电机保护器,是因为电机功率较大,在过载、欠压、过压、过流、相序不平衡、缺相、电机空转等情况下为确保电机的良好使用条件,达到延长电机的使用寿命的目的。

系统配备水位显示仪表,可进行高低位报警,同时通过PLC可确保取水在合理水位的水质监控,同时也保护电机制正常运转工况。

系统配备流量计,既能显示一段时间的累积流量,又能显示瞬时流量,可进行出水量的统计和每台泵的出水流量监控。

2.2 公司内不同压力供水需求的解决

为稳定可靠地满足公司内部分区域供水太力(0.4~0.45Mpa)低于主管网水压力

(0.8~0.9Mpa)的要求,配备稳压减压阀来调节,可调范围为0.1~0.8Mpa。

2.3 加压泵系统

由于抽水泵房距离高位水池较远,直接供水到高位水池抽水泵的扬程不足,为此在距离高位水池落差为36米处设计有一加压泵房,配备立式离心泵两台(一用一备)电机功率为75KW,扬程36米。该加压泵的控制系统需考虑以下条件:

(1)若高位水池水位低和主管有水,则打开进水电动蝶阀和起动加压泵向高位水池供水;(2)若高位水池水位满且主管有水,则给出报警信号并关闭加压泵和进水电动蝶阀;(3)若主管无水表明用水量增大或抽水泵房停止供水,必须开启出水电动蝶阀由高位水池向主管补充不。

像抽水泵一样,我们为加压泵配备了软起动器和电机保护器,确保加压泵长期可靠地运转,同时配备了高位水池的水位传感器和数显仪和缺水传感器。

为保证整个主水管网的恒压供不,当高位水池满且主水管有水时,加压泵停止,此时主管压力将“憋压”,最终导致主管压力上升,并将此压力传递到抽水泵房,抽水泵的控制系统检测到此压力进行恒压变频控制,进而达到整个主管网的恒压供水,这是整个控制系统设计的关键。

3 系统实现功能

3.1 全自动平稳切换,恒压控制

主水管网压力传感器的压力信号4~20mA送给数字PID控制器,控制器根据压力设定值与实际检测值进行PID运算,并给出信号直接控制变频器的转速以使管网的压力稳定。当用水量不是很大时,一台泵在变频器的控制下稳定运行;当用水量大到变频器全速运行也不能保证管网的压和稳定时,控制器的压力下限信号与变频器的高速信号同时被PLC检测到,PLC自动将原工作在变频状态下泵投入到工频运行,以保持压力的连续性,同时将一台备用的泵用变频器起动后投入运行,以加大管网的供水量保证压力稳定。若两台泵运转仍,则依次将变频工作状态下的泵投入到工频运行,而将另一台备用泵投入变频运行。

当用水量减少时,首先表现为变频器已工作在最低速信号有效,这时压力上限信号如仍出现,PLC首先将工频运行的泵停掉,以减少供水量。当上述两个信号仍存在时,PLC再停掉一台工频运行的电机,直到最后一台泵用主频器恒压供水。另外,控制系统设计六台泵为两组,每台泵的电机累计运行时间可显示,24小时轮换一次,既保证供水系统有备用泵,又保证系统的泵有相同的运行时间,确保了泵的可靠寿命。控制系统图见图3。

V20变频器PID控制恒压供水操作指南(DOC)

V20变频器PID控制恒压供水操作指南 1.硬件接线 西门子基本型变频器SINAMICS V20 可应用于恒压供水系统,本文提供具体的接线及简单操作流程。 通过BOP设置固定的压力目标值,使用4~20mA管道压力反馈仪表构成的PID控制恒压供水系统的接线如下图所示: 图1-1.V20变频器用于恒压供水典型接线 2调试步骤

2.1 工厂复位 当调试变频器时,建议执行工厂复位操作: P0010 = 30 P0970 = 1 (显示50? 时按下OK按钮选择输入频率,直接转至P304进入快速调试。) 2.2 快速调试 表2-1 快速调试参数操作流程 参数功能设置 P0003 访问级别=3 (专家级) P0010 调试参数= 1 (快速调试) P0100 50 / 60 Hz 频率选择根据需要设置参数值: =0: 欧洲[kW] ,50 Hz (工厂缺省值) =1: 北美[hp] ,60 Hz P0304[0] 电机额定电压[V] 范围:10 (2000) 说明:输入的铭牌数据必须与电机接线 (星形/ 三角形)一致 P0305[0] 电机额定电流[A] 范围:0.01 (10000) 说明:输入的铭牌数据必须与电机接线 (星形/ 三角形)一致 P0307[0] 电机额定功率[kW / hp] 范围:0.01 ... 2000.0 说明:如P0100 = 0 或2 ,电机功率 单位为[kW] 如P0100 = 1 ,电机功率单位为[hp] P0308[0] 电机额定功率因数(cosφ )范围:0.000 ... 1.000 说明:此参数仅当P0100 = 0 或 2 时可见P0309[0] 电机额定效率[%] 范围:0.0 ... 99.9 说明:仅当P0100 = 1 时可见 此参数设为0 时内部计算其值。 P0310[0] 电机额定频率[Hz] 范围:12.00 ... 599.00 P0311[0] 电机额定转速[RPM] 范围:0 (40000) P0314[0] 电机极对数设置为0时内部计算其值。 P0320[0] 电机磁化电流[%] 定义相对于电机额定电流的磁化电流。 设置为0时内部计算其值。 P0335[0] 电机冷却根据实际电机冷却方式设置参数值 = 0: 自冷(工厂缺省值) = 1: 强制冷却 = 2: 自冷与内置风扇 = 3: 强制冷却与内置风扇

变频恒压供水控制系统

变频恒压供水控制系统 发表时间:2019-01-08T16:21:17.107Z 来源:《电力设备》2018年第24期作者:蒋正锋[导读] (四川理工技师学院四川成都 611130) 1、系统构成 整个系统由一台PLC,一台变频器,水泵机组(3台),一个压力传感器,低压电器及一些辅助部件构成。 2、系统硬件设计 2.1.1 PLC选型 本系统选用FX2N-32MR型PLC。 2.1.2 接线及I/O分配 2.3 变频器选型及接线 2.3.1 变频器选型 根据设计的要求,本系统选用FR-A740系列变频器。 2.3.2变频器的接线 变频器端子 PLC端子功能 STF Y7 电机正转 FU X2 增泵、减泵 OL X3 增泵、减泵 2.6系统主电路设计 系统主电路接线 3 系统的软件设计 (1)自动运行部分 LD M8002 SET M0 LD X015 CJ P0 LD M0 AND X000 RST M0 SET M2 SET M7 SET M8 1)启动1#泵 按下启动按钮,系统检测采用那种运行模式。如果按钮SB7没按,则使用自动运行模式。变频启动1#水泵。 LD M2 AND X002 RST M2 SET M1 SET M4 2)启动1#,2#泵: 接收到变频器上限信号,PLC通过这个上限信号后将1#水泵由变频运行转为工频运行,KM1断开KM0吸合,同时KM3吸合变频启动第2#水泵。 LD M1 AND M4 AND X003 RST M1 RST M4 SET M2 3)启动1#泵: 接到下限信号就关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。 LD M1 AND M3 AND M6 AND X003 RST M6 RST M3 SET M4 4)启动1#,2#泵: 输出的下限信号使PLC关闭KM5、KM2,开启KM3,2#水泵变频启动。 LD M1 AND M4 AND X003 RST M4 RST M1 SET M2 5)启动1#泵: 接到下限信号关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。

变频恒压供水控制系统设计

课程设计 课题名称变频恒压供水控制系统设计学院(部) 专业 班级 学生姓名 学号 指导教师(签字)

14 / - 1 - 一、设计概述 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。最终实现控制系统的自动稳定运行。 根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。 二、设计任务 例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。水泵有2台,由一台变频器驱动。PLC按照压力变送器(PIT)的信号,调节

变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。控制系统原理如图1所示: 14 / - 2 - PLC 变频PIT 恒压供水变频控制系统原理图图1 系统设备选型三、 主要电气元件参数指标1,三相异步电动机水泵:35KW1.0Mpa 恒压设定点:,两线制,4-20mA电流输出压力变送器:0-1.6Mpa VVVF变频器变频器: 1)水泵(小时,35m3/根据设计要求水泵正常供水20m3/小时,最大供水量50 ,流量扬程45m扬程。参考相关资料选择型号为IS50-32-125(50m 的水泵即可满足要求。m3/小时) (2)远传压力表结合具体有数据读取表盘等优点,由于远传压力表具有价格低、14 / - 3 - 实际设计,故在此处选择其作为反馈信号。 四、系统控制要求 1、设两台水泵。一台工作,一台备用。正常工作时,始终有 一台水泵供水。当工作泵出现故障时,备用泵自投。 2、两台泵可以互换。 3、给定压力可调,压力控制点设在水泵处。 4、具有自动,手动工作方式,各种保护、报警装置。 5、用PLC为主要器件完成控制系统的设计。

TVFE9系列变频器恒压供水调试方案

TVFE9系列变频器恒压供水调试方案 恒压供水是指在供水网中用水量发生变化时,出口压力保持不变的供水方式。供水 网系出口压力值是根据用户需求确定的。随着变频调速技术的日益成熟和广泛应用,利用 变频器、PID调节器、单片机、PLC等器件的有机结合,构成控制系统,调节水泵的输出流量,实现恒压供水。该技术已在供水行业普及。 一、变频恒压供水系统主要特点: 1、节能:变频恒压供水系统的最显著优点就是节约电能,节能量通常在10-40%。从单台水泵的节能来看,流量越小,节能量越大。 2、运行可靠:变频恒压供水系统实现了系统供水压力稳定,由变频器实现泵的软起动, 使水泵实现由工频到变频的无冲击切换,防止管网冲击、避免管网压力超限,管道破裂。 3、卫生节水:根据实际用水情况设定管网压力,自动控制水泵出水量,减少了水的跑、 漏现象;系统实行闭环供水后,用户的水全部由管道直接供给,取消了水塔、天面水池、 气压罐等设施,避免了用水的“二次污染”,取消了水池定期清理的工作。 4、控制灵活:分段供水,定时供水,手动选择工作方式。 5、自我保护功能完善:新型的小区变频恒压供水系统具备了过流、过压、欠压、欠相、短路保护、瞬时停电保护、过载、失速保护、低液位保护、主泵定时轮换控制等功能,功能完善,全自动控制,自动运行,泵房不设岗位,只需派人定期检查、保养如某台泵出现故障,主动向上位机发出报警信息,同时启动备用泵,以维持供水平衡。万一自控系统出现故障,用户可以直接操作手动系统,以保护供水。 6、延长设备寿命、保护电网稳定:使用变频器后,机泵的转速不再是长期维持额定转速运行,减少了机械磨损,降低了机泵故障率,而且主泵定时轮换控制功能自动定时轮换主泵运行,保证各泵磨损均匀且不锈死,延长了机泵使用寿命。变频器的无级调速运行,实现了机泵软启动,避免了电机开停时的大电流对电机线圈和电网的冲击,消除了水泵的水锤效应。 二、变频恒压供水系统组成 变频恒压供水系统通常是由水源、离心泵、压力传感器、PID调节器、变频器、管网组 成。工作流程是利用设置在管网上的压力传感器将管网系统内因用水量的变化引起的水压变化,及时将信号(4-20mA或0-10V)反馈PID调节器,PID调节器对比设定控制压力进行运算后给出相应的变频指令,改变水泵的运行或转速,使得管网的水压与控制压力一致。

恒压供水系统(多泵)

目录 1 变频器恒压供水系统简介 (1) 1.1 变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2 恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (3) 2 变频恒压供水系统设计 (4) 2.1 设计任务及要求 (5) 2.2 恒压供水系统主电路设计 (6) 2.3 系统工作过程 (7) 3 器件的选型及介绍 (9) 3.1 变频器简介 (9) 3.1.1 变频器的基本结构与分类 (9) 3.1.2 变频器的控制方式 (9) 3.2 变频器选型 (10) 3.2.1 变频器的控制方式 (10) 3.2.2 变频器容量的选择 (11) 3.2.3 变频器主电路外围设备选择 (13) 3.3 可编程控制器(PLC) (15) 3.3.1 PLC的定义及特点 (15) 3.3.2 PLC的工作原理 (16) 3.3.3 PLC及压力传感器的选择 (16) 4 PLC编程及变频器参数设置 (18) 4.1 PLC的I/O接线图 (18) 4.2 PLC程序 (18) 4.3 变频器参数的设置 (22) 4.3.1 参数复位 (22) 4.3.2 电机参数设置 (22) 总结 (23) 参考文献 (24)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1为供水系统的基本特征。 变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

变频恒压供水设备常见故障排除方法

问:为什么变频恒压供水设备系统压力不稳容易振荡 答:系统压力不稳,可能有以下几种原因: 1、压力传感器采集系统压力的位置不合理,压力采集点选取的离水泵出水口太近,管路压力受出水的流速影响太大。从而反馈给控制器的压力值忽高忽低,造成系统的振荡。 2、如果系统采用了气压罐的方式,而压力采集点选取在气压罐上,也可能造成系统的振荡。空气本身有一定的伸缩性,而且气体在水中的溶解度随压力的变化而变化,水泵直接出水的反馈压力和通过气体的反馈压力之间有一定的时间差,从而造成系统振荡。 3、控制器的加减速时间与水泵电机功率不相符。一般情况下,功率越大,其加减速时间也就越长。此项参数用户可多选几个数据进行调试。比如,15KW一般为10至20秒之间。 4、控制器和变频器的加减速时间不一致,控制器的加减速时间设定应大于或等于变频器加减速时间。 问:为什么变频恒压供水设备小泵频繁起停 答:此种情况是针对工频工作的小泵而言的。在系统之中,控制器的参数中第23、24项参数“小泵压力正、负误差”设定过小。在所有主泵都关闭以后,当系统的实际压力低于设定压力与小泵压力负误差之和时,小泵则起动。随着系统压力的上升,使得系统的实际压力高于设定压力与小泵压力正误差这两者之和时,小泵则被系统关闭。所以,解决问题的方法是将此项参数调高一定值即可。 问:为什么变频恒压供水设备在水泵切换时,变频器输出不为零 答:用户首先确定控制器给变频器的控制线是否全部接好。如果变频器没有滑行停车输入信号,则必须将变频器设定为自由滑行停车的工作模式。如果变频器有此信号输入则确保和控制器接好。然后,在水泵进行切换动作时,控制器会给变频器一个滑行停车信号,即EMG信号。如果EMG信号线没有接通,会直接导致变频器过载,此类现象要绝对禁止,否则,容易损坏变频器。如果接有EMG信号线,请仔细检查线是否接实。确定接实,没有线路故障后,再用万用表检查控制器的EMG是否有输出。如果当控制器处于切换时,EMG信号没有输出,则说明是控制器有故障.另外,不论控制器的变频器控制方式是何种类型,切换时均为滑行停止模式。 问:变频恒压供水设备模拟输出不正常,变频器运行频率与控制器输出不符,为什么答:首先,应确定是什么硬件出了问题。使控制器进入手动调试状态,分别用万用表量出控制器输出0Hz及50Hz时所对应的模拟量输出值。如果控制器的模拟输出值在0Hz时大于30mV,或在50Hz时小于控制器第10项参数定标的电压值(请确定模拟输出增益为100%),则说明控制器输出存在问题。如果随着控制器的频率变化,输出一直保持不变,说明控制器的模拟输出电路损坏;如果模拟输出值也是变化的,但不能达到最大值,可通过调节模拟输出增益解决。其次,如果控制器的输出值正常,当控制器输出达到第10项参数定标的电压值时,变频器不能达到50Hz,说明是变频器的设定值存在问题,可调节变频器的频率增益解决。

变频恒压供水系统

供水系统方案图

变频恒压供水系统构成及工作原理 1系统的构成 图3-1 系统原理图 如图3-1所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,

一般采用电阻式传感器(反馈0~5V电压信号)或压力变送器(反馈4~20mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。 从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、以及报警装置等部分组成。 (1)执行机构 执行机构是由一组水泵组成,它们用于将水供入用户管网,图2.3中的3个水泵分为二种类型: 调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。 恒速泵:水泵运行只在工频状态,速度恒定。它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。 (2)信号检测 在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号: ①水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。 ②报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。该信号为开关量信号。 (3)控制系统 供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。 ①供水控制器:它是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水

变频恒压供水控制系统设计

课题名称变频恒压供水控制系统设计 学院(部) 电子与控制工程学院 专业电气工程及其自动化 班级 2011320401 学生阿不都热扎克·阿不都拉 _ 学号 06 月 23 日至 06 月 27 日共 1 周 指导教师(签字) 2011年 06 月 7 日

目录 摘要 (3) 一、设计容 (4) 二、设计要求 (4) 三、设计容 1、方案的确定 (5) 2、变频调速恒压供水系统简介及工作原理 (6) 3、水泵的容量计算 (8) 4、水泵/变频器/PLC的选择 (9) 5、变频器参数设定 (10) 6、PID控制器参数选择 (10) 7、PLC外部接线图的设计 (11) 8、主电路的设计 (12) 9、系统的工作原理 (12) 四、设计图纸 (13) 五、操作使用说明书 (14) 六、设计体会 (15) 七、主要参考资料 (16) 附录一/附录二 (17) 附录三 (18) 附录四 (19)

摘要 随着我国社会经济的不断发展,住房制度改革的不断深入,人民生活水平的不断提高,城区中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。小区供水系统的建设是其中的一个重要方面,供水的经济性、可靠性、稳定性直接影响到小区住户的正常生活与工作,也直接体现了小区物业水平的高低。传统的恒速泵加压供水、水塔高位水箱供水、气压罐供水灯供水方式普遍不通话程度的存在效率低、可靠性差、自动化不高等缺点,难以满足当前经济生活的需要。 论文分析了采用变频调速方式实现恒压供水的工作机理,通过对PID模块的参数预置,利用远传压力表的水压反馈量,构成闭环调节系统,利用变频器与水泵的配合作用实现恒压供水且有效节能。 论文论述了多种供水方案的合理性,同时也指出各种方案存在的问题,通过对比比较给出了比较适合该系统的方案——PLC控制变频恒压供水。 关键字:恒压供水变频调速 PLC

变频器恒压供水系统使用说明书

变频恒压供水系统 产 品 说 明 书 XX市XXXXXX有限公司

目录 一、概述 (1) 二、型号规格和表示意义 (2) 三、主要技术参数与设备示意图 (2) 四、变频恒压供水系统安装指引与注意事项 (3) 五、使用注意事项 (3)

一、概述 1、变频恒压供水系统的特点: 变频恒压供水系统是在气压给水设备的基础上开发的一种能直接与自来水管网连接、且对自来水管网不产生任何副作用的成套给水设备。他取代了蓄水池的和屋顶水箱,能充分利用自来水管网的压力直接或间接供水,避免了能源的二次浪费和水质的二次污染,大幅度节约了基建投资并缩短了施工工期。 变频恒压供水系统由智能型变频控制柜、稳流罐、水泵机组、仪表、阀门及管路、基座等组成,适用于一切需要增高水压、恒定流量的给水系统。 特点: (1)供水系统的控制对象是用户管网的水压,它是一个过程控制量,同其他一些过程控制量(如:温度、流量、浓度等)一样,对控制作用的响应具有滞后性。同时用于水泵转速控制的变频器也存在一定的滞后效应。 (2)用户管网中因为有管阻、水锤等因素的影响,同时又由于水泵自身的一些固有特性,使水泵转速的变化与管网压力的变化成正比,因此变频调速恒压供水系统是一个线性系统。 (3)变频恒压供水系统设备要具有广泛的通用性,面向各种各样的供水系统,而不同的供水系统管网结构、用水量和扬程等方面存在着较大的差异,因此其控制对象的模型具有很强的多变性。 (4)在变频恒压供水设备中,由于有定量泵的加入控制,而定量泵的控制(包括定量泉的停止和运行)是时时发生的,同时定量泵的运行状态直接影响供水系统的模型参数,使其不确定性地发生变化,因此可以认为,变频调速恒压供水系统的控制对象是时时变化的. 2、应用范围: 1)住宅小区、别墅、写字楼、综合楼生活供水。 2)气压给水,地面水池加压等传统供水系统改造。 3)各种锅炉冷水供水系统、锅炉热水。 4)自来水厂的中间加压泵站、自来水二次增压。 5)各工矿企业的生产、生活用水、管网稳压。 6)各种类型的循环水、冷却水供应系统。

PLC与变频器控制的自动恒压供水系统解析

PLC与变频器控制的自动恒压供水系统 1 系统简介 为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。 鉴于以上特点,从技术可靠 和>'https://www.doczj.com/doc/4913387577.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递 较>'https://www.doczj.com/doc/4913387577.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。 2 系统方案 系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。 2.1 抽水泵系统 整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台 150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。

变频器恒压供水课程设计

目录 1变频器恒压供水系统简介 ................................................................... 错误!未定义书签。 1.1变频恒压供水系统节能原理 .................................................... 错误!未定义书签。 1.2变频恒压控制理论模型 ............................................................ 错误!未定义书签。 1.3恒压供水控制系统构成 ............................................................ 错误!未定义书签。 1.4恒压供水系统特点 .................................................................... 错误!未定义书签。 1.5恒压供水设备的主要应用场合 ................................................ 错误!未定义书签。2变频恒压供水系统设计 ....................................................................... 错误!未定义书签。 2.1设计任务及要求 ........................................................................ 错误!未定义书签。 2.2系统主电路设计 ........................................................................ 错误!未定义书签。 2.3系统工作过程 ............................................................................ 错误!未定义书签。 2.3.1减泵过程 ....................................................................... 错误!未定义书签。 2.3.2加泵过程 ....................................................................... 错误!未定义书签。 3 器件介绍及选型 .................................................................................. 错误!未定义书签。 3.1变频器介绍 ................................................................................ 错误!未定义书签。 3.2变频器的种类 ............................................................................ 错误!未定义书签。 3.3变频器选型 ................................................................................ 错误!未定义书签。 3.3.1变频器的控制方式 ....................................................... 错误!未定义书签。 3.3.2变频器容量的选择 ......................................................... 错误!未定义书签。 3.3.2变频器主电路外围设备选择 ......................................... 错误!未定义书签。 3.4可编程逻辑控制器(PLC)..................................................... 错误!未定义书签。 3.4.1 PLC的工作原理 ........................................................... 错误!未定义书签。 3.4.2 PLC及压力传感器的选择 ........................................... 错误!未定义书签。4PLC编程及变频器参数设置............................................................ 错误!未定义书签。 4.1 PLC的I/O接线图 ............................................................... 错误!未定义书签。 4.2 PLC .......................................................................................... 错误!未定义书签。 4.3 变频器参数的设置 ................................................................. 错误!未定义书签。总结 .......................................................................................................... 错误!未定义书签。参考文献 .................................................................................................. 错误!未定义书签。

教材:恒压供水系统调试与运行(第2版)

项目四恒压供水系统调试与运行 恒压供水系统一般由水箱、水泵、电动机、压力传感器、控制器、变频器等组成。采用多台水泵及电机比单台水泵及电机节能而可靠。恒压供水的 主要目标是保持管网水压的恒定,水泵电机的转速要跟随用水量的变化而变化,这就需要用变频器为水泵电机供电。数台电机配一台变频器,变频器与电机间可以切换,供水运行时,一台水泵变频运行,其余水泵工频运行,以满足不同用水量的需求。如图4-1所示。 图4-1 恒压供水控制系统 学习完本项目后,你将能够: ●了解恒压供水系统的组成及各部分的作用; ●掌握恒压供水基本原理,控制器的闭环工作过程; ●熟悉模拟量模块EM235的性能指标、接线、校准及配置; ●掌握变送器的选择与应用; ●掌握模拟量地址设置、采集、变换及滤波; ●理解PID控制各部分的作用,熟悉PID指令; ●熟悉PID控制各参数的工业常用范围; ●掌握变频器通信控制的接线与参数设置;

●熟练应用USS协议控制西门子MM420变频器; ●熟练搭建西门子触摸屏组态环境; ●熟练应用西门子触摸屏建立项目、组态元件、下载调试; ●掌握系统选型、图纸绘制、系统接线; ●熟练编制手动子程序,配合触摸屏调试硬件系统; ●熟练编制自动子程序,实现恒压控制; ●熟练组态触摸屏,进行界面切换、参数设置、操作控制。 4.1 恒压供水系统认知 4.1.1 实训的目的和要求 1. 实训的目的 (1)了解恒压供水系统的组成。 (2)理解各组成部分在作用。 2. 实训的要求 (1)观察系统,说明各部分作用。 (2)打开控制柜,说明每个器件的作用,说明每根接线的作用。 (3)拆卸控制柜。 4.1.2 基本原理 恒压供水系统可分为控制柜和执行机构两大部分。控制柜有电源、显示仪表、控制器、中间继电器、接触器、变频器、压力传感器、变送器、互感器、按钮、转换开关、触摸屏等组成,执行机构一般由水箱、水泵、止回阀、电动机、阀门等组成。如图4-2所示。 水泵 水箱 图4-2 变频恒压供水系统的基本构成

变频恒压供水系统组成及工作原理

变频恒压供水系统组成及工作原理变频恒压供水最简单的方式:一台变频器,一个电接点压力表。变频器是电子元件,没有机械运动;水泵总的转速还是跟水量成比例的。另外,供水系统对水压没精度要求,况且压力波动不会超过0.02MPa(设定0.3MPa时)。变频器在恒压供水系统中的应用变频恒压供水主要有分为:恒压变流量和变压变流量两大类。 一、变频恒压供水系统组成 系统为变频恒压的供水系统,分为冷水、热水两大供水系统,系统为1拖1的恒压供水,两台电机为互备,可选择使用1#泵或2#泵运行,KM3、 KM8为手动工频运行选择,作为变频的维修系统备用,KM2 ,KM3、 KM7,KM8为机械互锁的接触器,保证选择变频运行和工频运行的正确切换。 变频恒压供水的基本原理:以压力传感器和变频器组成闭环系统,根据系统管网的压力来调节电机的转速,实现高峰用户的水压恒定,和低峰时的变频的休眠功能,得到恒压供水和节能的目的。 二、系统硬件参数 热水系统: 电机参数: Pe=15kw Ue=380v Ie=26.8A Ne=1490rpm 变频器型号: 6SE64430-2AD31-8DA0 Pe=18.5kw Ie=38A 压力传感器: GYG2000 反馈信号4-20mA 供电+24V 量程0-0.5Mpa 冷水系统: 电机参数: Pe=22kw Ue=380v Ie=39.4A Ne=2940rpm 变频器型号: 6SE64430-2AD33-7EA0 Pe=30.5kw Ie=62A 压力传感器: GYG2000 反馈信号4-20mA 供电+24V 量程0-0.5MPa 三、PID闭环控制功能原理及调试方法 变频器的内置PID功能,利用装在水泵附近的主出水管上的压力传感器,感受到的压力转化为4-20mA电信号作为反馈信号。根据变频恒压的层高设定压力值作为给定值,变频器内置调节器作为压力调节器,调节器将来自压力传感器的压力反馈信号与出口压力给定值比较运算,其结果作为频率指令输送给变频器,调节水泵的转速使出口压保持一定。即当用水量增加,水压降低时,调节器使变

变频恒压供水系统

变频恒压供水系统文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

供水系统方案图 变频恒压供水系统构成及工作原理 1系统的构成 图3-1 系统原理图 如图3-1所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,一般采用电阻式传感器(反馈0~5V电压信号)或压力变送器(反馈4~20mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。 从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系 统、人机界面、以及报警装置等部分组成。 (1)执行机构 执行机构是由一组水泵组成,它们用于将水供入用户管网,图中的3个水泵分为二种类型: 调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。 恒速泵:水泵运行只在工频状态,速度恒定。它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。 (2)信号检测 在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号:

①水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。 ②报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。该信号为开关量信号。 (3)控制系统 供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。 ①供水控制器:它是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵)进行控制。 ②变频器:它是对水泵进行转速控制的单元。变频器跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。 ③电控设备:它是由一组接触器、保护继电器、转换开关等电气元件组成。用于在供水控制器的控制下完成对水泵的切换、手/自动切换等。 (4)人机界面 人机界面是人与机器进行信息交流的场所。通过人机界面,使用者可以更改设定压力,修改一些系统设定以满足不同工艺的需求,同时使用者也可以从人机界面上得知系统的一些运行情况及设备的工作状态。人机界面还可以对系统的运行过程进行监示,对报警进行显示。 (5)通讯接口

变频恒压供水系统课程设计说明书

课 程 设 计 2015 年 6 月 21 日 题 目 恒压供水控制系统设计 学 院 物流工程学院 专 业 物流工程 班 级 物流xz1202 姓 名 尹国泰 指导教师 于蒙

课程设计任务书 学生姓名:尹国泰专业班级:物流xz1202 指导教师:于蒙工作单位:物流工程学院 题目:变频恒压供水控制系统设计 初始条件: 1)PLC型号:西门子公司S7系列,S7-300 2)编程环境:SIMATIC Manager /Step7 V5.5 3)根据控制要求分配PLC I/O地址,画出PLC与控制对象的接线图,设计控制流程,按照模块化的方式设计程序,既可以采用LAD编程,也可以采用STL编程,还可以采用组合方式编程。 4)编写的需要输入PLC,调试通过。 要求完成的主要任务: 系统控制要求对三泵生活/消防双恒压供水系统的基本要求是: 1)生活供水时,系统应低恒压值运行,消防供水时系统高恒压值运行; 2)三台泵根据恒压的需要,采取“先开后停”的原则接入和退出; 3)在用水量小的情况下,如果一台泵连续运行时间超过3小时,则要切换到下系统“倒泵功能”,避免某一台泵工作时间过长; 4)三台泵在起动时要有软起动功能; 5)要有完善的报警功能; 6)对泵的操作要有手动控制功能,手动只在应急或检修时临时使用。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

本科生课程设计成绩评定表 指导教师签字: 2015年06 月16 日

基于S7-300-PLC控制的恒压供水系统的设计 摘要 随着经济与技术的发展,对PLC的应用不断扩大到各个领域,从生产制造到日常应用,逐渐形成了一系列以PLC为核心的系统。将PLC应用到恒压供水控制系统中,可以实现恒压供水系统的自动控制,降低整套系统的运行及维护费用,并且提高整套系统的安全性和可靠性。PLC在恒压供水控制系统中的应用,具有巨大的经济和社会价值。在此我们以PLC控制技术为核心,采用了德国西门子公司出产的SIMATIC S7-300系列的PLC,并在此基础上结合传感器技术,论述了恒压供水控制系统的软硬件设计方案及其控制原理,实现了恒压供水系统在生活供水时的低恒压运行和消防供水时的高恒压运行之间的自动转换,以及紧急情况或检修时的手动控制。通过软件的仿真运行,说明了所设计的恒压供水控制系统运行可靠,能够满足实际需要。 关键词:PLC应用;恒压供水;S7-300;运行转换

变频恒压供水的应用方案

变频恒压供水的应用方案 一、前言 随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频供水设备已广泛应用于多层住宅小区生活及高层建筑生活消防供水系统。变频调速供水设备一般具有设备投资少,系统运行稳定可靠,占地面积小,节电节水,自动化程度高,操作控制方便等特点。但在实际应用中若选型及控制不当,不但达不到节能目的,反而“费电”。以下结合我们多年来的实践经验,对几种变频供水系统的应用及其控制方法进行介绍,供同行及用户在设计、改造、选型时参考。 二、一拖二变频供水方式(见图1) 适用一般小区恒压供水,特点:是无需附加供水控制盒,成本低。利用变频器本身内置的恒压PID 控制功能。就能达到2 台水泵循环启停功能。 三、带小流量循环软启动变频供水设备(如3+1 供水模式,见图2) 该类型设备在实际应用中较多,系统由水泵机组、循环软启动变频柜、压力仪表、管路系统等构成。变频柜由变频调速器,供水盒(PLC+AD 模块+DA 模块),低压电器等构成。系统一般选择同型号水泵2~3 台,以3 台泵为例,系统的工作情况如下: 平时1 台泵变频供水,当1 台泵供水不足时,先开的泵切换为工频运行,变频柜再软启动第2 台泵,若流量还不够,第2 台泵切换为工频运行,变频柜再软启动第3 台泵。若用水量减少,按启泵顺序依次停止工频泵,直到最后1 台泵变频恒压供水。 另外系统具有定时换泵功能,若某台泵连续运行超过24h 变频柜可自动停止该泵切换到下一台泵继续变频运行。换泵时间由程序设

定,可按要求随时调整。这样可均衡各泵的运行时间,延长整体泵组的寿命,防止个别水泵因长时间不工作而锈死。 当变频供水系统在小流量或零流量的情况下,比如在夜间用水低谷时,系统内的用水量很小,此时水泵在低流量下运行,会造成水泵效率大大降低,不能达到节能的目的,水泵功率越大用电越多。例如对300~1000 户的多层住宅小区或600 户左右的小高层住宅楼群(12 层以内)的生活用水系统,生活主泵功率一般在15kW 左右,系统的零流量频率fo 一般为25~35Hz 故在夜间小流量时,采用主泵变频供水效率较低。 这就涉用供水系统在小流量或零流量时的节电问题,一般可以采取4 种方案:a 变频主泵+工频辅泵;b 变频主泵+工频辅泵+气压罐; c 变频主泵+气压罐; d 变频主泵+变频辅泵。从节能、投资角度看第4 种方案更为适宜,该方案即在原变频主泵基础上,再配备1~2 台小泵专用在夜间或平时小流量时变频供水,一般选择小泵流量为3~6m3/h,居民区户数越多,流量可适当选择大些。小泵功率一般为1.5~3kW,小泵的扬程按主泵的扬程或略低扬程即可。 四、深水井变频供水设备

变频调速恒压供水系统设计

摘要 随着改革开放的不断深入,我国中小城市的城市建设及其经济迅猛发展,人民的生活水平不断提高;同时,城市需水量日益加大,对城市供水系统提出了更高的要求。供水的可靠性、稳定性、经济节能性直接影响到城区的建设和经济的发展,也影响到城区居民的正常工作和生活。本文根据城区供水管网改造工程设计了一套由PLC、变频器、远传压力表、多台水泵机组、计算机等主要设备构成的全自动变频恒压供水及其远程监控系统,具有自动工频/变频恒压运行、可实现远程自动控制和现场手动控制等功能。论文分析了采取变频调速方式实现恒压供水相对于传统的阀门控制恒压供水方式的节能机理。通过对变频器内置PID模块参数的预置,利用远传压力表的水压反馈量,构成闭环系统,根据用水量的变化,采取PID调节方式,在全流量范围内利用变频泵的连续调节和工频泵的分级调节相结合,实现恒压供水且有效节能。论文论述了采用多泵并联供水方案的合理性,分析了多泵供水方式的各种供水状态及转换条件,分析了电机由变频转工频运行方式的切换过程及存在的问题。给出了实现有效状态循环转换控制的电气设计方案和PLC控制程序设计方案。系统有效地解决了传统供水方式中存在的问题,增强了系统的可靠性。并与计算机实现了有机的结合,提升了系统的总体性能。 关键词:PLC;变频调速;恒压供水;变频工频切换 Abstract With the continuous deepening of reforming and opening up, the construction and economy of small and medium-sized cities in China have developed rapidly. People's living standards have improved constantly. The water supply system is demanded more as city water consum ption increasing. The urban construction and economic development and also people’s daily work and life are impacted directly by the reliability, stability and the economical of energy conservation of the water supply system.An autom atic conversion and voltage constant Water Supply and remote monitoring system, which consist of the PLC, the converter, the remote transition pressure gauges, the multi-pumps unit, the computer and so on. It is of automatic line-frequency /conversion function, remote and local automatic control. In this paper, the mechanism of energy

相关主题
文本预览
相关文档 最新文档