当前位置:文档之家› FSAE赛车前悬架仿真分析及转向节优化研究

FSAE赛车前悬架仿真分析及转向节优化研究

FSAE赛车前悬架仿真分析及转向节优化研究
FSAE赛车前悬架仿真分析及转向节优化研究

钢板弹簧悬架系统设计规范--完整版

1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

大学生方程式赛车悬架系统设计

大学生方程式赛车悬架系统设计 中国大学生方程式汽车大赛,在XX年开始举办,至XX 年已举办三届,大赛目的是为了提高大学生汽车设计与团队协作等能力,而华南农业大学XX年才组队设计赛车,现在还没有派队参加比赛,本文初步探讨SAE赛车悬架设计的方案,为日后华南农业大学参赛打下基础。 本课题的重点和难点 1、根据整车的布置对FSAE赛车悬架的结构形式进行的选择。 2、对前后悬架的主要参数和导向机构进行初步的设计。 3、用Catia或Proe建立悬架三维实体模型。 4、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。 5、悬架设计方案确定后的优化改良。优化的方案一:用ADAMS/Insight进行优化,以车轮的定位参数优化目标,以上下横臂与车架的铰接点为设计变量进行优化。优化的方案二:轻量化,使用Ansys软件进行模拟悬架工作状况,进行受力分析,强度校核,优化个部件结构,受力情况。 1、查阅FSAE悬架的设计。 2、运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。 3、在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能。 4、用ADAMS/Insight进行优化,改善操纵稳定性。

5、使用Ansys软件进行模拟悬架工作状况,进行受力分析,优化个部件结构及轻量化。 悬架设计流程如下: 首先要确定赛车主要框架参数,包括:外形尺寸、重量、发动机马力等等。 确定悬架系统类型,一般都会选用双横臂式,主要是决定选用拉杆还是推杆。 确定赛车的偏频和赛车前后偏频比。 估计簧上质量和簧下质量的四个车轮独立负重。 根据上面几个参数推算出赛车的悬架刚度和弹簧的弹性系数。 推算出赛车在没有安装防侧倾杆之前的悬架刚度初值,并计算车轮在最大负重情况下的轮胎变形。 计算没安装防侧倾杆时赛车的横向负载转移分布。 根据上面计算数值,选择防侧倾杆以获得预想的侧倾刚度和 LLTD。最后确定减振器阻尼率。 上面计算和选型完成后,再重新对初值进行校核。 运用Pro/E或者Catia进行零件设计和仿真建模,设计出悬架的雏形。在Adams/car中建立该悬架的虚拟样机模型,进行仿真,分析其运动学性能,并用ADAMS/Insight进行优化分析。 使用Ansys软件进行模拟悬架工作状况,进行受力分析,

悬架设计开题报告

本科毕业设计(论文)手册 (理工科类专业用) 毕业设计(论文)题目__工程自卸车底盘悬架系统设计_____专题题目______________________________________________________ 设计(论文)起止日期:年月日至年月日 __学院__专业__年级__班 学生姓名______ 指导教师_________ 教研室(系)主任____________ 教学院长____________ 年月日____2012.2.26 ___

须知 一、本手册第1页是毕业设计(论文)任务书,由指导教师填写;第2页是开题报告;第3页是答辩申请事项。答辩时学生须向答辩委员会(或答辩小组)提交本手册,作为答辩评分的参考材料,没有本手册不得参加答辩。本手册可以使用电子版打印,但签署姓名和日期处必须手工填写。本手册最后装入学生毕业设计(论文)档案袋。 二、毕业设计(论文)期间,要求学生每天出勤不少于6小时,在校外进行毕业设计(论文)或实习(调研)者,应遵守有关单位的作息时间,学生如事假(病假)必须按规定的程序办理请假手续,凡未获准请假擅自停止工作者,按旷课论处。 三、学生在毕业设计(论文)中,要严格遵守纪律、服从领导、爱护仪器设备,遵守操作规程和各项规章制度;自觉保持工作场所的肃静和清洁,不做与毕业设计(论文)工作无关的事情。 四、学生要尊敬指导教师、虚心请教,并主动接受老师的随时检查。 五、学生要独立完成毕业设计(论文)任务,在毕业设计(论文)过程中要有严谨的科学态度和朴实的工作作风,严禁抄袭和弄虚作假。 六、毕业设计(论文)成绩评定标准按五级:优秀(90分以上)、良好(80分以上)、中等(70分~79分)、及格(60分~69分)、不及格(59分以下)。

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范 1 范围 本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。 2 规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QCn 29035-1991 汽车钢板弹簧技术条件 QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件 GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法 3 符号、代号、术语及其定义 GB 3730.1-2001 汽车和挂车类型的术语和定义 GB/T 3730.2-1996 道路车辆质量词汇和代码 GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 GB/T 12549-2013 汽车操纵稳定性术语及其定义 GB 7258-2017 机动车运行安全技术条件 GB 13094-2017 客车结构安全要求 QC/T 480-1999 汽车操纵稳定性指标限值与评价方法 QC/T 474-2011 客车平顺性评价指标及限值 GB/T 12428-2005 客车装载质量计算方法 GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值 GB/T 918.1-1989 道路车辆分类与代码机动车 JTT 325-2013 营运客车类型划分及等级评定 凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。 4 悬架系统设计对整车性能的影响 悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。主要任务是传递作用在车轮与车架之间的一切力与力矩,缓和由不平路面传给车架的冲击载荷,衰减由冲击载荷引起的承载系统的

磁流变式汽车减振器设计-开题报告

毕业设计(论文)开题报告 学生姓名系部汽车与交通工程学 院 专业、班级 指导教师姓名职称副教授从事 专业 车辆工程是否外聘□是√否 题目名称磁流变式汽车减振器的设计 一、课题研究现状、选题目的和意义 (1)课题研究现状 磁流变阻尼器因其具有结构简单、控制方便、响应速度快、消耗功率小、抗污染能力强和输出力大、阻尼力连续可调等优点,它利用了磁流变液在磁场作用下能在毫秒级的时间内从牛顿流体转变成具有一定屈服强度的黏塑性体的智能特性,仅需要很小的能量输入就能产生较大的阻尼力,尤其适合在土木结构的抗风抗震中应用。在汽车、机械、土木建筑等的振动领域得到了广泛的应用和发展。现有的磁流变阻尼器的工作模式有阀式、剪切式、挤压式、剪切阀式。磁流变阻尼器已成为汽车半主动悬架系统中的研究热点。 近几年,对于磁流变阻尼器研究主要关于两个方面,对磁流变阻尼器优化方面的研究和对磁流变阻尼器控制策略的研究。 对于磁流变阻尼器研究关于优化方面的内容主要集中于结构参数的优化以及磁路优化等方面。现在就这两方面内容对其进行介绍。 1)磁流变阻尼器结构参数优化 为了提高磁流变阻尼器的可调范围和可控力值,需要对磁流变阻尼器的结构参数进行优化,以使其阻尼性能达到最佳。在早期的磁流变阻尼器的研究中,主要对单一目标函数进行优化,以得到最佳的结构关键尺寸,如间隙大小,有效长度及线圈匝数等。 西北工业大学的邓长华等人对双出杆磁流变阻尼器结构参数进行优化,其仅选择可调范围作为目标函数,利用MA TLAB优化出线圈匝数、阻尼通道厚度以及阻尼通道长度。 西安交通大学的吴龙等人从磁流变阻尼器设计原理入手,采用Bingham轴对称理论模型对小型单出杆式磁流变阻尼器进行了结构参数的优化研究。其选取推导出的有效长度公式为目标函数,利用MATLAB优化工具箱进行优化,确定相关参数值代回原阻尼力及可调范围公式反复比对,已达到最佳效果。 对于阻尼力或可调范围的这种单目标优化,涉及到的设计参数比较少,在计算过程上仅从磁学角度考虑结构参数对阻尼力的影响,优化的效果上讲,具有一定的局限性。近几年的结果优化中出现了一些针对阻尼力和可调范围等从力学和磁学双重角度考虑的多目标优化方法。 比较早的是烟台大学的陈义宝等人采用灰色系统理论的关联度计算方法,对磁流变阻尼器的结构参数进行优化设计,其选定阻尼力可调范围、粘性阻尼力和可调阻尼力作为优化目标,利用优化软件库OPB2对设计主要参数进行多目标参数优化。 哈尔滨工业大学的关新春等人以阻尼力和可调信数为优化目标,以磁流变阻尼器关键结构参数为变量,;利用多目标遗传算法,在优化软件modeFRONTIER中对磁流变阻尼器进行优化设计和分析。以及南京理工大学的张莉等人,安徽科技学院的易勇等人运用相应的软件工具和方法,对磁流变阻尼器进行了相应的多目标优化方面的研究。 2)磁流变阻尼器磁路优化 磁流变阻尼器设计磁路的目的是将磁通量引导并集中到环形间隙中的活性磁流变液区,最大限度地降低磁芯材料及非工作磁流变液区中的能量损失,保证足够的横截面积降低磁芯材料中的磁阻。在磁路的设计过程中,所得到的结构参数结果是多样化的,而且每种结果使磁流变减振器发挥的效能

悬架系统设计资料

目录 1 绪论 (2) 1.1 悬架的概述 (2) 1.2 悬架的分类 (3) 1.3 重型载货汽车悬架系统目前的工作状况 (4) 1.4 悬架技术的研究现状及发展趋势 (5) 1.4.1悬架技术的研究现状 (5) 1.4.2悬架技术的发展趋势 (5) 1.4.3悬架设计的技术要求 (5) 2 空气悬架结构 (6) 2.1 空气悬架结构简介 (6) 2.1.1空气悬架系统的基本结构 (6) 2.1.2空气弹簧的类型 (6) 2.1.3导向机构 (7) 2.1.4高度控制阀 (7) 2.2 空气悬架系统的工作原理 (7) 3 悬架主要参数的确定 (8) 3.1 载货汽车的结构参数 (8) 3.2 悬架静挠度 (8) 3.3 悬架动挠度 (9) 3.4 悬架弹性特性 (10) 4 弹性元件的设计 (11) 4.1 空气弹簧力学性能 (11) 4.1.1空气弹簧刚度计算 (11) 4.1.2空气弹簧固有频率的计算 (13) 4.1.3空气弹簧的刚度特性分析 (14) 4.2 高度控制阀 (16) 5 悬架导向机构的设计 (17) 5.1 悬架导向机构的概述 (17) 5.2 横向稳定杆的选择 (17) 5.3 侧顷力臂的计算方法 (18) 5.4 稳定杆的角刚度计算 (19) 5.5 悬架的侧倾角校核 (20) 6 减振器机构类型及主要参数的选择计算 (21) 6.1 分类 (21) 6.2 主要参数的选择计算 (22) 7 技术与经济性分析 (26)

1 绪论 1.1 悬架的概述 悬架是车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称。它的功用是把路面作用于车轮上的垂直反力(支承力)、纵向反力(牵引力和制动力)和侧向反力以及这些反力所造成的力矩都要传递到车架(或承载式车身)上,以保证汽 车的正常行驶]1[。 现代汽车的悬架尽管有各种不同的结构形式,但是一般都由弹性元件、减振器和导向机构三部分组成。由于汽车行驶的路面不可能绝对平坦,路面作用于车轮上的垂直反力往往是冲击性的,特别是在坏路面上高速行驶时,这种冲击力将达到很大的数值。冲击力传到车架和车身时,可能引起汽车机件的早期损坏,传给乘员和货物时,将使乘员感到极不舒适,货物也可能受到损伤。为了缓和冲击,在汽车行驶系统中,除了采用弹性的充气轮胎之外,在悬架中还必须装有弹性元件,使车架(或车身)与车桥(或车轮)之间作弹性联系。但弹性系统在受到冲击后,将产生振动。持续的振动易使乘员感到不舒适和疲劳。故悬架还应当具有减振作用,使振动迅速衰减(振幅迅速减小)。为此,在许多结构形式的汽车悬架中都设有专门的减振器。 以下对悬架重要的组成部分进行简单的介绍。 (一)弹性元件 弹性元件主要是把车架或车身与车桥或车轮弹性的连接起来,主要有空气弹簧,钢板弹簧、螺旋弹簧、扭杆弹簧等。 (1)空气弹簧 空气弹簧是由橡胶囊所围成的一个密闭容器,在其中贮入压缩空气,利用空气的可压缩性实现其弹簧的作用。这种弹簧的刚度是可变的,因为作用在弹簧上的载荷增加时,容器内的定量气体气压升高,弹簧刚度增大。反之,当载荷减小时,弹簧内的气压下降,刚度减小,故空气弹簧具有较理想的弹性特性。 随着科学技术突飞猛进,生活水平的不断提高,人们对汽车的乘坐舒适性及各方面的性能提出了更高的要求,这便迫使各汽车生产厂家不断的引进先进技术,生产出更好的产品,保持强大的竞争能力。从而空气弹簧的设计与研究也越来越受到车辆设计人员的青睐。在本论文主要是对空气弹簧进行了研究与探讨。 (2)钢板弹簧 由多片不等长和不等曲率的钢板叠合而成。钢板弹簧除具有缓冲作用外,还有一定的减震作用。 (3)螺旋弹簧 只具备缓冲作用,多用于轿车独立悬挂装置。由于没有减震和传力的功能,还必须设有专门的减震器和导向装置。 (4)扭杆弹簧 将用弹簧杆做成的扭杆一端固定于车架,另一端通过摆臂与车轮相连,利用车轮跳动时扭杆的扭转变形起到缓冲作用,适合于独立悬挂使用。 (二)导向装置

悬架设计计算说明书

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 毕业设计(论文)客车悬架系统设计计算说明书 院系:长安大学汽车学院 指导教师:张平 专业班级: 22010803 学生姓名:杨文亮 2012年6月18日

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 摘要 目前我国的客车普遍采用的是传统钢板弹簧悬架,只有少数的高级客车才配置了空气悬架。传统钢板弹簧的结构简单,成本较低。而相对于传统机械钢板弹簧悬架而言,空气悬架具有乘坐更舒适、更好改善车辆的行驶平顺性等显著优点,但是造价也相对较高。 本文针对客车的悬架设计,在传统钢板弹簧悬架的基础上对前悬进行改进,前悬采用钢板弹簧与空气弹簧并联的混合式空气悬架,而后悬采用主副复合式钢板弹簧悬架。前悬的混合式空气悬架能满足驾驶员舒适性的要求,而后悬架的主副复合式钢板弹簧降低了整车的生产成本。 对前、后悬架的主要零部件的尺寸进行设计计算,并运用CATIA进行建模和装配。关键词混合式空气悬架,CATIA,主副复合式钢板弹簧悬架

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ ABSTRACT At present, buses generally use the traditional leaf spring suspension in our country , only a handful of senior buses was equipped with air suspension. Traditional leaf spring structure is simple and with low cost . In contrast to traditional mechanical leaf spring suspension, the air suspension has more significant advantages, such as , more comfortable to ride, better improvement of the vehicle ride comfort. However , the cost is relatively high. This paper is about the bus suspension design .to improve the front suspension on the basis of the traditional leaf spring suspension , front suspension uses hybrid air suspension combined parallel with leaf springs and air springs , and then rear suspension uses primary and secondary compound leaf spring suspension. the front air suspension can meet the requirements of driver comfort , but leaf spring in the rear suspension can reduce the manufacturing cost. Design and calculate the size parameters of the main components in the front and rear suspension, and modeling and assembly in use of CATIA. KEYWORDS: hybrid air suspension ,catia ,primary and secondary compound leaf spring suspension

轿车悬架系统设计

摘要 随着汽车工业技术的发展对汽车的行驶平顺性,操纵稳定性以及乘坐舒适性和安全性的要求越来越高,汽车行驶平顺性又与悬架密切相关。因此,对悬架系统的设计具有一定的实际意义。 本次设计主要研究的是比亚迪F3轿车的前、后悬架系统的硬件选择设计,计算出悬架的刚度、静挠度和动挠度。通过阻尼系数和最大卸荷力确定了减振器的主要尺寸。最后进行了横向稳定杆的设计。本设计在轿车前后悬架的选型中均采用独立悬架。其中前悬架采用当前家庭轿车前悬流行的麦弗逊悬架,后悬则采用拖曳臂式悬架。前、后悬架的减振器均采用双向作用式筒式减振器。这种结构的设计,有效的提高了乘座的舒适性和驾驶稳定性。、采用CAXA软件分别绘制前后悬架的装配图和零件图。 关键词:家庭轿车;悬架;平顺性;弹性元件

Abstract With the development of the automobile industry of motor vehicles on ride comfort, handling and stability as well as comfort and safety of the increasingly demanding, Vehicle Ride also closely related with the suspension. Therefore, the design of the suspension system has a practical significance. The main design of the study is BYD F3 car before and after the suspension system of choice of hardware design, calculate the suspension stiffness, static and dynamic deflection deflection. By damping and unloading of the largest absorber identified the main dimensions. Finally, the design of the horizontal Wending Gan. The design of the car before and after the suspension are used in the selection of independent suspension. Suspension of them adopted before the current family sedan before hanging popular McPherson suspension, was suspended after a drag arm suspension. Before and after the suspension of the shock absorber have adopted a two-way role-Shock Absorber. The design of this structure, effectively raising theof comfort and driving stability. By CAXA software were drawn before and after the suspension of the assembly and parts plans. Key words: family sedan; suspension; ride; flexible components

模态分析有限元仿真分析学习心得

有限元仿真分析学习心得 1 有限元分析方法原理 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元法是随着电子计算机发展而迅速发展起来的一种工程力学问题的数值求解方法。20世纪50年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析之中,用以求得结构的变形、应力、固有频率以及阵型。由于其方法的有效性,迅速被推广应用于机械结构分析中。随着电子计算机的发展,有限元法从固体力学领域扩展到流体力学、传热学、电磁学、生物工程学、声学等。 随着计算机科学与应用技术的发展,有限元理论日益完善,随之涌现了一大批通用和专业的有限元计算软件。其中,通用有限元软件以ANSYS,MSC公司旗下系列软件为杰出代表,专业软件以ABAQUS、LS-DYNA、Fluent、ADAMS 为代表。 ANSYS作为最著名通用和有效的商用有限元软件之一,集机构、传热、流体、电磁、碰撞爆破分析于一体,具有强大的前后处理及计算分析能力,能够进行多场耦合,结构-热、流体-结构、电-磁场的耦合处理求解等。 有限元分析一般由以下基本步骤组成: ①建立求解域,并将之离散化成有限个单元,即将问题分解成单元和节点; ②假定描述单元物理属性的形(shape)函数,即用一个近似的连续函数描述每个单元的解; ③建立单元刚度方程; ④组装单元,构造总刚度矩阵; ⑤应用边界条件和初值条件,施加载荷; ⑥求解线性或者非线性微分方程组得到节点值,如不同节点的位移; ⑦通过后处理获得最大应力、应变等信息。 结构的离散化是有限元的基础。所谓离散化就是将分析的结构分割成为有限

载重车悬架设计开题报告

.
杭州电子科技大学
毕业设计(论文)开题报告
题目 学院 专业 姓名 班级 学号 指导教师
载重车悬架系统设计 信息工程学院
机械设计制造及其自动化 唐云飞
11090111 11901122
赵骆伟

.
一、综述本课题国内外研究动态,说明选题的依据和意义
1.1 课题的设计意义:
随着汽车在生活中的越来越广泛的应用,它已经不再只是人们代步的工具, 它在社会发展中也起着非常重要的作用。它为人们的生产效率带来了提高。特别 是在公路运输中。
作为载人的工具之一,舒适性是不可忽略的一个条件。悬架也就应允而生。 现在的小轿车的悬架系统已经发展到非常成熟了,并可以使长途的驾驶者带来更 多的舒适性,减轻了驾驶者和乘客的疲劳程度。但是,载货货车却远远达不到这 样的效果。同时货车却常常在长途的路途上行走,为驾驶者带大的疲劳程度,也 不利于在行车安全。因此货车的悬架系统尽可能地设计到更好的舒适性,减轻架 驶者的行车过程中的疲劳程度。
悬架是保证车轮或车桥与汽车承载系统(车架或承载式车身)之间具有弹性 联系并能传递载荷,缓和冲击,衰减振动以及调节汽车行驶中的车身位置等有关 装置的总称。并且随着研究的进一步深入,发现悬架的性能还影响着整车的很多 性能,包括行驶平顺性,行驶车速,燃油经济性和运营经济性等。特别是在工业 中应用较多的运输车辆的悬架系统的设计,对于用车单位十分重要。悬架系统的 制造成本要低,要便于维护、保养,并且工作可靠,使用寿命长[1]。
1.2 悬架国内外研究动态:
半主动悬架的研究工作开始于 1973 年,由 D.A.Crosby 和 D.C.Karnopp 首先提出。半主动悬架以改变悬架的阻尼为主,一般较少考虑改变悬架的刚度。 工作原理是:根据簧上质量相对车轮的速度响应、加速度响应等反馈信号, 按 照一定的控制规律调节弹簧的阻尼力或者刚度。半主动悬架产生力的方式与被动 悬架相似,但其阻尼或刚度系数可根据运行状态调整,这和主动悬架极为相似。 有级式半主动悬架是将阻尼分成几级,阻尼级由驾驶员根据 “路感”选择或由 传感器信号自动选择; 无级式半主动悬架根据汽车行驶的路面条件和行驶状态,

方程式赛车悬架系统设计分析中期报告

河北工业大学本科毕业设计(论文)中期报告 毕业设计(论文)题目:方程式赛车悬架系统设计分析 专业:车辆工程 学生信息:学号:082886;姓名:樊广阔;班级:车辆083 指导教师信息:教师号:86024;姓名:武一民;职称:教授 报告提交日期: 一、前期具体工作及取得进展 1.查阅FSAE赛车及相似汽车悬架结构,确定所设计赛车悬架结构。 根据文献及FSAE赛车实车相关图片初步确定采用不等长双横臂拉杆弹簧独立悬架,制动器形式采用盘式制动。上下两横臂采用A型结构,且由杆件代替,上下A臂不平行且不等长,为了保证运动时轮距变化不大采用上横臂短、下横臂长的结构形式。 悬架杆件采用SAE4130钢管,尺寸为12x1.5以及,并采用SA型外螺纹杆端关节轴承,型号为:SA8E。横臂与转向节的链接采用GE型向心关节轴承,型号为:GE8C。减震器及弹簧选取螺旋弹簧套在减震器外侧的结构,减震器的一端通过摇臂与拉杆连接,另一端连接在车架上。横向稳定杆与摇臂的连接同样采用外螺纹杆端关节轴承,型号为:SA6E。摇臂的旋转中心采用的是自润滑轴承,型号为10x14x20。整体结构的布置形式大概如下图所示: 2.初步确定悬架相关参数。 根据赛事规定6.3.1 赛车轮辋直径必须至少为203.2mm(8.0 英寸),因此结合查阅相关资料及简单计算轮辋采用13X8尺寸,即轮辋直径为330mm。轮胎选取Continental轮胎,型号为195/45R13,轮胎外径为510mm。 根据赛事规定6.2 离地间隙:在比赛中,在有车手乘坐时,赛车的静态离地间隙必需至少25.4mm(1 英寸),因此,初步设计赛车最小离地间隙为30mm。 根据赛事规定2.3 轴距赛车的轴距必须至少为1525mm(60 英寸)。轴距是指在车轮指向正前方时同侧两车轮的接地面中心点之间的距离。因此,初步设计赛车轴距为1535mm。 根据赛事规定2.4 轮距赛车较小的轮距(前轮或后轮)必须不小于较大轮距的75%。 此次设计初步设计前轮距为1200mm,后轮距为1180mm。 根据赛事规定 6.1.1 赛车所有车轮必须安装有功能完善的、带有减震器的悬架。 在有车手乘坐的情况下,轮胎的跳动行程至少为50.8mm(2 英寸),其中向上25.4mm

悬架的设计计算.doc

3.1 弹簧刚度 弹簧刚度计算公式为: 前螺旋弹簧为近似圆柱螺旋弹簧:前 n 8D Gd 3 14 1 1= Cs (1) 1 后螺旋弹簧为圆柱螺旋弹簧:后 n 8D Gd 3 24 2 2= Cs (2) 式中:G 为弹性剪切模量79000N/mm 2 d 为螺旋弹簧簧丝直径, 前螺旋弹簧簧丝直径d 1=11.5mm , 后螺旋弹簧簧丝直径d 2=12mm ; 1D 为前螺旋弹簧中径,D 1=133.5mm 。 D 2为后螺旋弹簧中径,D 2=118mm 。 n 为弹簧有效圈数。根据《汽车设计》(刘惟信)介绍的方法,判断前螺旋弹簧有效圈数为4.25圈,即n 前=4.25;后螺旋弹簧有效圈数为5.5圈,即 n 后=5.5。 前螺旋弹簧刚度: =18.93 N/mm 后螺旋弹簧刚度: 后 n 8D Gd 324 2 2= Cs =22.6N/mm 螺旋弹簧刚度试验值: 前螺旋弹簧刚度:18.8N/mm ; 1 螺旋弹簧刚度计算公式,参考《汽车工程手册》设计篇 3 1 41 116n Gd D Cs 前=

后螺旋弹簧刚度:22.78N/mm 。 前螺旋弹簧刚度和后螺旋弹簧刚度计算值与试验值基本相符。G08设计车型轴荷与参考样车的前轴荷相差<2.0%,后轴荷相差<0.8%。设计车型直接选用参考样车的弹簧刚度,刚度为: Cs=18.8 N/mm; 1 Cs=22.6 N/mm。 2 3.5 减震器参数的确定 汽车的悬架中安装减振装置的作用是衰减车身的振动保证整车的行驶平顺性和操纵稳定性。下面仅考虑由减振器引起的振动衰减,Array不考虑其他方面的影响,以方便对减振器参数的计算。 汽车车身和车轮振动时,减振器内的液体在流经阻尼孔时的摩擦

UG有限元分析教程

第1章高级仿真入门 在本章中,将学习: ?高级仿真的功能。 ?由高级仿真使用的文件。 ?使用高级仿真的基本工作流程。 ?创建FEM和仿真文件。 ?用在仿真导航器中的文件。 ?在高级仿真中有限元分析工作的流程。 1.1综述 UG NX4高级仿真是一个综合性的有限元建模和结果可视化的产品,旨在满足设计工程师与分析师的需要。高级仿真包括一整套前处理和后处理工具,并支持广泛的产品性能评估解法。图1-1所示为一连杆分析实例。 图1-1连杆分析实例 高级仿真提供对许多业界标准解算器的无缝、透明支持,这样的解算器包括NX Nastran、MSC Nastran、ANSYS和ABAQUS。例如,如果结构仿真中创建网格或解法,则指定将要用于解算模型的解算器和要执行的分析类型。本软件使用该解算器的术语或“语言”及分析类型来展示所有网格划分、边界条件和解法选项。另外,还可以求解模型并直接在高级仿真中查看结果,不必首先导出解算器文件或导入结果。 高级仿真提供基本设计仿真中需要的所有功能,并支持高级分析流程的众多其他功能。 ?高级仿真的数据结构很有特色,例如具有独立的仿真文件和FEM文件,这有利于在分布式工作环境中开发有限元(FE)模型。这些数据结构还允许分析师轻松 地共享FE数据去执行多种类型分析。

UG NX4高级仿真培训教程 2 ?高级仿真提供世界级的网格划分功能。本软件旨在使用经济的单元计数来产生高质量网格。结构仿真支持完整的单元类型(1D、2D和3D)。另外,结构级仿真 使分析师能够控制特定网格公差。例如,这些公差控制着软件如何对复杂几何体 (例如圆角)划分网格。 ?高级仿真包括许多几何体简化工具,使分析师能够根据其分析需要来量身定制CAD几何体。例如,分析师可以使用这些工具提高其网格的整体质量,方法是消 除有问题的几何体(例如微小的边)。 ?高级仿真中专门包含有新的NX传热解算器和NX流体解算器。 NX传热解算器是一种完全集成的有限差分解算器。它允许热工程师预测承受热载荷系统中的热流和温度。 NX流体解算器是一种计算流体动力学(CFD)解算器。它允许分析师执行稳态、不可压缩的流分析,并对系统中的流体运动预测流率和压力梯度,也可 以使用NX传热和NX流体一起执行耦合传热/流体分析。 1.2仿真文件结构 当向前通过高级仿真工作流时,将利用4个分离并关联的文件去存储信息。要在高级仿真中高效地工作,需要了解哪些数据存储在哪个文件中,以及在创建那些数据时哪个文件必须是激活的工作部件。这4个文件平行于仿真过程,如图1-2所示。 图1-2仿真文件结构 设计部件文件的理想化复制 当一个理想化部件文件被建立时,默认有一.prt扩展名,fem#_i是对部件名的附加。例如,如果原部件是plate.prt,一个理想化部件被命名为plate_fem1_i.prt。 一个理想化部件是原设计部件的一个相关复制,可以修改它。 理想化工具让用户利用理想化部件对主模型的设计特征做改变。不修改主模型部件,

悬架设计毕业设计开题报告

悬架设计毕业设计开题 报告

毕业设计(论文)开题报告题目: SUV汽车的设计---悬架部分 课题类别:设计□论文□ 学生姓名:殷燕峰 学号: 200320050130 班级:交运03-01班 专业(全称):交通运输(载运工具运用工程) 指导教师:徐桥生 2007年4月01日

二、设计(研究)现状和发展趋势(文献综述): 汽车悬架现状 悬架是现代汽车上的重要总成之一,它把车架(或车身)与车轴(或车轮)弹性地连接起来,并能传递载荷、缓和冲击、衰减震振动以及调节汽车行驶中的称车身位置等,都保证汽车行驶的平顺性。尽管一百多年来汽车悬架从结构型式到作用原理一直不断的演进,但从结构功能上、它都是有弹性元件、减振装置和到导向机构三部分组成。 (一)汽车悬架一般可分为两大类:非独立悬架和独立悬架。 1.非独立悬架 结构特点:两侧车轮安装在一根车轴的两端,车轴通过弹性元件与车架或车身相连,当一侧车轮因道路不平而跳动时,将影响另一侧车轮的工作。 适用于:负荷大的客车和货车 种类:(1)钢板弹簧非独立悬架 (2)螺旋弹簧非独立悬架[1]如图1 图1.非独立悬架 优点:结构简单、制造容易、维修方便、工作可靠。. 缺点:汽车平顺性较差、高速行驶时操稳性差、轿车不利于发动机、行李舱的布置。 应用:货车、大客车的前、后悬架以及某些轿车的后悬架。 2.非独立悬架型式 1.钢板弹簧式非独立悬架 板簧式非独立悬架主要由钢板弹簧和减振器组成[6]。如图2 :

2.螺旋弹簧式非独立悬架 螺旋弹簧非独立悬架由螺旋弹簧、减振器、纵向推力杆和横向推力杆组成。常用于轿车的后悬架[6]。如图3 : 图2 钢板弹簧式非独立悬架示意图 图3 螺旋弹簧式非独立悬架 3.空气弹簧式非独立悬架 空气弹簧非独立悬架主要由囊式空气弹簧、压气机、车身高度调节控制阀、控制杆等组成。采用空气弹簧悬架容易实现车身高度的自动调节[5] [7]。如图4: 图4 空气弹簧非独立悬架示意图

悬架系统计算报告样本

悬架系统计算报告 项目名 称: 03月编号: 版本号:V1.0

修订记录

目次 1 概述 (1) 1.1 计算目的 (1) 1.2 悬架系统基本方案介绍 (1) 1.3 悬架系统设计的输入条件 (2) 2 悬架系统的计算 (3) 2.1 弹簧刚度 (3) 2.2 悬架偏频的计算 (3) 2.2.1 前悬架刚度计算 (4) 2.2.2 前悬架偏频计算 (4) 2.2.3 后悬架刚度计算 (5) 2.2.4 后悬架偏频计算 (6) 2.3 悬架静挠度的计算 (6) 2.4 侧倾角刚度计算 (7) 2.4.1 前悬架的侧倾角刚度 (7) 2.4.2 后悬架的侧倾角刚度.......... 错误! 未定义书签。 2.5 整车的侧倾角计算 (10) 2.5.1 悬架质量离心力引起的侧倾力矩 (11) 2.5.2 侧倾后, 悬架质量引起的侧倾力矩 (12) 2.5.3 总的侧倾力矩 (12) 2.5.4 悬架总的侧倾角刚度 (12) 2.5.5 整车的侧倾角 (12) 2.6 纵倾角刚度 (12)

2.7 减振器参数 (13) 2.7.1 减振器平均阻力系数的确定错误! 未定义书签。 2.7.2 压缩阻尼和拉伸阻尼系数匹配 (16) 2.7.3 减震器匹配参数 (16) 3 悬架系统的计算结果 (17) 4 结论及分析 (18) 参考文献 (18)

1概述 1.1 计算目的 经过计算,求得反映MA02-ME10Q纯电动车悬架系统性能的基本特征,为零部件开发提供参考。计算内容主要包括悬架刚度、悬架侧倾角刚度、刚度匹配、悬架偏频、静挠度和阻尼等。 1.2 悬架系统基本方案介绍 MA02-ME10 0纯电动车前悬架采用麦弗逊式独立悬架带横向稳定杆结构,后悬架系统采用拖曳臂式非独立悬架结构。 前、后悬架系统的结构图如图1、图2: 图1前悬架系统

基于单片机的悬挂运动控制系统毕业设计开题报告

吉林建筑大学城建学院 毕业设计开题报告 所学专业:电气信息工程及其自动化 学生姓名: 指导教师: 论文题目:基于单片机的悬挂运动控制系统设计开题报告日期:2015.3.30

说明 1、开题报告由毕业生本人在完成文献阅读、科研调查的基础上,并通过开题报 告评议后填写。 2、本报告一式两份。一份交学院作为论文检查的依据;一份答辩后作为档案材 料归入学位档案。 3、开题报告用A4纸打印,不需标注页码。报告内容字体一律使用宋体小四, 行间距为1.25倍。

一、课题来源及研究的目的和意义 课题来源:生产 研究的目的: 科技的进步以及人们生活水平的逐步提高,各种方便于生活的自动控制开始进入了人们的生活,以单片机为核心的悬挂运动自动控制系统就是其中之一。在现代的工业控制、车辆运动和医疗设备等系统中,悬挂运动系统的应用越来越多,在这些系统中悬运动部件通常是具体的执行机构,因而悬挂部件的运动精确性是整个系统工作效能的决定因素,而在实际中实现悬挂运动控制系统的精确控制是非常困难的。靠改变悬挂被控对象的绳索长短来控制被控对象运动轨迹的悬挂运动控制系统,在生产控制等领域有很广的应用范围,但受技术上的制约,使用也有一定限制。采用单片机作为系统控制器。单片机可以实现各种复杂的逻辑功能,规模大,集成度高,体积小,稳定性好,并且可利用单片机软件进行仿真和调试。单片机采用并行工作方式,提高了系统的处理速度,常用于大规模实时性要求较高的系统。 研究的意义: 运动控制是自动化技术的重要组成部分,是机器人等高技术领域的技术基础,已取得了广泛的工程应用。运动控制集成了电子技术、电机拖动、计算机控制技术等内容。自二十世纪八十年代初期,运动控制器已经开始在国外多个行业应用,尤其是在微电子行业的应用更加广泛。而当时运动控制器在我国的应用规模和行业面很小,国内也没有厂商开发出通用的运动控制器产品。在现代的工业控制、车辆运动和医疗设备等系统中,悬挂运动控制系统的应用越来越多,在这些系统中悬挂运动部件通常是具体的执行机构,因此悬挂部件的运动精确性是整个系统工作效能的决定因素。靠改变悬挂被控对象的绳索长短来控制被控对象运动轨迹的悬挂运动控制系统,在生产控制等领域有很广的应用范围。

汽车设计悬架系统

汽车设计悬架系统

目录第一章悬架的结构形式的选择 第一节悬架的构成和类型--------------------- 第二节独立悬架结构形式分析 第三节前后悬架的选择 第二章悬架主要参数的选择 第一节悬架性能参数的选择 第二节悬架的自振频率 第三节侧倾角刚度 第四节悬架的静动挠度的选择 第三章弹性元件的设计分析及计算 第一节前悬架弹簧 第二节后悬架弹簧 第四章独立悬架导向机构的设计分析及计算第一节导向机构设计要求 第二节麦弗逊独立悬架示意图 第三节导向机构受力分析 第四节横臂轴线布置方式 第五节导向机构的布置参数 第五章减震器的设计分析及计算 第一节

第一章悬架的结构形式的选择 1.1悬架的构成和类型 1.1.1构成 (1)弹性元件 具有传递垂直力和缓和冲击的作用。常见的弹性元件有:钢板弹簧、螺旋弹簧、扭杆弹簧、空气弹簧、油气弹簧、橡胶弹簧等。 (2)导向装置 其作用是传递除弹性元件传递的垂直力以外的各种力和力矩。常见的导向装置 有:斜置单臂式、单横臂式、双横臂式、双纵臂式、麦弗逊式等。 (3)减震器 具有衰减振动的作用。常见的减震器有:简式减震器、充气式减震器、阻力可调式减震器等。 (4)缓冲块 其作用是减轻车轴对车架的直接冲撞,防止弹性元件产生过大的变形。 (5)横向稳定器 其作用是减少转弯行驶时车身的侧倾角和横向角振动。 1.1.2 类型 悬架可分为非独立悬架和独立悬架。 (1)非独立悬架 非独立悬架的特点是:左、右车轮用一根整体轴连接,再经过悬架与车架连接。

优点是:结构简单、制造容易、维修方便、工作可靠 缺点是:①由于整车布置上的限制,钢板弹簧不可能有足够的长度(特别是前悬架),使之刚度较大,所以汽车平顺性较差。 ②簧下质量较大。 ③在不平路面上行驶时,左、右车轮相互影响,并使车轴和车身倾斜。 ④当两侧车轮不同步跳动,车轮会左、右摇摆,使前轮容易产生摆振。 ⑤前轮跳动时,悬架易与转向传动机构产生运动干涉。 ⑥汽车转弯行驶时,离心力也会产生不利的轴转向特性。 ⑦车轴上方要求有与弹簧行程相适应的空间。 然而由于非独立悬架结构简单、易于维护以及可以使用多种类型的弹性元件等优点,非独立悬架多用于载货汽车和大客车的前、后悬架。 (2)独立悬架 独立悬架的特点是:左、右车轮通过各自的悬架与车架连接。 优点是:①簧下质量小。 ②悬架占用的空间小 ③弹性元件只承受垂直力,所以可以用刚度小的弹簧,使车身振动频率降低,改善了汽车行驶的平顺性。 ④由于采用了断开式车轴,所以能降低发动机的位置高度,使整车的质心高度下降,改善了汽车行驶的稳定性。 ⑤左、右车轮各自独立运动互不影响,可减少车身的倾斜和振动,同时在好的路面上能获得良好的地面附着能力。 缺点是:结构复杂、成本较高、维修困难

相关主题
文本预览
相关文档 最新文档