当前位置:文档之家› 机械振动初学者指南

机械振动初学者指南

机械振动初学者指南
机械振动初学者指南

机械振动初学者指南

车震 (译) 常英杰 (校)

修订 21/06/05

COPYRIGHT ? 2004 by Commtest Instruments Ltd.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Commtest Instruments Ltd. For information, contact:

Commtest Instruments Ltd

28-b Moorhouse Avenue

Christchurch

New Zealand

E-mail help@https://www.doczj.com/doc/4712010101.html,

Printed in New Zealand.

Disclaimer

Information in this document is subject to change without notice. Names and data used in examples are fictitious unless otherwise noted. This document is distributed as is, without warranty of any kind, either expressed or implied, respecting the contents of this document, including but not limited to implied warranties for the document’s quality, performance, merchantability, or fitness for any particular purpose. Neither Commtest Instruments Ltd nor its employees, dealers, or distributors shall be liable to the user of this document or any other person or entity with respect to any liability, loss, or damage caused or alleged to be caused directly or indirectly by this document. Trademark Notice

vb?, vb1000v?, vb1000?, vb2000?, vb3000? and PROFLASH? are trademarks of Commtest Instruments Ltd.

vbSeries? and Ascent? are registered trademarks of Commtest Instruments Ltd. Other trademarks and registered trademarks belong to their respective owners.

ii

目录

前言 (1)

第1章为什么监测机械振动重要? (2)

什么是机械振动? (2)

什么引起机械振动? (4)

(a)往复力 (5)

(b)松动 (7)

(c)共振 (8)

为什么监测机械振动? (10)

(a) 严重的机械损害 (11)

(b) 高功率消耗 (11)

(c) 机械的不可用 (12)

(d) 运输延迟 (12)

(e) 未完成货物的堆积 (13)

(f) 不必要的维护 (13)

(g) 质量问题 (14)

(h) 糟糕的公司形象 (14)

(i) 职业危机 (15)

总结 (15)

第2章如何描述机械振动? (16)

如何描述振动? (18)

什么是幅值? (18)

什么是频率? (22)

什么是波形? (23)

什么是频谱? (24)

总结 (26)

iii

第3章怎样测量机械振动? (27)

哪些机械需要监测? (28)

仪器怎样工作? (29)

如何安装加速度计? (30)

(a)尽可能靠近轴承安装 (31)

(b)确信加速度计联接牢固 (32)

(c) 确信加速度计方向正确 (34)

(d) 在相同位置安装相同的加速度计 (35)

(e) 在坚固物体上安装加速度计 (35)

(f) 加速度计的维护 (36)

(g) 注意人身安全 (37)

如何设置参数? (37)

(a)如何采集数据? (39)

(b) 采集多大或多快的数据? (39)

Fmax值应设为多少? (40)

应当使用多少谱线? (41)

应使用多大叠加百分比? (42)

(c) 如何处理数据? (42)

(d) 如何显示数据? (44)

如何采集数据? (48)

总结 (53)

附录:符号列表 (55)

一般振动术语 (57)

术语表 (59)

iv

前言

在Commtest Instruments 公司,我们知道振动监测是一项简单和不费力的任务——不是什么神秘艺术。我们所著《机械振动初学者指南》提供你们所需的关键信息,以便为你们使用VB振动监测仪器增加更多利益。

工程师、技术人员、机器操作人员和管理人员将很快掌握本书提出的概念。我们避免使用复杂的数学和物理公式,仅为了基本的机械监测集中精力于必须的原理概念。本文仅配以简单的图表并且使用浅显的语言。

一旦你装备了VB振动监测仪器并阅读了几遍《机械振动初学者指南》后,我们有信心你能进行基本的振动监测。欢迎你对本指南提出任何建议。

本书中的符号、单位、缩略语在附录中进行解释说明(55页)。

1

第一章 为什么振动监测重要

监测机械振动并利用你获得的信息会为你节省金钱!

这可能吗?

我们将在本章回答这个问题。阅读本章后你将:

理解机械振动这个术语

了解机械振动的一些常见原因

解释监测机械振动的理由

理解监测机械振动怎样节省资金

什么是机械振动?

我们大部分人都很熟悉振动—一个振动的物体会前后运动。一个振动物体处于振荡状态。

在我们的日常生活中振动实例处处可见,一个运动的钟摆处于振动状态,被拨动的吉他弦产生振动,行驶在颠簸路面的汽车不断振动,地质活动引发大面积的振动形成地震。

2

我们可通过各种方式感受物体的振动,我们能接触一个振动物体并感受其振动,我们也可看到一个振动体的前后移动,有时振动可以产生能听到的声音或能感觉到的热。

在工厂有一种振动是我们关心的:机械振动。

什么是机械振动?机械振动就是机械或机械部件的前后运动,一些部件前后运动或摆动就是在振动。

3

机械振动可以呈现出各种形式,一个机械部件可能产生大位移或小位移的振动,快或慢的振动,可感知或不可感知的热或声音的振动。机械振动可以被设计来实现一定的功能,除此之外,其他情况下机械振动可能是非期望产生的并导致机械损害。

多数情况机械振动是非人为原因产生的并不合需要的,本书是对非期望的机械振动监测的一本书,下面是一些非期望的机械振动的示例:

引起机械振动的原因是什么?

几乎所有的机械振动是由于下面的一个或多个原因引起:

a) 往复作用力

b) 松动

4

c) 共振

(a)往复作用力

想象一艘船停泊在海湾中,波浪正拍打着船的两边,只要波浪在船上持续作用,我们能够期待船将会摇动。

船将摇动因为波浪对其施加一个往复的力——某种模式的反复施加的力。

许多机械振动都因类似于那种引起船摇动的往复力而起,象这样的往复力作用于机器部件并且引起机器振动。

引起机械振动的往复力来自那里呢?

在机器中往复力的产生多因不平衡旋转、不对中、磨损或对机械部件的不合理驱动。下面显示的是这四种类型往复力的例子。

5

6

(b)松动

机械零件的松动引起机械振动。如果零件变得松动,那些原本可以容忍

的正常振动可能变得不能约束并且过大。

7

(c)共振

想象一个孩子在一秋千自由摇摆,即,没有别人推他且自己也不用力。如果我们近距离观察该运动,我们将看到孩子以某一特殊速率摇摆。例如,我们将看到秋千带着孩子以大约 3 秒完成一个摇摆周期。

孩子摇摆的速率实际上取决于摇摆系统的物理特性,更多取决于孩子的物理特性,即体重。当坐在这个特别秋千上孩子就会以该速率摇摆,它是孩子在这个秋千上最自然的摇摆速率。要改变该速率,唯一的方法是通过站起来,改变姿势,用脚摩擦地面等来改变自然摇摆。

机器也倾向于以某个速率振荡。机器倾向于的振荡速率被称为固有振动速率。机器的固有振动速率对机器来说是最自然的机器振动速率,即以该速率机器更易振动,一台机器通过它本身自由振动更倾向于以固有速率振动。

许多机器不止有一个固有振动速率,例如,一台设备包含两个具有不同固有振动速率的子结构,将会展示至少两个固有振动速率。总之,机器越复杂,他将有更多个固有振动速率。

8

现在让我们再回到孩子荡秋千这一例子,如果我们不停地推动孩子来帮助秋千运动,我们便可以期待秋千将越摆越高。

然而,如果我们以合适的节奏推动秋千的话,总是能使秋千只会越来越高;如果秋千上升我们却向下推,不要期待它会合理的摇摆。要使它摇的越来越高,我们推动的节奏就应该和其固有振动速率相一致,例如,我们可以每隔一段时间推一次,或着每次转变方向时推动,他会达到最高点。仅仅通过以其自然或固有速率来推动孩子,我们便可使其摇摆的越来越高。

如果一台机器被一往复力推动,且该力的节奏与机器的固有振动速率相匹配将会发生什么呢?

一个类似的情形将会发生——机器将会振动越来越强烈,因为该往复力激励机器以其自然自振速率振动。这台机器将不遗余力并超限振动。不仅因为他将以固有振动速率振动而且还受外力驱使振动。一台机器处于这种状况,我们便说它处于共振。

引起共振的往复力可能很小,并且可能来自于一个良好的机器部件的运动,如此小的往复力不会引起大问题,除非引起共振。共振总是应当被避免的,因为它引起快速和严重的损害。例如,一座桥的坍塌,仅仅因为其固有振动速率被士兵过桥的一致步伐节奏所激励。

9

为什么要监测机械振动?

要做好机器振动监测这项工作并且完全获益,我们必须理解对这个问题的答案。

监测一台机器的振动特征能让我们理解关于这台机器的“健康”状态,我们能使用这些信息来探察那些可能正在发生的问题。

为什么要关心机器的状态?为什么不持续运行该机器直至它损坏再修理它?

如果一台机器可以随便使用,我们使用它直至损坏是可以接受的。但是许多机器的价值决定不能随便处理它们。

如果我们对这些机器进行有规律的监测,我们将发现一些问题可能正在发展,并且能纠正它们既使这些问题已经产生。

相反,如果对那些我们不期望的振动不进行监测,机器很可能会被一直使用直至损坏。

因为监测机械振动能发现潜在的破坏性振动,因而我们能阻止问题发生,这样会为我们节省大量时间,金钱和避免损失。

下面我们讨论一些常见问题,这些问题可通过机械振动监测来避免。当机器本身的价值很大并且远远超过机械振动监测项目的价值时,这些问题是值得避免的。

10

(a)严重的机械损害

机械振动如果在足够早期没有进行探测,通常将导致严重的机械损害,这些损害需支付高额修理费甚至是整台机器的全部替换。然而,如果能有规律的监测这些机器的状况,在早期阶段潜在的问题就能被发现并被解决掉,在该阶段机器的修理是简单、快速和廉价的。这类似于我们的健康,经常看医生能早发现问题并可以避免大额的重病康复费用。

(b)高功率消耗

一台振动的设备会消耗更多能量,与功率需求执行机器的目的功能一样,附加功率也需求支持振动。如果机器被定期监测和维修这个问题可以被最小化。

11

(c) 机械的不可用

因为一台未监测设备更可能损坏,所以它经常更易失去效用。然而,拥有和运行机器的价值常常是由于其能够有效高效率地处理物质,或者其能够有效地将原材料转化成金钱。一台机器应能够始终可用来证明其投资,定期的监测能确保一台机器始终可用。

(d)交货迟延

因为一个没有处于监测状态下的机器更可能损坏,因此也可能导致货物发货的耽误,客户不得不等待,并且也耽搁了支付。客户也可能取消定单并拒绝和我们做生意。

12

(e)未完成货物的堆积

因为一台未受监测的机器是容易损坏的,它是经常不可用的,制造中的产品在机器的入料口堆积,这导致不必要的损耗——等待的货物冒着损坏的风险,房屋面积和资本的占用。

(f)不必要的维护

为了确保机器始终处于良好的状态,一些公司不考虑机器是否正处于故障状态便按照预先决定的计划停机调整并更换零件,因此,经常不必要地停机更换那些仍然状况良好的零件以及纠正不存在的问题。如果能经常监测机器并仅于必要时修理,这样的浪费是可以避免的。

13

(g)质量问题

有时机器虽然表面上好象机能正常却可能正处于不正常状态,这是一种危险状况,如果不早处理,这个问题可能导致生产低质量的产品,大规模产量损失,返工成本,更糟的是被愤怒的客户返回保修。经常被监测的机器很少会发生这样的问题。

(h)糟糕的公司形象

我们注意到上面提到的那些没有正常监测的机器能够导致交货迟延和低质量的产品。单单一个偶然的交货失误或产品的缺陷便足以严重玷污或者终结与客户的关系,一个与交货延误或低质量相联系的坏公司形象是公司的大事,应该避免。相对来说成本较低的机械振动监测,能够保护我们的客户关系和相关利益。

14

(i)职业病

由于振动机械的引起噪声和振动,他们经常引起职业病和人们的不适,而人们的不适又导致公司的损失,因为工人感到不适时会影响生产积极性。意外的机械停机导致人们无事可做,使生产策划者受挫。

总结

在本章里我们描述了机械振动,并讨论了通过对其采取规范的监测所带来的利益。

简言之,机械振动是机械或机械部件的前后运动,并一般由作用在机械上的往复力,松动的零件以及机械上的共振引起。

15

我们辨明了规律地进行振动监测的理由和不这样做的结果。通过规范地监测一台机器的特征,当问题产生时我们能检测并纠正它。在早期纠正机械问题,我们避免许多令人不愉快并且代价昂贵的问题,有些问题还会把客户卷入其中。不监测机器振动的代价远远超过进行机械监测项目的花费。

要知道如何安装你自己的机械振动监测程序,联系Commtest Instrumnets公司或者我们的分销商来获取VB系列振动监测系统的演示说明,有关你的最近的分销商的地址,请访问我们的网站https://www.doczj.com/doc/4712010101.html,

16

哈工大机械振动基础大作业

《机械振动基础》大作业 (2015年春季学期) 题目基于MATLAB求系统特性 姓名 学号 班级 专业机械设计制造及其自动化 报告提交日期 哈尔滨工业大学

报告要求 1.请根据课堂布置的2道大作业题,任选其一,拒绝雷同和抄袭; 2.报告最好包含自己的心得、体会或意见、建议等; 3.报告统一用该模板撰写,字数不少于3000字,上限不限; 4.正文格式:小四号字体,行距为倍行距; 5.用A4纸单面打印;左侧装订,1枚钉; 6.课程报告需同时提交打印稿和电子文档予以存档,电子文档由班 长收齐,统一发送至:。 7.此页不得删除。 评语: 成绩(15分):教师签名: 年月日

解多自由度矩阵的认识体会。二、MATLAB程序图: >> m=[]; k1=[]; k=[]; c=[]; c1=[]; for i=1:9 a=input('输入质量矩阵m:'); m(i,i)=a; end ; for j=1:9 b=input('输入刚度系数k:'); k1(1,j)=b; end for l=1:8 k(l,l)=k1(l)+k1(l+1); k(9,9)=k1(9); k(l+1,l)=-k1(l+1); k(l,l+1)=-k1(l+1); k(9,8)=-k1(9);

k(8,9)=-k1(9); end ; syms w; B=k-w^2*m %系统的特征矩阵B Y=det(B); %展开行列式 W=solve(Y); %求解wh lW=length(W); [V,D]=eig(k,m); for I=1:9 for J=1:9 V(J,I)=V(J,I)/V(5,I); end end V W 三 MATLAB结果输入输出: 程序输入内容: 输入质量矩阵m:1 输入质量矩阵m:2 输入质量矩阵m:3 输入质量矩阵m:4 输入质量矩阵m:5 输入质量矩阵m:6 输入质量矩阵m:7 输入质量矩阵m:8 输入质量矩阵m:9 输入刚度系数k:10 输入刚度系数k:11 输入刚度系数k:12 输入刚度系数k:13 输入刚度系数k:14 输入刚度系数k:15 输入刚度系数k:16 输入刚度系数k:17 输入刚度系数k:18

(完整版)机械振动习题答案

机械振动测验 一、 填空题 1、 所谓振动,广义地讲,指一个物理量在它的①平均值附近不停地经过②极大 值和③极小值而往复变化。 2、 一般来说,任何具有④弹性和⑤惯性的力学系统均可能产生机械振动。 3、 XXXX 在机械振动中,把外界对振动系统的激励或作用,①激励或输入;而 系统对外界影响的反应,称为振动系统的⑦响应或输出。 4、 常见的振动问题可以分成下面几种基本课题:1、振动设计2、系统识别3、 环境预测 5、 按激励情况分类,振动分为:①自由振动和②强迫振动;按响应情况分类, 振动分为:③简谐振动、④周期振动和⑤瞬态振动。 6、 ①惯性元件、②弹性元件和③阻尼元件是离散振动系统三个最基本的元件。 7、 在系统振动过程中惯性元件储存和释放①动能,弹性元件储存和释放②势 能,阻尼元件③耗散振动能量。 8、 如果振动时系统的物理量随时间的变化为简谐函数,称此振动为①简谐振动。 9、 常用的度量振动幅值的参数有:1、峰值2、平均值3、均方值4、均方根值。 10、 系统的固有频率只与系统的①质量和②刚度有关,与系统受到的激励无 关。 二、 试证明:对数衰减率也可以用下式表示,式中n x 是经过n 个循环后的振幅。 1 ln n x x n δ=

三、 求图示振动系统的固有频率和振型。已知12m m m ==,123k k k k ===。

北京理工大学1996年研究生入学考试理论力学(含振动理论基础)试题 自己去查双(二)自由度振动 J,在平面上在弹簧k的限制下作纯滚动,如图所示,四、圆筒质量m。质量惯性矩 o 求其固有频率。

五、物块M质量为m1。滑轮A与滚子B的半径相等,可看作质量均为m2、半径均 为r的匀质圆盘。斜面和弹簧的轴线均与水平面夹角为β,弹簧的刚度系数为k。 又m1 g>m2 g sinβ , 滚子B作纯滚动。试用能量法求:(1)系统的微分方程;(2)系统的振动周期。

高中物理机械振动知识点总结

一. 教案内容: 第十一章机械振动 本章知识复习归纳 二. 重点、难点解读 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线 方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表

机械振动大作业——简支梁的各情况分析

机械振动大作业 姓名:徐强 学号:SX1302106 专业:航空宇航推进理论与工程 能源与动力学院 2013年12月

简支梁的振动特性分析 题目:针对简支梁、分别用单、双、三、十个自由度以及连续体模型,计算其固有频率、固有振型。单、双、三自由度模型要求理论解;十自由度模型要求使用李兹法、霍尔茨法、矩阵迭代法、雅可比法、子空间迭代法求解基频;连续体要求推导理论解,并通过有限元软件进行数值计算。 解答: 一、 单自由度简支梁的振动特性 如图1,正方形截面(取5mm ×5mm )的简支梁,跨长为l =1m ,质量m 沿杆长均匀分布,将其简化为单自由度模型,忽略阻尼,则运动微分方程为0=+? ?kx x m ,固有频率ωn = eq eq m k ,其中k 为等效刚度, eq m 为等效质量。因此,求出上述两项即可知单自由度简支梁的固有 频率。 根据材料力学的结果,由于横向载荷F 作用在简支梁中间位置而 引起的变形为)(2 24348EI F -)(x l x x y -=(2 0l x ≤≤), 48EI F -3max l y =为最大挠 度,则: eq k =δF = 348EI l 梁本身的最大动能为: )(224348EI F - )(x l x x y -==)(223 max 43x l l x y - T max =2×dx x y l m l 2 20)(21? ?? ?????=2max 351721?y m ) (

如果用eq m 表示简支梁的质量等效到中间位置时的大小,它的最大动能可表示为: T max =2max 21 ?y m eq 所以质量为m 的简支梁,等效到中间位置的全部质量为: m m eq 35 17= 故单自由度简支梁横向振动的固有频率为: ωn = eq eq m k = 3 171680ml EI m k 图1 简支梁的单自由度模型 二、 双自由度简支梁的振动特性 如图2,将简支梁简化为双自由度模型,仍假设在简支梁中间位置作用载荷,根据对称性,等效质量相等,因此只要求出在3/l 处的等效质量即可。在6/l 至2/l 之间积分,利用最大动能进行质量等效,略去小量得: m m eq 258≈ 所以,质量矩阵为: ??????=→ 1001258m m 双自由度简支梁的柔度矩阵:

机械振动 知识点总结

机械振动 1、判断简谐振动的方法 简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。特征是:F=-kx,a=-kx/m. 要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。 然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。 2、简谐运动中各物理量的变化特点 简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系: 如果弄清了上述关系,就很容易判断各物理量的变化情况 3、简谐运动的对称性 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。 理解好对称性这一点对解决有关问题很有帮助。 4、简谐运动的周期性 5、简谐运动图象 简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。 6、受迫振动与共振 (1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 位移x 回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K 2

机械振动基础试卷

机械振动基础试卷 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

振动分析与实验基础课程考试试卷 1 1. 设有两个刚度分别为21,k k 的线性弹簧如图1所示, 试证明:1)它们并联时的总刚度eq k 为: 2)它们串联时的总刚度eq k 为: (共计15分) 2. 弹簧下悬挂一物体,弹簧静伸长为δ,设将物体向下拉,使弹簧有静 伸长3δ,然后无初速度地释放,求此后的运动方程。 (共计15分) 3. 求如图2所示系统微幅扭振的周期。图中两个摩擦轮可分别绕水平轴1O ,2O 转动,它们相互啮合,不能相对滑动,在图示位置(半径1O A 与2O B 在同一水平线上),弹簧不受力。摩擦轮可以看做等厚均质圆盘, 质量分别为1m ,2m 。(共计15分) 4. 试证明:对数衰减率也可用下式表示 n n x x l n 01=δ (式中n x 是经过n 个循环后的振幅)。 并给出在阻尼比ξ为0.01,0.1,0.3时振幅减小到50%以下所需要的循环数。(共计15分) 5. 如图3所示的扭振系统,设, 221I I =12t t K K = 1).写出系统的刚度矩阵和质量矩阵。 2).写出系统的频率方程并求出固有频率和振型,画出振型图。 (共计15分) 6. 证明:对系统的任一位移{}x ,Rayleigh 商 满足221)(n x R ωω≤≤

这里[]K和[]M分别是系统的刚度矩阵和质量矩阵,1ω和nω分别是系统的最低和最高固有频率。(共计15分) 7. 求整流正弦波 T tπ A x(t) 2 sin =的均值,均方值和方差。(共计10分)

《机械振动》单元测试题(含答案)

《机械振动》单元测试题(含答案) 一、机械振动选择题 1.甲、乙两弹簧振子,振动图象如图所示,则可知() A.甲的速度为零时,乙的速度最大 B.甲的加速度最小时,乙的速度最小 C.任一时刻两个振子受到的回复力都不相同 D.两个振子的振动频率之比f甲:f乙=1:2 E.两个振子的振幅之比为A甲:A乙=2:1 2.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中() A.甲的最大速度大于乙的最大速度 B.甲的最大速度小于乙的最大速度 C.甲的振幅大于乙的振幅 D.甲的振幅小于乙的振幅 3.甲、乙两单摆的振动图像如图所示,由图像可知 A.甲、乙两单摆的周期之比是3:2 B.甲、乙两单摆的摆长之比是2:3 C.t b时刻甲、乙两摆球的速度相同D.t a时刻甲、乙两单摆的摆角不等 4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为() A.T=2GM l B.T=2 l GM

C .T = 2πGM r l D .T =2πl r GM 5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( ) A . 212 ()x x g L π- B . 212 ()2x x g L π- C . 212 ()4x x g L π- D . 212 ()8x x g L π- 6.如图所示,将小球甲、乙、丙(都可视为质点)分别从A 、B 、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D ,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D ,丙沿圆弧轨道从C 点运动到D ,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( ) A .丙球最先到达D 点,乙球最后到达D 点 B .甲球最先到达D 点,乙球最后到达D 点 C .甲球最先到达 D 点,丙球最后到达D 点 D .甲球最先到达D 点,无法判断哪个球最后到达D 点 7.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。以钢球的平衡位置为坐标原点,竖直向上为正方向建立x 轴,当钢球在振动过程中某一次经过平衡位置时开始计时,钢球运动的位移—时间图像如图2所示。已知钢球振动过程中弹簧始终处于拉伸状态,则( ) A .1t 时刻钢球处于超重状态

机械振动和机械波知识点总结教学教材

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==? λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 2. 会用图像法分析机械振动和机械波。 振动图像,例:波的图像,例: 振动图像与波的图像的区别横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置 表征单个质点振动的位移随时间变 化的规律 表征大量质点在同一时刻相对于平衡位 置的位移 相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T s =4 相邻的两个振动始终同向的质点间的距 离表示波长。例:λ=8m

(完整版)浙江大学《机械振动基础》期末试卷

诚信考试沉着应考杜绝违纪 浙江大学2013–2014学年夏学期 《机械振动基础》课程期末考试试卷A卷 开课学院:化工系,考试形式:闭卷,允许带 1张A4纸的笔记入场 考试时间: 2014 年 7 月 2 日, 下午14:00~16:00 ,所需时间: 120 分钟 考生姓名: __学号:专业:过程装备与控制工程 . 注意事项: (1)、考试形式为闭卷,允许带1页A4纸大小的参考资料、计算器和尺子。不允许带 PPT课件打印稿、作业本、笔记本草稿纸等纸质材料,不允许带计算机、IPad等智能电子设备。 (2)、第一、二大题答题内容写在试卷上,第三大题答题内容写在试卷所附答题纸上。试题(三个大题,共100分): 一、判断题(每题2分,共18分) 1.1 杆的纵向振动、弦的横向振动和轴的扭转振动虽然在运动表现形式上并不相同, 但它们的运动微分方程是同类的,都属于一维波动方程。() 1.2 稳态响应的振幅及相位只取决于系统本身的物理性质(m, k, c)和激振力的频率 及力幅,而与系统进入运动的方式(即初始条件)无关. () 1.3 在受到激励开始振动的初始阶段,振动系统的响应是暂态响应与稳态响应的叠 加。即使在零初始条件下,也有自由振动与受迫振动相伴发生。() 1.4 为减轻钢丝绳突然被卡住时引起的动张力,应适当减小升降系统的刚度。() 1.5 汽轮机等高速旋转机械在开、停机过程中经过某一转速附近时,支撑系统会发生 剧烈振动,此为转子系统的临界转速,即转子横向振动的固有频率。() 1.6 谐波分析法是将非周期激励通过傅立叶变换表示成了一系列频率为基频整数倍的 简谐激励的叠加,从而完成系统响应分析。 () 1.7阻尼自由振动的周期小于无阻尼自由振动的周期。 () 1.8叠加原理可用于线性和非线性振动系统。 () 1.9若将激振力 F(t) 看作一系列单元脉冲力的叠加,则线性振动系统对任意激振力的 响应等于激振力作用时间内各个单元脉冲响应的总和。 ()

机械振动和机械波知识点总结

机械振动和机械波 、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位 置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力, 它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是: a 物体离开平衡位置后要受到回复力作用。 b 、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。 简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡 位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也 可说是物体在跟位移大小成正比, 方向跟位移相反的回复力作用下的振动, 即F= — kx ,其中 “一”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比, 方向跟位移方向相反 的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用, 简谐振动的特点在于它是 一种周期性运动, 它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能) 都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入 面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“ A ”表示,它是标量,为正 值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动 在振动过程中,动 机械振动;:!振动在媒质中传递

机械振动大作业-求初始激励的自由振动响应

图示系统中, m1=m2=m3=m, k1=k2=k3=k, 设初始位移为1, 初始速度为0, 求初始激励的自由振动响应。 要求: (1)利用影响系数法求解刚度阵K和质量阵M,建立控制方程;(15分) (2)求解系统固有频率和基准化振型;(13分) (3)求解对初始激励的响应(运动方程);(12分) (4)利用软件仿真对初始激励响应曲线(Matlab,simulink,excel均可),给出仿真程序(或框图)、分析结果;尝试对m、k赋值,分析曲线变化; (10分) (5)浅谈对本课程的理解、体会,对授课的意见、建议;(10分) 字迹清晰,书写规整。(10分)

(1)利用影响系数法求解刚度阵K 和质量阵M ,建立控制方程; ①求解刚度矩阵K 令[]T 00 1 =X ,则弹簧变形量δ=[1 1 0]T , 在此条件下系统保持平衡,按定义需加于三物块的力312111、、k k k 如图所示 根据平衡条件可得 0,,2312222121221111=-=-=-==+=+=k k k k k k k k k k k δδδ 同理,令[]T 010=X 得 k k k k k k k k k k -=-==+=-=-=3323222212,2, 令[]T 100=X 得 k k k k k k k ===-==33332313,-,0 故刚度矩阵为 ②求解质量矩阵M 令[ ]T 001=X 得m m m ==111,021=m ,031=m 令[]T 010=X 得012=m ,m m m ==222,032=m 令[]T 100=X 得013=m ,023=m ,m m m ==333 故质量矩阵为

多自由度系统振动分析典型教案

第2章多自由度系统的振动 基本要点: ①建立系统微分方程的几种方法; ②固有频率、固有振型的概念以及固有振型关于质量和刚度矩阵的加权正交性; ③多自由度系统运动的解耦—模态坐标变换及运用模态叠加法求解振动系统的响应。 引言 多自由度振动系统的几个工程实例;多自由度系统振动分析的特点;多自由度系统振动分析与单自由度系统的区别与联系。 §2.1多自由度系统的振动方程 ●方程的一般形式:质量矩阵、阻尼矩阵、刚度矩阵和激振力 §2.2建立系统微分方程的方法 ●影响系数:刚度影响系数、柔度影响系数 ●刚度矩阵法、柔度矩阵法及这两种方法的特点;Lagrange方程法 §2.3无阻尼系统的自由振动 ●二自由度系统的固有振动:固有频率、固有振型。 ●二自由度系统的自由振动 ●二自由度系统的运动耦合与解耦 弹性耦合,惯性耦合; 振动系统的耦合取决于坐标系的选择; ●多自由度系统的固有振动 固有振动的形式及条件:特征值、特征向量、模态质量、模态刚度; 固有振型的性质:关于质量矩阵和刚度矩阵的加权正交性; 刚体模态; ●运动的解耦:模态坐标变换(主坐标变换)。 ●多自由度系统的自由振动 §2.4无阻尼系统的受迫振动 ●频域分析:动刚度矩阵和频响函数矩阵,频响函数矩阵的振型展开式,系统反 共振问题。 ●时域分析:单位脉冲响应矩阵,任意激励下的响应,模态截断问题,模态加速 度法。 §2.5比例阻尼系统的振动 ●多自由度系统的阻尼:Rayleigh比例阻尼。 ●自由振动 ●受迫振动:频响函数矩阵,单位脉冲响应矩阵,任意激励下的响应。 §2.6一般粘性阻尼系统的振动

●自由振动:物理空间描述,状态空间描述。 ●受迫振动:脉冲响应矩阵,频响函数矩阵,任意激励下的响应。 思考题: ①刚度矩阵和柔度矩阵在什么条件下是互逆的两个矩阵?从物理上和数学两方面加以解 释? ②为什么说模态质量、模态刚度的数值大小没有直接意义? ③证明固有振型关于质量矩阵和刚度矩阵的加权正交性,并讨论其物理意义。 ④在实际的多自由度系统振动分析中,为什么要进行模态截断? 参考书目 1.胡海岩,机械振动与冲击,航空工业出版社,2002 2.故海岩,机械振动基础,北京航空航天大学出版社,2005 3.季文美,机械振动,科学出版社,1985。(图书馆索引号:TH113.1/1010) 4.郑兆昌主编, 机械振动上册,机械工业出版社,1980。(图书馆索引号: TH113.1/1003-A) 5.Singiresu S R, Mechanical vibrations,Longman Prentice Hall, 2004(图书馆索引 号:TH113.1/WR32)

机械振动和机械波知识点复习及总结要点

机械振动和机械波知识点复习 一机械振动知识要点 1.机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动 条件:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。回复力:效果力——在振动方向上的合力平衡位置:物体静止时,受(合)力为零的位置:运动过程中,回复力为零的位置(非平衡状态)描述振动的物理量 位移x(m)——均以平衡位置为起点指向末位置 振幅A(m)——振动物体离开平衡位置的最大距离(描述振动强弱)周期T (s)——完成一次全振动所用时间叫做周期(描述振动快慢)全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程 频率f(Hz)——1s钟内完成全振动的次数叫做频率(描述振动快慢) 2.简谐运动 概念:回复力与位移大小成正比且方向相反的振动受力特征:运动性质为变加速运动从力和能量的角度分析x、F、a、v、EK、EP 特点:运动过程中存在对称性 平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大、EK同步变化;x、F、a、EP同步变化,同一位置只有v可能不同 3.简谐运动的图象(振动图象) 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律可直接读出振幅A,周期T(频率f)可知任意时刻振动质点的位移(或反之)可知任意时刻质点的振动方向(速度方向)可知某段时间F、a等的变化 4.简谐运动的表达式: 5.单摆(理想模型)——在摆角很小时为简谐振动 回复力:重力沿切线方向的分力周期公式: l (T与A、m、θ无关——等时性) g 测定重力加速度g,g= 等效摆长L=L线+r 2 T 6.阻尼振动、受迫振动、共振

机械振动大作业.

《机械振动基础》大作业 (2014年春季学期) 题目基于MATLAB求系统特性 姓名李超 学号1110910706 班级1108107 专业机械设计制造及其自动化 报告提交日期2014年4月23 哈尔滨工业大学

报告要求 1.请根据课堂布置的2道大作业题,任选其一,拒绝雷同和抄袭; 2.报告最好包含自己的心得、体会或意见、建议等; 3.报告统一用该模板撰写,字数不少于3000字,上限不限; 4.正文格式:小四号字体,行距为1.25倍行距; 5.用A4纸单面打印;左侧装订,1枚钉; 6.课程报告需同时提交打印稿和电子文档予以存档,电子文档由班 长收齐,统一发送至:shanxiaobiao@https://www.doczj.com/doc/4712010101.html,。 7.此页不得删除。 评语: 成绩(15分):教师签名: 年月日

求解多自由度矩阵的认识体会。 二、MATLAB程序图 m=[]; k1=[]; k=[]; c=[]; c1=[]; % 质量矩阵的输入 for i=1:10 a=input('输入质量矩阵m:'); m(i,i)=a; end %刚度矩阵的输入 for j=1:10 b=input('输入刚度系数k:'); k1(1,j)=b; end for l=1:9 k(l,l)=k1(l)+k1(l+1); k(10,10)=k1(10); k(l+1,l)=-k1(l+1); k(l,l+1)=-k1(l+1); k(10,9)=-k1(10); k(9,10)=-k1(10); end

%阻尼矩阵的输入 syms w; B=k-w^2*m %系统的特征矩阵B Y=det(B); %展开行列式 W=solve(Y); %求解wh lW=length(W); [V,D]=eig(k,m); for I=1:10 for J=1:10 V(J,I)=V(J,I)/V(5,I); end end V W 三、MATLAB结果输入输出 1.输入质量矩阵m:1 2.输入质量矩阵m:1 3.输入质量矩阵m:1 4.输入质量矩阵m:1 5.输入质量矩阵m:1 6.输入质量矩阵m:1 7.输入质量矩阵m:1 8.输入质量矩阵m:1 9.输入质量矩阵m:1 10.输入质量矩阵m:1 11.输入刚度系数k:1 12.输入刚度系数k:1 13.输入刚度系数k:1 14.输入刚度系数k:1 15.输入刚度系数k:1 16.输入刚度系数k:1 17.输入刚度系数k:1 18.输入刚度系数k:1 19.输入刚度系数k:1 20.输入刚度系数k:1 21. B = 22.[ 2 - w^2, -1, 0, 0, 0, 0, 0, 0, 0, 0]

高中物理机械振动知识点与题型总结.doc

(一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐 振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)阻尼振动、受迫振动、共振。 简谐振动是一种理想化的振动,当外界给系统一定能量以后,如将振子拉离开平衡位置,放开后,振子将一直振动下去,振子在做简谐振动的图象中,振幅是恒定的,表明系统机械能不变,实际的振动总是存在着阻力,振动能量总要有所耗散,因此振动系统的机械能总要减小,其振幅也要逐渐减小,直到停下来。振幅逐渐减小的振动叫阻尼振动,阻尼振动虽然振幅越来越小,但振动周期不变,振幅保持不变的振动叫无阻尼振动。 振动物体如果在周期性外力──策动力作用下振动,那么它做受迫振动,受迫振动达到稳定时其振动周期和频率等于策动力的周期和频率,而与振动物体的固有周期或频率无关。 物体做受迫振动的振幅与策动力的周期(频率)和物体的固有周期(频率)有关,二者相差越小,物体受迫振动的振幅越大,当策动力的周期或频率等于物体固有周期或频率时,受迫振动的振幅最大,叫共振。 【典型例题】 [例1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确的是() A. 振子在M、N两点受回复力相同 B. 振子在M、N两点对平衡位置的位移相同 C. 振子在M、N两点加速度大小相等 D. 从M点到N点,振子先做匀加速运动,后做匀减速运动 解析:建立弹簧振子模型如图所示,由题意知,振子第一次先后经过M、N两点时速度v相同,那么,可以在振子运动路径上确定M、N两点,M、N两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动的(若M点定在O点右侧,则振子是从右侧释放的)。建立起这样的物理模型,这时问题就明朗化了。

机械振动基础

第十三章 机械振动基础 一、目的要求 1、掌握建立各种类型单自由度系统振动(自由振动、阻尼振动、受迫振动)微分方程的方法及其解的表达式。理解恢复力、阻尼力和干扰力的概念。 2、对各种类型振动规律有清晰的理解,会计算有关的物理量。 深刻理解自由振动的固有频率(或周期)、振幅、初相位角的概念。会应用各种方法特别是能量法,求固有频率。 了解阻尼对自由振动的干扰、幅频曲线、共振和放大系数的概念。 3、懂得如何利用振动现象,以及消振和隔振的原理与方法。 二、基本内容 1.基本概念 单自由度系统的自由振动,计算固有频率的能量法;单自由度系统的有阻尼自由振动;单自由度系统的无阻尼受迫振动;单自由度系统的有阻尼强迫振动;转子的临界转速;隔振。 2.主要公式 (1)单自由度系统无阻尼自由振动微分方程 02=+x x n ω m k n /2 =ω 单自由度系统无阻尼自由振动微分方程的解 )sin(?ω+=t A x n 2202 n x x A ω + = 0 0x x tg n ω?= n ω是系统的固有(圆)频率,A 为自由振动的振幅,?为初相位。 n T ωπ 2= 是系统的自由振动的周期。 T f 1 = 是系统自由振动的频率。 能量法求单自由度系统无阻尼自由振动的固有频率 max max V T =(注意:计算最大势能max V 时,取系统的静平衡位置为势能零点。 )

(2)单自由度系统有阻尼自由振动微分方程 022 =++x x n x n ω m c n = 2 其中式c 是系统的粘滞阻尼系数。 小阻尼情况下(n n ω<)单自由度系统有阻尼自由振动微分方程的解 )sin(d d nt t Ae x ?ω+=- 2 220020 )(n nx x x A n -++= ω , 2 221ξωωω-=-=n n d n 002 2 0nx x n x tg n d +-= ω? n n ωξ2= 为系统的阻尼比。 有阻尼自由振动的周期 2 2 12n T n -= ωπ 减幅系数11 nT i i e A A == +η 对数减幅系数11 1ln ln ln nT e A A nT i i ====+ηδ (3)单自由系统无阻尼受迫振动的微分方程 t h x x n ωωsin 2 =+ m F h 0 = 0F 为激振力的力幅 单自由系统无阻尼受迫振动的微分方程的解 t h t A x n n ωωω?ωsin )sin(2 2-+ += 稳态解 t h x n ωωωsin 2 2-= 共振的条件 n ωω≈

机械振动试题(含答案)

机械振动试题(含答案) 一、机械振动选择题 1.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是() A.t=1.25s时,振子的加速度为正,速度也为正 B.t=1.7s时,振子的加速度为负,速度也为负 C.t=1.0s时,振子的速度为零,加速度为负的最大值 D.t=1.5s时,振子的速度为零,加速度为负的最大值 2.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为() A.T=2πr GM l B.T=2πr l GM C.T=2πGM r l D.T=2πl r GM 3.下列叙述中符合物理学史实的是() A.伽利略发现了单摆的周期公式 B.奥斯特发现了电流的磁效应 C.库仑通过扭秤实验得出了万有引力定律 D.牛顿通过斜面理想实验得出了维持运动不需要力的结论 4.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A,由静止释放。以钢球的平衡位置为坐标原点,竖直向上为正方向建立x轴,当钢球在振动过程中某一次经过平衡位置时开始计时,钢球运动的位移—时间图像如图2所示。已知钢球振动过程中弹簧始终处于拉伸状态,则() A.1t时刻钢球处于超重状态 B.2t时刻钢球的速度方向向上

胡海岩机械振动基础试题综合

1、按不同情况进行分类,振动系统大致可分成,线性振动和(非线性振动);(确定性振动)和随机振动;自由振动和(强迫振动);周期振动和(非周期振动);(连续系统)和离散系统。 2、在离散系统中,弹性元件储存(势能),惯性元件储存(动能),(阻尼)元件耗散能量。 3、叠加原理是分析(线性振动系统)的振动性质的基础。 4.叠加原理在(线性振动系统)中成立;在一定的条件下,可以用线性关系近似(非线性关系)。 5.在振动系统中,弹性元件储存(势能),惯性元件储存(动能),(阻尼)元件耗散能量。 6、周期运动的最简单形式是(简谐运动),它是时间的单一(正弦)或(余弦)函数。7.周期运动可以用(简谐函数)的(级数)形式表示。 8.根据系统、激励与响应的关系,常见的振动问题可以分为(振动设计、系统识别、环境预测)三类基本课题。 9.随机振动中,最基本的数字特征有(均值、方差、自相关函数和互相关函数);宽平稳随机振动过程指的是上述数字特征具有(与时间无关)特点;各态遍历过程是指任一样本函数在(时域)的统计值与其在任意时刻的状态的统计值相等。 10、机械振动是指机械或结构在(静平衡)附近的(弹性往复)运动。 11、(惯性)元件、(弹性)元件、(阻尼)元件是离散振动系统的三个最基本元素。 12、系统固有频率主要与系统的(刚度)和(质量)有关,与系统受到的激励无关。 13、单自由度系统无阻尼自由振动的频率只与(质量)和(刚度)有关,与系统受到的激励无关。 14、系统的脉冲响应函数和(频响函数)函数是一对傅里叶变换对,和(传递函数)函数是一对拉普拉斯变换对。 15、机械振动是指机械或结构在平衡位置附近的(往复弹性)运动。 16、简谐激励下单自由度系统的响应由(瞬态响应)和(稳态响应)组成。 17、单位脉冲力激励下,系统的脉冲响应函数和系统的(频响函数)函数是一对傅里叶变换对,和系统的(传递函数)函数是一对拉普拉斯变换对。 18、研究随机振动的方法是(数学统计),工程上常见的随机过程的数字特征有:(均值),(方差),(自相关函数)和(互相关函数)。 19根据系统、激励与响应的关系,常见的振动问题,可以分为( 振动设计) 、(系统识别)和( 环境预测)三类基本课题 1、多自由系统振动的振型指的是什么?(10分) 机械系统某一给定振动模态的振型,指在某一固有频率下,由中性面或中性轴上的点偏离其平衡位置的最大位移值所描述的图形。 2.机械振动系统的固有频率与哪些因素有关?关系如何? 机械振动系统的固有频率与系统的质量矩阵(2分)、刚度矩阵(2分)和阻尼有关(1分) 质量越大,固有频率越低;(2分)刚度越大,固有频率越高;(2分)阻尼越大,固有频率越低。 3.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。(10分)实际阻尼是指振动系统的真实阻尼值,用于度量系统自身消耗振动能量的能力;(2分)临界阻尼是概念阻尼,是指一个特定的阻尼值(2分),大于或等于该阻尼值,系统的运动不是振动,而是一个指数衰运动;(3分) 阻尼比(相对阻尼系数)等于实际阻尼与临界阻尼之比。(3分) 4.简述无阻尼单自由度系统共振的能量集聚过程。(10分)无阻尼单自由度系统受简谐激励时,如果激励频率等于系统固有频率,系统将发生共振;(3分) 外力对系统做的功全部转成系统的机械能即振动的能量;(3分) 外力持续给系统输入能量,使系统的振动能量直线上升,振幅逐渐增大;(3分) 无阻尼系统共振时,需要一定的时间积累振动能量。(1分) 5. 简述线性多自由度系统动力响应分析方法。(10分)

相关主题
文本预览
相关文档 最新文档