当前位置:文档之家› 第十章--概率与统计初步过关试题

第十章--概率与统计初步过关试题

第十章--概率与统计初步过关试题
第十章--概率与统计初步过关试题

第十章《概率与统计初步》过关试题一、选择题:(每小题5分,共计50分)

1.A,B,C,D,E 五种不同的商品要在货架上排

成一排,其中A,B两种商品必须排在一起,而C,D 两种商品不能排在一起,则不同的排法共有()种种种种

2.从装有2个红球和2个白球的口袋内任取

2个球,那么互斥而不对立的两个事件是

()

A.{至少有一个白球},{都是白球}

B.{至少有一个白球},{至少有一个红球}

C.{恰有1个白球},{恰有2个白球}

D.{至少有1个白球},{都是红球}

3.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是

()

5 4 11 10

A.5

B. 4

C.

D.

9 9 21 21

4.同一天内,甲地下雨的概率是,乙地下雨的概率是,假定在这天两地是否下雨相互之间没有影响,那么甲、乙两地都不下雨的概率是()

某射手射击1次,击中目标的概率是?他连续射击4次,且各次射击是否击中目标相互之间没有影响?有下列结论:①他第3次击中目标的概率是;②他恰好击中目标3次的概率是X ;③他至少击中目标1次的概率是1 —.其中正确结论的是()

A.①③

B. ①②

C.③

D. ①②③

6.从某年级500名学生中抽取60名学生进

行体重的统计分析,下列说法正确的是()名学生是总体

B.每个被抽查的学生是样本

C.抽取的60名学生的体重是一个样本

D.抽取的60名学生的体重是样本容量

7.为了让人们感知丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢的塑料袋的数量,结果如下(单位:个):33、25、28、26、25、31.如果该班有45名学生,那么根据提供的数据估计本周全班同学各家共丢弃塑料袋

8.从甲、乙两种玉米苗中各抽10株,测得它们的株高分别如下:(单位:cm)

根据以上数据估计()

A.甲种玉米比乙种不仅长得高而且长得整齐

B.乙种玉米比甲种不仅长得高而且长得整齐

C.甲种玉米比乙种长得高但长势没有乙整齐

D.乙种玉米比甲种长得高但长势没有甲整齐

9.某公司甲、乙、丙、丁四个地区分别有

150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是()

A.分层抽样法,系统抽样法

B.分层抽样法,简单随机抽样法

C.系统抽样法,分层抽样法

D.简单随机抽样法,分层抽样法

10.实验测得四组(x, y)的值为(1,2,2 3),4),(4 5),则y与x之间的回归直线方程为()

A. y x 1

B. y x 2

C. y 2x 1

D. y x 1

二、填空题:(每小题5分,共计25分)

11.8名同学争夺3项冠军,获得冠军的可能

性有___________ 种.

12.有1元、2元、5元、50元、100元的人

民币各一张,取其中的一张或几张,能组成不同的币值的种数是.

13.同时掷四枚均匀硬币,恰有两枚“正面向上”的概率是—」

14.某学校共有教师490人,其中不到40岁

的有350人,40岁及以上的有140人.为了了解普通话在该校中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为

70人的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数为_________ . 15.有下列关系:

(1)人的年龄与他(她)拥有的财富之间的关系

(2)曲线上的点与该点的坐标之间的关系(3 )苹果的产量与气候之间的关系

(4)森林中的同一种树木,其断面直径与高度之间的关系

(5)学生与他(她)的学号之间的关系

其中,具有相关关系的是 _____________ .

三、解答题:(16-19 每小题12分,20题13 分,21题14分,共计75分)

16.用0,1,2,3,4,5 这六个数字:

(1)可组成多少个无重复数字的自然数

(2)可组成多少个无重复数字的四位偶数

(3)组成无重复数字的四位数中比4023 大的数有多少

求下列事件的概率:

(1)取到的2只都是次品;

(2)取到的2只中正品、次品各一只

(3)取到的2只中至少有一只正品

20.某港口为了加强货运管理,缩短货物候船日期,从去年的原始资料中随机地抽出10 份,得出关于货物候船日期如下:(单位:日)

15 20 11 7 9

10 16 13 11

18

试估计该港口去年货物候船日期的均

值和标准差.

17.解答下列各题:

(1)一个口袋内装有相同的7个白球和3

个黑球,从中任意摸出两个,得到1个白球和

1个黑球的概率是多少

(2)有发芽率分别为与的两批种子,在两批种子中各任取1粒,求恰有1粒种子发芽的概率

21.某医院用光电比色计检验尿汞时,得尿

汞含量(毫克/升)与消光系数如下表:

18. 5人并排坐在一起照像,计算:

(1)甲恰好坐在正中间的概率;

(2)甲、乙两人恰好坐在一起的概率

(3)甲、乙两人恰好坐在两端的概率

(4)甲坐在中间、乙坐在一端的概率

(1)如果y与x之间具有线性相关关系求回归直线方程;

(2 )估计尿汞含量为9毫克/升时的消光系数.

19.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

《应用概率统计》复习题及答案

工程硕士《应用概率统计》复习题 考试要求:开一页;题目类型:简答题和大题;考试时间:100分钟。 1. 已知 0.5,)( 0.4,)( 0.3,)(===B A P B P A P 求)(B A P ?。 解:因为 0.7,0.3-1)(-1(A)===A P P 又因为, ,-- A B A B A A B A AB ?== 所以 0.2,0.5-7.0)( -(A))(A ===B A P P B P 故 0.9.0.2-0.40.7P(AB)-P(B)(A))(A =+=+=?P B P 2.设随机变量)1(,9 5 )1(),,4(~),,2(~≥=≥Y P X P p b Y p b X 求并且。 解: . 8165 31-1-10)(Y -11)(Y ),3 1,4(~,31,94-1-1-10)(X -1)1(,9 5)1(),,2(~422 ====≥=====≥=≥)(故从而解得)所以() (而且P P b Y p p p P X P X P p b X 3.随机变量X 与Y 相互独立,下表中给出了X 与Y 的联合分布的部分数值,请将表中其

4.设随机变量Y 服从参数2 1=λ的指数分布,求关于x 的方程0322 =-++Y Yx x 没有实根的概率。 解:因为当时没有实根时,即0128Y -Y 03)-4(2Y -Y 2 2 <+<=?,故所求的概率为}6Y P{20}128Y -P{Y 2 <<=<+,而Y 的概率密度 ?? ???≤>=0,00 ,21f(y)21-y y e y ,从而36221 -621-1dy 21f(y)dy 6}Y {2e e e P y ===<

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

概率统计试题和答案

题目答案的红色部分为更正部分,请同志们注意下 统计与概率 1.(2017课标1,理2)如图,正方形ABCD 内的图形来自中国古代的 太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中 心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B ) A .14 B . π8 C .12 D . π 4 2.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是( A ) A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。 4.(2016年全国I 理14)5(2)x x + 的展开式中,x 3的系数是 10 .(用数字填写答案) 5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B ) (A )13 (B )12 (C )23 (D )3 4 5.(2016年全国2理10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y , ()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近 似值为( C )(A ) 4n m (B )2n m (C )4m n (D )2m n 6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气 温的雷达图。图中A 点表示十月的平均最高气温约为150 C ,B 点表示四月的平均 最低气温约为50 C 。下面叙述不正确的是( D ) (A) 各月的平均最低气温都在00 C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200 C 的月份有5个 7.(15年新课标1理10)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

概率统计 期末考试试卷及答案

任课教师 专业名称 学生姓名 学号 密 封 线 X X 工业大学概率统计B 期末考试试卷(A 卷) } 分 分 108

求:(1)常数k ,(2)P(X<1,Y<3) (3) P(X<1.5); (4) P(X+Y ≤4) 解:(1)由()1)6(1 )(20 4 =--=???? +∞∞-+∞ ∞ -dx dy y x k dxdy xy f 即 解得24 1 = k 2分 (2)P(X<1,Y<3)=()dx dy y x )6241(1030--??=2 1 4分 (3) P(X<1.5)=()16 13 )6241(5.1040=--??dx dy y x 7分 (4)P(X+4≤Y ) =()9 8 21616241)6241(2202040=+-=--???-dx x x dx dy y x x 10分 4. 已知随机变量)3,1(~2N X ,)4,0(~2N Y ,且X 与Y 相互独立,设 2 3Y X Z += (1) 求)(Z E ,)(Z D ; (2) 求XZ ρ 解:(1)??? ??+=23)(Y X E Z E )(21)(3 1 y E X E += 021131?+?= 3 1 = 2分 =??? ??+=23)(Y X D Z D ()()2 2 22)23(23?? ? ??+-??? ??+=-Y X E Y X E EZ Z E =22 2)2 3()439( EY EX Y XY X E +-++ = 9 1 4392 2 -++EY EXEY EX 又因为()10192 2=+=+=EX DX EX 16016)(22=+=+=EY DY EY 所以DZ= 59 1 416910=-+ 6分 (2)),(Z X Cov ) ,(1 1Y X X Cov += =EX( 23Y X +)-EXE(23Y X +) EXEY -EX -EXEY +EX =21 )(31213122 233 1 ?==3 则XZ ρ= ()DZ DX Z X Cov ,= 5 5 5 33= 10分 5. 设二维随机变量),(Y X 的概率密度为 ?????≤≤≤≤=其它, 00,20,163),(2x y x xy y x f (1) 求X 的数学期望EX 和方差DX (2) 求Y 的数学期望EY 和方差DY 解:(1)dx x xf X E X )()(? ∞ +∞ -= ()()xyd dy y x f x f x x ? ? ==∞ +∞ -20 16 3 ,y dx x xf X E X )()(? ∞ +∞ -= = 分 27 12)163(2 2 =? ?dx xydy x x () ()分 549 3)712( 33)16 3 (22 2 22 2 22 =-====EX EX -EX =???∞ +∞ -DX dx xydy x dx x f x DX x X () ()分 72)16 3 (),()()(24 02====?? ???+∞∞ -+∞ ∞ -∞ +∞ -dy xydx y dy dx y x yf dy y yf Y E y Y ()()5 24 4323)163(),()(4034 02 2 22 2 =-====?????? +∞ ∞ -+∞∞ -∞ +∞-dy y y dy xydx y dy dx y x f y dy y f y EY y Y DY=()分 105 4452422 =-=EY -EY 6. 设随机变量X 的概率密度为) 1(1 )(2 x x f X += π,求随机变量 31X Y -=的概率密度函数。 ()()( )( ) ()() ( ) ()()()() ()()()()( )() ()() 分 分 解:10111311311315)1(111)1(16 2 3 2 2 33 3 3 3y y y f y y y f dy y dF y f y F y X y X y X y Y y F X X Y Y X Y -+-= --=----== ∴ --=-

概率统计习题含答案

作业2(修改2008-10) 4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面 都出现为止所需投掷的次数,求X 的概率分布. 解 对于2,3,k =L ,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布 11()(1)(1)k k P X k p p p p --==-+-,2,3,k =L . 5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布. 第1个能正确回答的概率是5/8, 第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=. 设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布 6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是0.04,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算. 解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算 3 1001000(4)1(4)10.04(10.04)0.5705k k k k P X P X C -=≥=-<=--=∑. 2) 用泊松近似律计算 331004 1000 04(4)1(4)10.04(10.04)10.5665! k k k k k k P X P X C e k --==≥=-<=--≈-=∑ ∑ .

应用概率统计期末复习题及答案

第七章课后习题答案 7.2 设总体X ~ N(12,4), X^XzJII’X n 为简单随机样本,求样本均值与总体均值之 差的绝对 值大于1的概率. X 解:由于 X ~ N(12,4),故 X 一 ~ N(0,1) /V n 1 ( 2 0.8686 1) 0.2628 10 7.3 设总体X ?N(0,0.09),从中抽取n 10的简单随机样本,求P X : 1.44 i 1 X i 0 X i 0 X i ~N(0,°.09),故亠-X0r~N(0,1) X 所以 ~ N(0,1),故U n P{ X 1} 1 P{ X 1} 解: 由于X ~ N (0,0.09),所以 10 所以 X i 2 2 是)?(10) 所以 10 10 X : 1.44 P i 1 i 1 X i 2 (倉 1.44 P 0.09 2 16 0.1 7.4 设总体 X ~ N( , 2), X 1,X 2,|||,X n 为简单随机样本 2 ,X 为样本均值,S 为样 本方差,问U n X 2 服从什么分布? 解: (X_)2 2 ( n )2 X __ /V n ,由于 X ~ N( , 2), 2 ~ 2(1)。 1 —n

7.6 设总体X ~ N( , 2), Y?N( , 2)且相互独立,从X,Y中分别抽取 m 10, n215的简单随机样本,它们的样本方差分别为S2,M,求P(S2 4S ; 0)。 解: S2 P(S24S2 0) P(S24S;) P 12 4 由于X ~ N( , 2), Y~ N( , 2)且相互独立S2 所以S12~ F(10 1,15 1),又由于F°oi(9,14) 4.03 S2 即P F 4 0.01

大学概率统计试题及答案 (1)

)B= B (A) 0.15 B是两个随机事件, )B= (A) 0(B) B,C是两个随机事件

8.已知某对夫妇有四个小孩,但不知道他们的具体性别。设他们有Y 个儿子,如果生男孩的概率为0.5,则Y 服从 B 分布. (A) (01)- 分布 (B) (4,0.5)B (C) (2,1)N (D) (2)π 9.假设某市公安机关每天接到的110报警电话次数X 可以用泊松(Poisson)分布 ()πλ来描述.已知{49}{50}.P X P X ===则该市公安机关每天接到的110报警电话次数的方差为 B . (A) 51 (B) 50 (C) 49 (D) 48 10.指数分布又称为寿命分布,经常用来描述电子器件的寿命。设某款电器的寿命(单位:小时)的密度函数为 则这种电器的平均寿命为 B 小时. (A) 500 (B) 1000 (C) 250000 (D) 1000000 11.设随机变量X 具有概率密度 则常数k = C . (A) 1/4 (B) 1/3 (C) 1/2 (D) 1 12.在第11小题中, {0.50.5}P X -≤≤= D . (A) 14 (B) 34 (C) 1 8 (D) 38 13.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗骰子的点数之和(Z=X+Y)为6的概率为 C . (A) 336 (B) 436 (C) 5 36 (D) 636 14.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗 0.0010.001, 0()0, t e t f t -?>=? ?其它,01,()0, 其它. x k x f x +≤≤?=? ?

概率统计试题及答案

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则 A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a = ________ b =________ 8. 设X ~2 (2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80 81 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥= ,4 {0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分

概率统计试卷及答案

概率统计试卷 A 一、填空题(共5 小题,每题 3 分,共计15分) 1、设P(A) =, P(B) = , P() = ,若事件A与B互不相容,则 = . 2、设在一次试验中,事件A发生的概率为,现进行n次重复试验,则事件A至少发生一次的概率为 . 3、已知P() = , P(B) = , P() = ,则P()= . 4、设随机变量的分布函数为则= . 5、设随机变量~,则P{}= . 二、选择题(共5 小题,每题3 分,共计15分) 1、设P(A|B) = P(B|A)=,, 则( )一定成立. (A) A与B独立,且. (B) A与B独立,且. (C) A与B不独立,且. (D) A与B不独立,且. 2、下列函数中,()可以作为连续型随机变量的概率密度. (A) (B) (C) (D) 3、设X为一随机变量,若D(10) =10,则D() = ( ). (A) . (B) 1. (C) 10. (D) 100. 4、设随机变量服从正态分布,是来自的样本, 为样本均值,已知,则有(). (A) . (B) . (C) . (D) . 5、在假设检验中,显著性水平的意义是(). (A)原假设成立,经检验不能拒绝的概率. (B)原假设不成立,经检验被拒绝的概率. (C) 原假设成立,经检验被拒绝的概率. (D)原假设不成立,经检验不能拒绝的概率. 三、10片药片中有5片是安慰剂, (1)从中任取5片,求其中至少有2片是安慰剂的概率. (2)从中每次取一片,作不放回抽样,求前3次都取到安慰剂的概率. (本题10分) 四、以表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(以分计),的分布函数是 求下述概率: (1){至多3分钟}. (2){3分钟至4分钟之间}. (本题10分) 五、设随机变量(,Y)的概率密度为 (1) 求边缘概率密度.

应用概率统计期末复习题及答案

第七章课后习题答案 7.2 设总体12~(12,4),,,,n X N X X X L 为简单随机样本,求样本均值与总体均值之 差的绝对值大于1的概率. 解:由于~(12,4)X N , ~(0,1)X N {1}1{1}1P X P X P μμ?->=--≤=-≤ 112(11(20.86861)0.262822P ??=-≤=-Φ-=-?-=?????? 7.3 设总体~(0,0.09),X N 从中抽取10n =的简单随机样本,求1021 1.44i i P X =?? >???? ∑. 解:由于~(0,0.09),X N 所以~(0,0.09),i X N 故 ~(0,1)0.3 i i X X N σ --= 所以 10 2 21 ( )~(10)0.3 i i X χ=∑ 所以{}1010222 11 1.441.44()160.10.3 0.09i i i i X P X P P χ==????>=>=>=????????∑∑ 7.4 设总体2 ~(,),X N μσ12,,,n X X X L 为简单随机样本, X 为样本均值,2 S 为样 本方差,问2 X U n μσ?? -= ??? 服从什么分布? 解: 2 2 2 X X X U n μσ????-=== ???,由于2 ~(,)X N μσ, ~(0,1)N ,故2 2 ~(1)X U χ??=。

7.6 设总体2 ~(,),X N μσ2 ~(,)Y N μσ且相互独立,从,X Y 中分别抽取1210,15n n ==的简单随机样本,它们的样本方差分别为22 12,S S ,求2212(40)P S S ->。 解: 22 22211 2 1 2 22(40)(4)4S P S S P S S P S ?? ->=>=> ??? 由于2 ~(,),X N μσ2 ~(,)Y N μσ且相互独立 所以2 122 ~(101,151)S F S --,又由于0.01(9,14) 4.03F = 即()40.01P F >=

概率论与数理统计考试试卷与答案

0506 一.填空题(每空题2分,共计60 分) 1、A、B 是两个随机事件,已知p(A) 0.4,P(B) 0.5,p(AB) 0.3 ,则p(A B) 0.6 , p(A -B) 0.1 ,P(A B)= 0.4 , p(A B) 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2 只,则第一次、第二次取红色球的概率为:1/3 。(2)若有放回地任取 2 只,则第一次、第二次取红色球的概率为:9/25 。( 3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55 。 3、设随机变量X 服从B(2,0.5)的二项分布,则p X 1 0.75, Y 服从二项分 布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从B(100,0.5),E(X+Y)= 50 , 方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、 0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取 一件。 ( 1)抽到次品的概率为:0.12 。 2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 6、若随机变量X ~N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则P{ 2 X 4} 0.815 , Y 2X 1,则Y ~ N( 5 ,16 )。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1 ,D(Y)=2, 且 X、Y 相互独立,则:E(2X Y) - 4 ,D(2X Y) 6 。 8、设D(X) 25 ,D( Y) 1,Cov( X ,Y) 2,则D(X Y) 30 9、设X1, , X 26是总体N (8,16)的容量为26 的样本,X 为样本均值,S2为样本方 差。则:X~N(8 ,8/13 ),25S2 ~ 2(25),X 8 ~ t(25)。 16 s/ 25 10、假设检验时,易犯两类错误,第一类错误是:”弃真” ,即H0 为真时拒绝H0, 第二类错误是:“取伪”错误。一般情况下,要减少一类错误的概率,必然增大另一类错误的概率。如果只对犯第一类错误的概率加以控制,使之

应用概率统计试卷

062应用数学 一、 填空题(每小题2分,共2?6=12分) 1、设服从0—1分布的一维离散型随机 变量X 的分布律是:011X P p p -, 若X 的方差是1 4,则P =________。 2、设一维连续型随机变量X 服从正态分布()2,0.2N ,则随机变量21Y X =+ 的概率密度函数为______________。 3、设二维离散型随机变量X 、Y 的联合分布律为:则a , b 满足条件:___________________。 X Y 11 2 3 1115 6 9

4、设总体X 服从正态分布()2 ,N μσ , 12,,...,n X X X 是它的一个样本,则样本均 值X 的方差是________。 5、假设正态总体的方差未知,对总体均值 μ 作区间估计。现抽取了一个容量 为n 的样本,以X 表示样本均值,S 表示样本均方差,则μ 的置信度为1-α 的置信区间为:_______________________。 6、求随机变量Y 与X 的线性回归方程 Y a b X =+ ,在计算公式 xy xx a y b x L b L ?=-? ?=?? 中,() 2 1 n xx i i L x x == -∑,xy L = 。

二、单项选择题(每小题2分,共2?6=12分) 1、设A ,B 是两个随机事件,则必有( ) ()()()()()()()()A P A B P A P B B P A B P A P A B -=--=- ()()()() ()()()()()C P A B P A P B D P A B P A P A P B -=-=- 2、设A ,B 是两个随机事件, ()()() 524,,556 P A P B P B A === ,( ) () ()()1 1()()()232 12 ()()3 25 A P A B B P AB C P AB D P AB === = 3、设X ,Y 为相互独立的两个随机变量,则下列不正确的结论是( )

概率统计试题及答案(本科完整版)

概率统计试题及答案(本科完整版)

一、 填空题(每题2分,共20分) 1、记三事件为A ,B ,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 . 2、匣中有2个白球,3个红球。 现一个接一个地从中随机地取出所有的球。那么,白球比红球早出现的概率是 2/5 。 3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时,06505P(A B )_.__,P(B |A )_.__?==。 4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。 5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对 a c b <<以及任意的正数0 e >,必有概率 {} P c x c e <<+ = ?+?-?e ,c e b b a b c ,c e b b a 6、设X 服从正态分布2 (,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) . 7、设1128363 X B EX DX ~n,p ),n __,p __==(且=,=,则 8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中 ABC ABC ABC U U

2,3,则: P ( A 1 ) = 0.1 , P ( A 2 ) = 0.2 , P ( A 3 ) = 0.15 ,由各台机器间的相互独立性可得 ()()()()()123123109080850612P A A A P A P A P A ....=??=??= ()()()12312321101020150997P A A A P A A A ....??=-=-??= ()() ()()()()1231231231231231231231233010808509020850908015090808500680153010806120941 P A A A A A A A A A A A A P A A A P A A A P A A A P A A A .................=+++=??+??+??+??=+++=U U U 2、甲袋中有n 只白球、m 只红球;乙袋中有N 只白球、M 只红球。今从甲袋任取一球放入乙袋后,再从乙袋任取一球。问此球为白球的概率是多少? 解:以W 甲表示“第一次从甲袋取出的为白球”,R 甲表示“第一次从甲袋取出的为红球”, W 乙表示“第二次从乙袋取出的为白球”, 则 所 求 概率为 ()()()() P W P W W R W P W W P R W ==+U 乙甲乙甲乙甲乙甲乙 ()( ) ()( ) P W P W W P R P W R =+甲乙甲甲乙甲 11 111111111 n m N N n m N M n m N M C C C C C C C C +++++++=?+?

概率统计考试试卷及答案

概率统计考试试卷及答案 一、 填空题(每小题4分,共20分) 1. 设)(~λP X ,且)()(21===X P X P ,则_________)(==3X P . 2. 设随机变量X 的分布函数 ) (,)(+∞<<-∞+= -x e A x F x 1,则 ___=A 3. 已知,)|(,)|(,)(21 3141===B A P A B P A P 则_____)(=?B A P 4. 已知随机变量),,(~10U X 则随机变量X Y ln 2-=的密度函数 ___)(=y f Y 5. 设随机变量X 与Y 相互独立,且,2σ==DY DX 则 ____)(=-Y X D 42 二、 计算下列各题(每小题8分,共40分) 1. 设随机变量X 的概率密度为?? ???≤>=-000 x x e x f x ,,)( 已知Y=2X,求E(Y), D(Y). 2. 两封信随机地投入标号为I,II,III,IV 的四个邮筒, 求第二个邮筒恰好投入1封信的概率。 3. 设X,Y 是两个相互独立的随机变量,X 在(0,1)上服 从均匀分布,Y 的概率密度为?? ???≤>=-000 212y y e y f y Y ,,)( 求含有a 的 二次方程022=++Y Xa a 有实根的概率。 4. 假设91X X ,, 是来自总体),(~220N X 的简单随机样本,求系数

a,b,c 使 298762543221)()()(X X X X c X X X b X X a Q ++++++++=服从2 χ分布,并求其自由度。 5. 某车间生产滚珠,从长期实践知道,滚珠直径X 服从正态 分布。从某天产品里随机抽取6个,测得直径为(单位:毫米)14.6, 15.1, 14.9, 14.8, 15.2, 15.1 若总体方差0602.=σ, 求总体均值 μ的置信区间 (9610502.,./==ααz ) 三、(14分)设X,Y 相互独立,其概率密度函数分别为 ???≤≤=其他 ,,)(0101x x f X ,?? ???≤>=-000 y y e y f y Y ,,)( 求X+Y 的概率密度 四、(14 分)设 ?? ???≤<-=其它,),()(~0063θ θθx x x x f X ,且n X X ,, 1是总体 X 的简单随机样本,求 (1)θ的矩估计量θ ,(2) )(θ D 五、(12分)据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机地取16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和大于1920小时的概率。(7881080.).(=Φ)

2015春《应用概率统计》试卷A

浙江农林大学 2014 - 2015 学年第 二 学期考试卷(A 卷) 课程名称 概率论与数理统计(A )课程类别:必修 考试方式:闭卷 注意事项:1、本试卷满分100分.2、考试时间 120分钟. 学院: 专业班级: 姓名: 学号: 装 订 线 内 不 要 答 题

一、选择题(每小题3分,共24分) 1.随机事件A 或B 发生时,C 一定发生,则C B A ,,的关系是( ) . A. C B A ?? B.C B A ?? C.C AB ? D.C AB ? 2.()()4, 1, 0.5XY D X D Y ρ===,则(329999)D X Y -+=( ). A .28 B .34 C .25.6 D .16 3.对于任意两个随机变量X 和Y ,若()()()D X Y D X D Y -=+,则有( ). A .()()()D XY D X D Y = B .()()()E XY E X E Y = C .X 和Y 独立 D .X 和Y 不独立 4. 设随机变量X 的概率密度为()2 21 x x p x -+-= ,则()D X =( ). A B . 2 C . 1 2 D .2 5. 设)(),(21x f x f 都是密度函数,为使)()(21x bf x af +也是密度函数,则常数b a ,满足( ). A. 1=+b a B. 0,0,1≥≥=+b a b a C. 0,0>>b a D. b a ,为任意实数 6.在假设检验中,当样本容量确定时,若减小了犯第二类错误的概率,则犯第一类错误的概率会( ). A. 不变. B. 不确定. C. 变小. D. 变大. 7. 设321,,X X X 4X 来自总体),(2 σμN 的样本,则μ的最有效估计量是 ( ) A . )(31 321X X X ++ B . )(4 1 4321X X X X +++ C . )(2143X X + D .)(5 1 4321X X X X +++

相关主题
文本预览
相关文档 最新文档