当前位置:文档之家› 第六章 波形发生与变换电路

第六章 波形发生与变换电路

第六章  波形发生与变换电路
第六章  波形发生与变换电路

第六章 波形发生与变换电路

〖本章主要内容〗

1、在模拟电子电路中测试信号和控制信号;

2、自激振荡的概念;

3、正弦波振荡电路所产生的自激振荡和负反馈放大电路中所产生的自激振荡的区别;正弦波振荡电路中选频网络的组成;

4、正弦波振荡的条件,正弦波振荡电路的组成;

5、矩形波发生电路原理及组成;

6、矩形波、三角波和锯齿波发生电路的原理及组成;

7、电压-电流转换电路、精密整流电路和电压-频率转换电路的组成和工作原理;

〖本章学时分配〗

本章分为3讲,每讲2学时。

第二十二讲 非正弦波发生器

一、主要内容

1、方波发生器 1)电路结构

方波发生器是由滞回比较器和RC 定时电路构成的,电路见教材P375图8.39(a)所示。 2) 工作原理及波形分析

电源刚接通时,设Uc=0,Uo=+Uz

21Z

2P ,R R U R U +=

所以,电容C 充电,Uc 升高。

当N C U U =≥P U 时,Z o U U -=,所以

21Z

2P R R U

R U +-=,电容C 放电,Uc 下降。 当N O U U =≤P U 时,Z O U U +=,返回初态。如此周而复始产生振荡。电路输出波

形见教材P375图8.39(b)所示。由于充电和放电时间常数相同,故输出Uo 的高低电平宽度相等,故为方波发生器。

3) 振荡周期

方波的周期T用过渡过程公式可以方便地求出

)21ln(212

3R R C R T +

=

4)电路特点 改变R 3、C 及R 2/R 1的比值,可改变周期T 。 2、占空比可调的矩形波电路 1)电路结构

显然,为了改变输出方波的占空比,应改变电容器C 的充电和放电时间常数。占空比可调的矩形波电路见教材P374图8.38(a )所示。 2)工作原理及波形分析 C 充电时,充电电流经电位器的上半部、二极管D 1、R 3;

C 放电时,放电电流经R 3、二极管

D 2、电位器的下半部。

由于充、放电时间常数不同,这样就得到了矩形波电路。其输出波形见教材P374图8.38(b )所示。 3)振荡周期

占空比为:211

1τττ+=

T

T 。其中:

时间常数: ()τ111=++R r R C

w '

d ,()τ221=-++R R r R C

w w '

d R’w 是电位器中点到上端的电阻,和是二极管导D 1、D 2的导通电阻。控制τ1和τ2的比值即可得到输出高低电平宽度不同的波形。

振荡周期:

)21ln()2(21

321R R C R R T T T W +

+≈+=

4) 电路特点 通过调节R w ,可改变输出波形的占空比。 3、三角波发生器 1)电路结构

三角波发生器的电路见教材P376图8.40(a)所示。它是由滞回比较器和积分器闭环组合而成的。积分器的输出反馈给滞回比较器,作为滞回比较器的U REF 。 2)工作原理及波形分析

当U O1=+U Z 时,则电容C 充电, 同时U O 按线性逐渐下降,当使A 1的U p 略低于U N 时,U O1 从+U Z 跳变为-U Z 。 在U 01= —U Z 后,电容C 开始放电,Uo 按线性上升,当使A 1的Up 略大于零时,U 01 从—Uz 跳变为+Uz ,如此周而复始,产生振荡。Uo 的上升、下降时间相等,斜率绝对值也相等,故Uo 为三角波。其输出波形见教材P376图8.40(b)所示 输出峰值m o U :正向峰值Z 21m o U R R U =

,负向峰值Z 2

1m o U R R U -=。

3) 振荡周期

m o 2

/0

3

Z

2d 1

u t R u C T =?

振荡周期:

213Z m o 344R C

R R U U C

R T ==

4)电路特点 通过改变R 3、C 及R 1/R 2的比值,可改变振荡周期T 。 4、锯齿波发生器 1)电路结构

锯齿波发生器的电路见教材P379图8.43(a )所示,显然为了获得锯齿波,应改变积分器的充、放电时间常数。 2)工作原理及波形分析

电路工作原理是利用二极管的单向导电性,使积分电路中充电和放电的回路不同。锯齿波电路的波形图见教材P379图8.43(b )所示。 3)振荡周期和占空比

振荡周期

C R R R R T W )2(2

32

1

+=

占空比 W R R R T T +=

332

1

2 4)电路特点

调整R 1和R 2的阻值可改变锯齿波的幅值;调整R 1、R 2和Rw 的阻值及C 的大小,可以改变振荡周期;调整电位器滑动端的位置,可以改变输出波形的占空比,以及锯齿波上升

和下降的斜率。

二、本讲重点

1、方波发生器

2、三角波发生器

三、本讲难点

1、 三角波变锯齿波电路

2、 三角波变正弦波电路。

四、教学组织过程

讲授

五、课后习题

见相应章节的“习题指导”。

第二十三讲 正弦波发生电路

一、主要内容

1、 产生正弦波的条件和正弦波振荡电路的组成 1) 电路振荡的物理原因:

本质上与负反馈放大器的振荡相同。若反馈信号与放大器净输人信号同相等幅,因而净输人信号靠反馈信号得以维持,则即使外加输人信号为零,输出也不会消失。 2)振荡的条件:

i

f V V &&=, 即:相位条件——同相,幅值条件——等幅。

用开环频率特性表示的振荡条件:幅度平衡条件 |.

.F A |=1

相位平衡条件 ?AF = ?A +?F = ±2n π 3) 正弦波振荡电路的组成和类型

正弦波振荡电路由以下四部分组成:放大电路、正反馈网络、选频网络、稳幅电路。 其中放大电路保证电路能够在起振到动态平衡的过程中、使电路获得一定幅值的输出量;,放大电路和正反馈网络共同满足振荡的条件;选频网络实现单一频率振荡,选频网络往往由R 、C 和L 、C 等电抗性元件组成;反馈网络与选频网络可以是两个独立的网络,也可以合二为一。稳幅电路使输出信号幅值稳定,一般采用非线性环节限幅。 4)正弦波振荡电路分析方法和步骤:

(1)观察电路是否是否包含振荡电路的四部分组成;

(2)判断放大电路正常工作,即是否有合适的静态工作点,且动态信号是否能够输入和输出和放大;

(3)判断电路能否振荡

关键是相位。若相位条件不满足,则电路肯定不是正弦波振荡器。相位平衡条件是判断振荡电路能否振荡的基本条件。可用瞬时极性判断方法。 (4)估算振荡频率

振荡电路的振荡频率f O 是由相位平衡条件决定的。对RC 选频网络,由网络频率特性求出f O ;对LC 选频网络,由谐振回路总电抗为零估算出f O 。 (5)分析起振条件(幅值条件)

欲使振荡电路能自行起振,须满足|AF|>1的幅值条件。 , (6)稳幅与稳频

稳幅是指“起振→增幅→等幅”的振荡建立过程,也就是从|AF|>1到达| AF|=1(稳定)的过程。稳幅的办法可采用非线性元件来自动调节反馈的强弱以维持输出电压恒定。 稳频是指维持输出信号频率恒定。可以采取提高回路Q 值,尽且减小回路损耗的办法稳频。 2、RC 正弦波振荡电路

1) RC 串并联选频网络的频率响应 电路见教材P342图8.5。推导有:

谐振角频率和谐振频率分别为:

RC 1

0=

ω, RC f π210=

幅频特性: =

.F 2

0022002)(31)(31||ωωωω-=

-=++f f f f F &

相频特性:

)(

31arctg 00F f f f f

--=φ

当f=f 0时的反馈系数=.

F

13

,即

31

.

=

f

U &且与频率f 0的大小无关,此时的相角

?F =0?。

2)RC 文氏桥振荡电路

(1)RC 文氏桥振荡电路的构成

RC 文氏桥振荡器的电路如图所示,RC 串并联网络是正反馈网络,另外还增加了R f 和R 1负反馈网络。

RC 串并联网络与R f 和R 1负反馈支路正好构成一个桥路,称为文氏桥。

为满足振荡的幅度条件 |A F ..

|=1,所以A f ≥3。加入R f 和R 1支路,构成串联电压负反馈。

3

11

f ≥+

=R R A f (2)RC 文氏桥振荡电路的稳幅过程

RC 文氏桥振荡电路的稳幅作用是靠非线性元件,如热敏电阻实现的。上图R 1是正温度系数热敏电阻,当输出电压升高,R 1上所加的电压升高,即温度升高,R 1阻值增加,负反馈增强,输出幅度下降。若热敏电阻是负温度系数,应放置在R f 的位置。

采用反并联二极管的稳幅电路见教材P394,图8.1.8所示。电路的电压增益为

1f f +

1=R r R A d

v +

式中 R”p 是电位器上半部的电阻值,R’p 是电位器下半部的电阻值。R’3= R 3 // R D ,R D

是并联二极管的等效平均电阻值。当V o 大时,二极管支路的交流电流较大,R D 较小,A v f 较小,于是V o 下降。由图(b)可看出,二极管工作在C 、D 点所对应的等效电阻,小于工作在A 、B 点所对应的等效电阻,所以输出幅度小。二极管工作在A 、B 点,电路的增益较大,引起增幅过程。当输出幅度大到一定程度,增益下降,最后达到稳定幅度的目的。 (3)频率可调的RC 桥正弦波振荡电路

调整方法:在RC 串、并联网络中,用双层波段开关接不同电容,实现振荡频率的f o

粗调,用同轴电位器实现振荡频率的微调,见教材P395,图8.1.9所示。可调频率范围从几HZ 至几KHZ 。

3、LC 正弦波振荡电路

1)LC 并联谐振电路的频率特性

LC 并联谐振电路如图(a )所示。并联谐振曲线如图(b )所示

(a)LC 并联谐振电路 (b) 并联谐振曲线

谐振时: 01

00=-

C L ωω 谐振频率:

LC f π21

0=

并联谐振电路的品质因数:()CR R L I I I I Q 00C L /1///ωω==== 并联谐振电路的谐振阻抗

C L Q C Q L Q RC L Z ====

000ωω

谐振时,LC 并联谐振电路相当一个电阻。 2)变压器反馈式LC 振荡电路

变压器反馈LC 振荡电路如图所示。LC 并联谐振电路作为三极管的负载,反馈线圈L2

与电感线圈L相耦合,将反馈信号送入三极管的输入回路。交换反馈线圈的两个线头,可改变反馈的极性。调整反馈线圈的匝数可以改变反馈信号的强度,以使正反馈的幅度条件得以满足。

图 变压器反馈LC 振荡电路

变压器反馈LC 振荡电路的振荡频率与并联LC 谐振电路相同,为:

LC f π21

0=

3)电感三点式LC 振荡电路

图示为电感三点式LC 振荡电路。电感线圈L 1和L 2是一个线圈,2点是中间抽头。如

果设某个瞬间集电极电流减小,线圈上的瞬时极性如图所示。反馈到发射极的极性对地为正。图中三极管是共基极接法,所以使发射结的净输入减小,集电极电流减小,符合正反馈的相位条件。图(b )是共射极接法电感三点式LC 振荡电路。

图(a )共基极电感三点式LC 振荡电路 图(b )共射极电感三点式LC 振荡电路

分析三点式LC 振荡电路下方法:

将谐振回路的阻抗折算到三极管的各个电极之间,有Z be 、Z ce 、Z cb 。对于图(a )be Z 是L 2、ce Z 是L 1、cb Z 是C 。可以证明,若满足相位平衡条件,be Z 和ce Z 必须同性质,即同为电容或同为电感,且与cb Z 性质相反。 4)电容三点式LC 振荡电路

电容三点式LC 振荡电路,见图所示。

(a )CB 组态 (b )CE 组态

5)石英晶体LC 振荡电路

利用石英晶体高品质因数的特点,构成LC 振荡电路,如图所示。

(a)串联型 f 0 =f s (b )并联型 f s

图 石英晶体振荡电路

石英晶体的阻抗频率特性曲线见教材P358图8.21,它有一个串联谐振频率f s ,一个并联谐振频率 f p ,二者十分接近。对于图8.22的电路与电容三点式振荡电路相似。

对于图 (b)的电路,满足正反馈的条件,为此,石英晶体必须呈电感性才能形成LC 并联谐振回路,产生振荡。

由于石英晶体的Q 值很高,可达到几千以上,所示电路可以获得很高的振荡频率稳定性。

二、本讲重点

1、产生正弦波振荡的原因和振荡的条件;能否振荡的判断和振荡频率的计算。

2、正弦波振荡电路的分析方法。

三、本讲难点

1、 变压器反馈式振荡电路振荡频率的计算及振荡条件的推导

2、 石英晶体等效电路和振荡频率

四、教学过程组织 讲授

五、课后习题

见相应章节的“习题指导”。

第二十四讲 利用集成运放实现信号的转换

一、主要内容

1、电压-电流变换器 1) 电路结构

电压-电流变换的原理电路见教材P381图8.44所示。其实用电路见教材P381图8.45所示。其中运放A1构成同相求和运算电路,A2构成电压跟随器。且有R 1=R 2=R 3=R 4。 2)工作原理

由基本原理电路图可得:

i

O O i 1=U R i R i U =

或, 故输出电流与输入电压成比例。

2、 电流-电压变换器

电流-电压变换的原理电路见教材P382图8.46所示。由电路图可知:

f S O

=R

i u - 可见输出电压与输入电流成比例。

输出端的负载电流:

S L f L f S L O O =

i R R R R i R u i -==-

若L R 固定,则输出电流与输入电流成比例,此时该电路也可视为电流放大电路。

电压-电流和电流-电压变换器广泛应用于放大电路和传感器的连接处,是很有用的电子电路。

3、精密整流电路 1) 问题的提出

利用集成运放的高增益和电路工作于浓度负反馈及二极管的导引作用,解决二极管整流时存在约0.7左右的死区电压问题,从而使小信号整流的误差大大减小,整流特性接近理想特性。

2)半波精密整流电路

半波精密整流电路见教材P386图8.52(a )所示。由于采用了运放和反馈,消除了整流死区及限幅模糊现象,适合于小信号。 工作原理:

(1)当输入Ui 很小,运放输出电压Uo 小于0.7V 时,二极管均不导通,运放处于开环工作状态,因运放开环增益极大,促使输出Uo 在Ui 极小时就可大于0.7V ,从而使二极管很快导通并进入整流状态。

(2)U0>时,U’o 为负,则D1截止,D2导通,此时电路相当于反相先比例放大器。 (3)Ui <0时,U’o 为正,则D2截止,D1导通,输出电压为0。 电路的输出波形见教材P386图8.52(b )所示。 3)全波精密整流电路

全波精密整流电路见教材P386图8.53(a )所示。它是由半波整流电路和相加器级联而成。由电路可有:

U01 = —Ui , (Ui >0) U01 = 0, (Ui0<0) 输出:Uo = —(Ui + 2 U 01)= Ui ,(Ui >0)

Uo = —(Ui + 2 U 01)= —Ui (Ui0<0=

由此可见:U0 = |Ui|。

二、本讲重点

1、电压-电流变换器

2、全波精密整流电路

三、本讲难点

电压-频率转换电路

四、教学内容组织

讲授

五、课后习题

见相应章节的“习题指导”。

本章小结

本章主要讲述了正弦波振荡电路和非正弦波产生电路。正弦波振荡电路主要有RC型和LC型两大类,它们由四部分组成:放大电路、选频网络、正反馈网络和稳幅环节四部分。一般从相位和幅值平衡条件来计算振荡频率和放大电路所需的增益。而石英晶体振荡器是LC振荡电路的一种特殊形式,由于晶体的等效谐振回Q值很高,因而振荡频率有很高的稳定性。非正弦波发生电路由滞回比较器和RC延时电路组成,主要参数是振荡幅值和振荡频率。由于滞回比较器引入了正反馈,从而加速了输出电压的变化;延时电路使比较器输出电压周期性地从高电平跃变为低电平,再从低电平跃变为高电平,而不停留在某一状态,从而使电路产生自激振荡。本章讨论了方波、矩形波、三角波和锯齿波产生电路。最后介绍了利用集成运放实现信号的转换。

电子技术课程设计报告_波形产生及变换

电子技术课程设计报告 ——波形产生及变换 姓名:Frege 专业班级:电气合1402 所属学院:电气工程与自动化学院 指导老师:王允建 2016 年 7 月 1 日

波形产生与变换电路的设计 摘要 波形发生器广泛地应用于各大院校和科研场所。随着科技的进步,社会的发展,单一的波形发生器已经不能满足人们的需求。本文利用555定时器构成多谐振荡器产生方波,然后分别通过积分、滤波电路输出三角波、正弦波、三倍频率正弦波。放大器件为LM324N四路放大器,以积分、傅立叶分解等为理论基础,通过运放构成的各种滤波电路对方波进行各种波形变换。它的制作成本不高,电路简单,使用方便,有效的节省了人力,物力资源,具有实际的应用价值。实验包括仿真与实际连线两步,仿真采用Multisim仿真软件,连线采用面包板。 关键词:555定时器;LM324N四路放大器;Multisim仿真;面包板接线

The design of the signal and conversion circuit Abstract Waveform generators are widely used in major universities and research establishments. With advances in technology, social development, a single waveform generator already cannot satisfy people's needs. In this paper constitutes a 555 timer multivibrator generating a square wave, then respectively through integral, filter circuit and output triangle wave, sine wave, triple frequency sine wave. Amplifying device is LM324N, based on the theory of integral, Fourier decomposition and so on, through the op-amp composition of various filter circuit wave for the various waveform transformation. Its production cost is not high, the circuit is simple, easy to use, effectively saving manpower, material resources, have practical value. Experiments include simulation and actual connection step, simulation using Multisim simulation software, connect using breadboard. Keywords:555 timer; LM324N four-way amplifier; Multisim simulation; breadboard connection

实验九 利用函数电路实现波形变换

实验九利用函数电路实现波形变换 —、实验目的 1 、利用二极管非线性特性 , 实现三角波→正弦波的变换。 2 、利用差分对管的饱和与截止特性,实现三角波→正弦波变换。 二、预习要求 1 、预习方波产生电路和方波→三角波的变换电路工作原理。 2 、预习三角波→正弦波的变换电路和工作原理。 三、实验仪器设备 1 、双踪示波器 2 、万用表 3 、高频电路实验装置 四、实验电路和工作原理 1 、二极管波形变换电路工作原理 从三角波和正弦波的波形上看 , 二者主要的差别在波形的峰值附近 , 其余部 分都很相似 . 因此只要设法将三角波的幅度按照一定的规律逐段衰减 , 就能 将其转换为近似正弦波 . 见图 9.1 所示 . 用二极管将三角波近似转换为正弦波的实验电路见图 9.2 。图中 , R4 ~ R7,D1 ~ D3 负责波形的正半周, R8 ~ R11,D4 ~ D6 负责波形的的下半周, R2 和 R3 为正负半周共用电阻, R1 对输入的三角波进行降压。在正半周的变换过程中,设 R4 ~ R7 都取值为 1.2K Ω, 在正半周 , 当 D1 ~ D3 都不导通时, C 、 B 、 A 点的电压分别为 1.25V,2.5V,3.75V 。在波形变换的过程中 , 由于二极管的非线性特性,加上输入函数的时间关联性 , 不同时刻二极管上所承受的电压是不同的。为了分析的方便 , 我们假设二极管的正向导通电压为 0.5V, 则当输入电压高于 1.75V 时 , 二极管 D3 导通,输出电压高于 1.75V ;当输入电压高于 3V 后 , 二极管 D2 导通 , 输出电压高于 3V; 当输入电压高于 4.25V 后 , 二极管 D1 导通 , 输出高于 4.25V. 以此类推 , 便可近似得到正弦波形 . 若增大电阻 R4 的值 , 可以降低波峰时的电压降 , 以适应不同输入电压的变换要求 . 负半周的变换原理与此相类似 , 读者可以自行分析。

波形发生电路习题及习题解答

7-1 判断下面所述的正误 1. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。 ( ) 2. 电感三点式振荡器的输出波形比电容三点式振荡器的输出波形好。 ( ) 3. 反馈式振荡器只要满足振幅条件就可以振荡。 ( ) 4. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。 ( ) 5. 放大器必须同时满足相位平衡条件和振幅条件才能产生自激振荡。 ( ) 6. 正弦振荡器必须输入正弦信号。 ( ) 7. LC 振荡器是靠负反馈来稳定振幅的。 ( ) 8. 正弦波振荡器中如果没有选频网络,就不能引起自激振荡。 ( ) 9. 反馈式正弦波振荡器是正反馈一个重要应用。 ( ) 10. LC 正弦波振荡器的振荡频率由反馈网络决定。 ( ) 11. 振荡器与放大器的主要区别之一是:放大器的输出信号与输入信号频率相同, 而振荡器一般不需要输入信号。 ( ) 12. 若某电路满足相位条件(正反馈),则一定能产生正弦波振荡。 ( ) 13. 正弦波振荡器输出波形的振幅随着反馈系数F 的增加而减小。 ( ) 7-2 并联谐振回路和串联谐振回路在什么激励下(电压激励还是电流激励)才能产生负斜率 的相频特性? 解:并联谐振回路在电流激励下,回路端电压V 的频率特性才会产生负斜率的相频特性,如图(a)所示。串联谐振回路在电压激励下,回路电流I 的频率特性才会产生负斜率的相频特性, 如图(b)所示。 7-3 电路如题7-3图所示,试求解:(1)R W 的下限值;(2)振荡频率的调节范围。 题7-3图 解:(1) 根据起振条件 ''2,2f W W R R R R k 故R w 的下限值为2k 。 (2) 振荡频率的最大值和最小值分别为 0max 11 1.62f kHz R C , 0min 1211452()f Hz R R C 7-4 在题7-4图所示电路中,已知R 1=10k Ω,R 2=20k Ω,C = μF ,集成运放的最大输出电压

第八章 脉冲波形的产生和变换试题及答案

第八章脉冲波形的产生和变换 一、填空题 1.(10-1中)矩形脉冲的获取方法通常有两种:一种是________________;另一种是________________________。 2.(10-1易)占空比是_________与_______的比值。 3.(10-4中)555定时器的最后数码为555的是(,)产品,为7555的是(,)产品。 4.(10-3中)施密特触发器具有现象;单稳触发器只有个稳定状态。 5.(易,中)常见的脉冲产生电路有,常见的脉冲整形电路有、。 6.(中)为了实现高的频率稳定度,常采用振荡器;单稳态触发器受到外触发时进入。 7.(10-3易)在数字系统中,单稳态触发器一般用于______、 ______、______等。 8.(10-3中)施密特触发器除了可作矩形脉冲整形电路外,还可以作为________、_________。 9.(10-2易)多谐振荡器在工作过程中不存在稳定状态,故又称为________。 10.(10-2中)由门电路组成的多谐振荡器有多种电路形式,但它们均具有如下共同特点: 首先,电路中含有________,如门电路、电压比较器、BJT 等。这些器件主要用来产生________;其次,具有________, 将输出电压器恰当的反馈给开关器件使之改变输出状态;另外,还有,利用RC电路的充、放电特性可实现_______,以获得所需要的振荡频率。在许多实用电路中,反馈网络兼有_____作用。 11.(10-3易)单稳态触发器的工作原理是:没有触发信号时,电路处于一种_______。外加触发信号,电路由_____翻转到_____。电容充电时,电路由______自动返回至______。 二、选择题 1.(10-2中)下面是脉冲整形电路的是()。 A.多谐振荡器触发器 C.施密特触发器触发器 2.(10-2中)多谐振荡器可产生()。

波形转换电路的设计

学号: 课程设计 题目波形转换电路的设计 学院理学院 专业电子信息科学与技术 班级 姓名 指导教师 2012 年 1 月23 日

课程设计任务书 学生姓名:专业班级:电信科xxx班 指导老师:工作单位:武汉理工大学理学院 题目:波形转换电路的设计 初始条件:直流稳压电源一台、万用表一块、面包板一块、元器件若干、剪刀、镊子等必备工具 要求完成的主要任务:(包括课程设计工作量及其技术要求以及说明书撰写等具体要求)1、技术要求: 设计一种波形转换电路,要求产生频率可调的方波,并且能够实现方波转换为三角波。 测试并且记录下不同频率下的方波和三角波的波形图,以及输出电压值。 2、主要任务: (一)设计方案 (1)按照技术要求,提出自己的设计方案(多种)并进行比较; (2)以集成电路运算放大器LF353为主,设计一种波形转换电路(实现方案); (3)依据设计方案,进行预答辩; (二)实现方案 (4)根据设计的实现方案,画出电路图; (5)查阅资料,确定所需各元器件型号和参数; (6)在面包板上组装电路; (7)自拟调整测试方法,并调试电路使其达到设计指标要求; (8)撰写设计说明书,进行答辩。 3、撰写课程设计说明书: 封面:题目,学院,专业,班级,姓名,学号,指导教师,日期 任务书 目录(自动生成) 正文:1、技术指标;2、设计方案及其比较;3、实现方案; 4、调试过程及结论; 5、心得体会; 6、参考文献 成绩评定表 时间安排: 课程设计时间:20周-21周 20周:明确任务,查阅资料,提出不同的设计方案(包括实现方案)并答辩; 21周:按照实现方案进行电路布线并调试通过;撰写课程设计说明书。 指导教师签名:年月日 系主任(或负责老师)签名:年月日

脉冲波形的产生与变换

脉冲波形的产生与变换 脉冲信号是数字电路中最常用的工作信号。脉冲信号的获得经常采用两种方法:一是利用振荡电路直接产生所需的矩形脉冲。这一类电路称为多谐振荡电路或多谐振荡器;二是利用整形电路,将已有的脉冲信号变换为所需要的矩形脉冲。这一类电路包括单稳态触发器和施密特触发器。这些脉冲单元电路可以由集成逻辑门构成,也可以用集成定时器构成。下面先来介绍由集成门构成的脉冲信号产生和整形电路。 9.1 多谐振荡器 自激多谐振荡器是在接通电源以后,不需外加输入信号,就能自动地产生矩形脉冲波。由于矩形波中除基波外,还含有丰富的高次谐波,所以习惯上又把矩形波振荡器叫做多谐振荡器。多谐振荡器通常由门电路和基本的RC电路组成。多谐振荡器一旦振荡起来后,电路没有稳态,只有两个暂稳态,它们在作交替变化,输出矩形波脉冲信号,因此它又被称作无稳态电路。 9.1.1门电路组成的多谐振荡器 多谐振荡器常由TTL门电路和CMOS门电路组成。由于TTL门电路的速度比CMOS门电路的速度快, 故TTL门电路适用于构成频率较高的多谐振荡器,而CMOS门电路适用于构成频率较低的多谐振荡器。 (1)由TTL门电路组成的多谐振荡器 由TTL门电路组成的多谐振荡器有两种形式:一是由奇数个非门组成的简单环形多谐振荡器;二是由非门和RC延迟电路组成的改进环形多谐振荡器。 ①简单环形多谐振荡器

(a) (b) 图9-1 由非门构成的简单环形多谐振荡器把奇数个非门首尾相接成环状,就组成了简单环形多谐振荡器。图9-1(a)为由三个非门构成的多谐振荡器。若uo的某个随机状态为高电平,经过三级倒相后,uo跳转为低电平,考虑到传输门电路的平均延迟时间tpd,uo输出信号的周期为6tpd。图9-1(b)为各点波形图。 简单环形多谐振荡器的振荡周期取决于tpd,此值较小且不可调,所以,产生的脉冲信号频率较高且无法控制,因而没有实用价值。改进方法是通过附加一个RC延迟电路,不仅可以降低振荡频率,并能通过参数 R、C控制振荡频率。 ② RC环形多谐振荡器 如图9-2所示,RC环形多谐振荡器由3个非门(G1、G2、G3)、两个电阻(R、RS)和一个电容C组成。电阻RS是非门G3的限流保护电阻,一般为100Ω左右;R、C为定时器件,R 的值要小于非门的关门电阻,一般在700Ω以下,否则,电路无常工作。此时,由于RC的值较大,从u2到u4的传输时间大大增加, 基本上由RC的参数决定,门延迟时间tpd可以忽略不计。 图9-2 RC环形多谐振荡器 a.工作原理 设电源刚接通时,电路输出端uo为高电平,由于此时电容器C尚未充电,其两端电压为零,则u2、u4为低电平。电路处于第1暂稳态。随着u3高电平通过电阻R对电容C充电,u4电

波形变换电路.

目录 摘要................................................................................................................................................ 1概述. (1) 2设计原理 (2) 2.1 555定时器简介 (2) 2.2用555定时器构成的施密特触发器 (3) 2.3电路原理图 (5) 3 Proteus仿真 (6) 4调试过程及结论 (9) 5心得体会 (17) 参考文献 (18)

摘要 施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。因此,施密特触发器有三个大的特点:1、波形变换。可将三角波、正弦波等变成矩形波;2、脉冲波的整形,数字系统中,矩形脉冲在传输中经常发生波形畸变,出现上升沿和下降沿不理想的情况,可用施密特触发器整形后,获得较理想的矩形脉冲;3、脉冲鉴幅。幅度不同、不规则的脉冲信号时加到施密特触发器的输入端时,能选择幅度大于欲设值的脉冲信号进行输出。 主要功能和特色简介: 1、将给定频率的三角波变成脉冲波,脉冲波占空比不是50% 2、将给定频率的三角波变成脉冲波,脉冲波占空比是50% 3、将给定频率的正弦波变成脉冲波,脉冲波占空比是50% 4、将给定频率的三角波(正弦波)转换成间断式方波 5、将给定频率的三角波(正弦波)进行分频 关键词:Proteus仿真,施密特触发器,555定时器,波形变换

波形转换电路的设计

课程设计任务书 学生姓名:专业班级:电信科xxx班 指导老师:工作单位:武汉理工大学理学院 题目:波形转换电路的设计 初始条件:直流稳压电源一台、万用表一块、面包板一块、元器件若干、剪刀、镊子等必备工具 要求完成的主要任务:(包括课程设计工作量及其技术要求以及说明书撰写等具 体要求) 1、技术要求: 设计一种波形转换电路,要求产生频率可调的方波,并且能够实现方波转换为三角波。测试并且记录下不同频率下的方波和三角波的波形图,以及输出电压值。 2、主要任务: (一)设计方案 (1)按照技术要求,提出自己的设计方案(多种)并进行比较; (2)以集成电路运算放大器LF353为主,设计一种波形转换电路(实现方案); (3)依据设计方案,进行预答辩; (二)实现方案 (4)根据设计的实现方案,画出电路图; (5)查阅资料,确定所需各元器件型号和参数; (6)在面包板上组装电路; (7)自拟调整测试方法,并调试电路使其达到设计指标要求; (8)撰写设计说明书,进行答辩。 3、撰写课程设计说明书: 封面:题目,学院,专业,班级,姓名,学号,指导教师,日期 任务书 目录(自动生成) 正文:1、技术指标;2、设计方案及其比较;3、实现方案; 4、调试过程及结论; 5、心得体会; 6、参考文献 成绩评定表 时间安排:

课程设计时间:20周-21周 20周:明确任务,查阅资料,提出不同的设计方案(包括实现方案)并答辩; 21周:按照实现方案进行电路布线并调试通过;撰写课程设计说明书。指导教师签名:年月日系主任(或负责老师)签名:年月日 目录 1 技术指标 (1) 2 设计方案及其比较 (1) 2.1 方案一 (1) 2.1.1 设计RC文式桥振荡器 (2) 2.1.2 设计过零比较器 (3) 2.2 方案二 (4) 2.3 方案比较 (5) 3 实现方案 (5) 3.1 实验原理图 (5) 3.2 工作原理 (6) 3.2.1 设计方波发生器 (6) 3.2.2 设计积分器 (7) 3.3 各元器件功能 (9) 3.4 测试线路布线图 (9) 4 调试过程及结论 (10)

第六章 波形发生与变换电路

第六章 波形发生与变换电路 〖本章主要内容〗 1、在模拟电子电路中测试信号和控制信号; 2、自激振荡的概念; 3、正弦波振荡电路所产生的自激振荡和负反馈放大电路中所产生的自激振荡的区别;正弦波振荡电路中选频网络的组成; 4、正弦波振荡的条件,正弦波振荡电路的组成; 5、矩形波发生电路原理及组成; 6、矩形波、三角波和锯齿波发生电路的原理及组成; 7、电压-电流转换电路、精密整流电路和电压-频率转换电路的组成和工作原理; 〖本章学时分配〗 本章分为3讲,每讲2学时。 第二十二讲 非正弦波发生器 一、主要内容 1、方波发生器 1)电路结构 方波发生器是由滞回比较器和RC 定时电路构成的,电路见教材P375图8.39(a)所示。 2) 工作原理及波形分析 电源刚接通时,设Uc=0,Uo=+Uz 21Z 2P ,R R U R U += 所以,电容C 充电,Uc 升高。 当N C U U =≥P U 时,Z o U U -=,所以 21Z 2P R R U R U +-=,电容C 放电,Uc 下降。 当N O U U =≤P U 时,Z O U U +=,返回初态。如此周而复始产生振荡。电路输出波 形见教材P375图8.39(b)所示。由于充电和放电时间常数相同,故输出Uo 的高低电平宽度相等,故为方波发生器。 3) 振荡周期 方波的周期T用过渡过程公式可以方便地求出 )21ln(212 3R R C R T + = 4)电路特点 改变R 3、C 及R 2/R 1的比值,可改变周期T 。 2、占空比可调的矩形波电路 1)电路结构 显然,为了改变输出方波的占空比,应改变电容器C 的充电和放电时间常数。占空比可调的矩形波电路见教材P374图8.38(a )所示。 2)工作原理及波形分析 C 充电时,充电电流经电位器的上半部、二极管D 1、R 3; C 放电时,放电电流经R 3、二极管 D 2、电位器的下半部。 由于充、放电时间常数不同,这样就得到了矩形波电路。其输出波形见教材P374图8.38(b )所示。 3)振荡周期

LM324的波形变换电路(DIY)

集成运放LM324的波形变换电路设计 一、设计目的 1、掌握LM324的应用 2、掌握三角波产生器、加法器、滤波器、比较器的设计 二、设计原理 1、原理:LM324内部包括有四个独立的、高增益、内部频率补偿的运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。 2、LM324的特点: 1、内部频率补偿 2、直流电压增益高(约100dB) 3、单位增益频带宽(约1MHz) 4、电源电压范围宽:单电源(3—32V)、双电源(±1.5—±16V) 5、低功耗电流,适合于电池供电 6、低输入偏流、低输入失调电压和失调电流 7、共模输入电压范围宽,包括接地 8、差模输入电压范围宽,等于电源电压范围 9、输出电压摆幅大(0至VCC-1.5V) 3、LM324引脚图 4、LM324内部电路图

三、实验设备与器件 1、基本元件清单 LM324芯片、导线若干、铁丝、14脚插槽、二极管(IN4700A) 电阻: 680、1K 、2K 、3K 、10K 、47K 、20K 、30K 、100K 、1M 电位器 :2K 、10K 、20K 、50K 电容:0.3uF 、0.001uF 、0.1uF 、10uF 电路板 1块 2、实验仪器 直流电源、双踪示波器、数字万用表、信号发生器。 四、设计要求 使用一片通用四运放芯片 LM324组成电路框图见图1(a),实 现下述功能: 使用低频信号源产生)V (2sin 1.001t f u i π=,z f H 5000=的正弦波信号,加至加法器的输入端,加法器的另一输入端加入由自制振荡器产生的信号1o u ,1o u 如图1(b)所示,ms T 5.01=,允许1T 有±5%的误差。

第六章波形产生与变换电路

第六章 波形的产生与变换电路 6.1基本要求 1.熟练掌握正弦波振荡器产生振荡的相位平衡条件和幅值平衡条件。 2.熟练掌握桥式、变压器反馈式、三点式振荡器的结构、相位条件的判别和振荡频率的计算。 3.熟悉桥式振荡器的幅值条件,了解其稳幅措施。 4.了解石英晶体振荡器的工作原理。 5.熟练掌握各种比较器的结构、工作原理及参数的计算。 6.熟悉集成运放组成的方波、三角波、锯齿波发生器的工作原理和输出波形。 6.2 解答示例及解题技巧 题6-3解:(a )不能产生正弦振荡。 此电路欲构成RC 桥式振荡器,桥式振荡器是由基本放大器和正反馈网络(同时具有选频功能)构成的。此电路中的运放与10k 、20k 电阻是基本放大器部分,应为负反馈放大器;RC 串并联网络是正反馈网络部分,应引正反馈(f =f 0时)至运放的同相输入端。但本电路中的放大器却构成了正反馈,而RC 串并联网络却引入了负反馈。所以不能产生正弦振荡。若将运放的反相输入端与同相输入端互换,便可以使基本放大器的相移ΦA =0o ,RC 串并联网络的相移ΦF =0(f =f 0时),从而满足振荡的相位条件ΦA +ΦF =0o 。 (b )不能产生正弦振荡。 此电路欲构成RC 移相式振荡器。它的移相网络作为反馈网络,同时具有选频功能。但此电路中放大器部分是共基极放大器,ΦA =0o ,移相网络的相移ΦF 在0o ~270o 之间变化,其中当ΦF =0o 时,对应频率趋近无穷大,这意味着当频率趋近无穷时,电路才能满足振荡的相位条件ΦA +ΦF =0o ,显然是不可能做到的,所以不能产生正弦振荡。须将移相网络的反馈连线由BJT 的发射极改至基极,构成共射放大器,这样可以使ΦA =180o ,而在有限的频率范围内又可以在某一频率上得到ΦF =180o ,使 ΦA +ΦF =360o ,满足振荡的相位条件。 (c )可以产生正弦振荡。 此电路构成了RC 桥式振荡器。其中的差放是基本放大器,RC 串并联网络是正反馈网络部分,由于ΦA =0o ,ΦF =0(f =f 0时),可以使ΦA +ΦF =0o ,所以能产生正弦振荡。 (d )不能产生正弦振荡。 此电路欲构成RC 移相式振荡器。但放大器部分的输入端接错了位置。应将2R 电阻与移相网络的连线断开,改接至移相网络的最后一级RC 之间。另将移相网络的电阻R 下端接地。这样才可以构成正确的振荡电路,在这个电路中,ΦA =180o ,ΦF =180o (某频率上),可以使ΦA +ΦF =360o ,满足振荡的相位条件。 题6-4 解:(1)此电路为RC 桥式振荡器,当电路振荡时,RC 串并联网络的反馈系数为 3 1 。

方波产生和波形变换电路

XXXXXXXX学院 课程设计说明书 课程名称:电力电子技术 设计题目:方波产生和波形变换电路 班级:XXXXXXXXXXXXXXX 姓名:XXXX 学号:XXXXXXXXXXX 指导老师:XXXX 设计时间:XXXXXXXXXXXXX

摘要 波形发生器广泛地应用于各大院校和科研场所。随着科技的进步,社会的发展,单一的波形发生器已经不能满足人们的需求,而我们设计的正是多种波形发生器。本设计将介绍由集成运算放大器组成的方波-----三角波----正弦波函数发生器的设计方法,了解多功能集成电路函数信号发生器的功能及特点,进一步掌握波形参数的测试方法。制作这种低函数信号发生器成本较低,适合学生学习电子技术测量使用。制作时只需要个别的外部元件就能产生从1—10HZ,10—100HZ的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。其中比较器与积分电路和反馈网络(含有电容元器件)组成振荡器,其中比较器产生的方波通过积分电路变换成了三角波,电容的充,放电时间决定了三角波的频率。最后利用差分放大器传输特性曲线的非线性特点将三角波转换成正弦波。 电压比较器实现方波的输出,又连接积分器得到三角波,并通过三角波-正弦波转换电路看到正弦波,得到想要的信号。 NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。本设计就是利用Multisim软件进行电路图的绘制并进行仿真。 关键字:波形、比较器、积分器、Multisim

Abstract Waveform generator is widely used in universities and scientific research. With the progress of science and technology, the development of the society, a single waveform generator has can't satisfy people's needs, and our design is a variety of waveform generator. This design introduces the integrated operational amplifier composed of square wave -- -- -- -- -- the design method of the triangle wave, sine wave function generator, understand the multi-function integrated circuit functions and characteristics of function signal generator, further grasp the waveform parameter test methods. To make this kind of function signal generator with low cost, suitable for students learning electronic technology measure. Need only when making individual external components can produce from 1-10 hz, 10-100 hz low distortion of sine wave, triangular wave and square wave pulse signal. The output waveform frequency and duty ratio can also be controlled by current or resistance. The comparator and integral circuit and the feedback network (containing the capacitance component) oscillator, the comparator of square wave by integrating circuit transformation becomes a triangle wave, capacitance charging, discharge time determines the frequency of the triangular wave. Finally using the nonlinear characteristics of the differential amplifier transmission characteristic curve of converting triangular wave into sine wave. Voltage comparator for the square wave output, and connect the integrator by triangle wave, and see the sine wave by triangle wave, sine wave conversion circuit, achieve the desired signal. NI Multisim software combines intuitive capture and functional simulation, can quickly, easily and effectively carried out on the circuit design and verification. This design is to use Multisim software to draw and carry on the simulation of circuit diagram. Key words: waveform, comparator, integrator, Multisim

第7章波形发生电路习题及习题解答

7-1判断下面所述的正误 1. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。() 2. 电感三点式振荡器的输出波形比电容三点式振荡器的输出波形好。() 3. 反馈式振荡器只要满足振幅条件就可以振荡。 () 4. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。() 5. 放大器必须同时满足相位平衡条件和振幅条件才能产生自激振荡。() 6. 正弦振荡器必须输入正弦信号。 () 7. LC振荡器是靠负反馈来稳定振幅的。() 8. 正弦波振荡器中如果没有选频网络,就不能引起自激振荡。() 9. 反馈式正弦波振荡器是正反馈一个重要应用。 () — 10. LC正弦波振荡器的振荡频率由反馈网络决定。 () 11. 振荡器与放大器的主要区别之一是:放大器的输出信号与输入信号频率相同, 而振荡器一般不需要输入信号。 () 12. 若某电路满足相位条件(正反馈),则一定能产生正弦波振荡。() 13. 正弦波振荡器输出波形的振幅随着反馈系数F的增加而减小。()7-2并联谐振回路和串联谐振回路在什么激励下(电压激励还是电流激励)才能产生负斜率的相频特性 解:并联谐振回路在电流激励下,回路端电压V 的频率特性才会产生负斜率的相频特性,如图(a)所示。串联谐振回路在电压激励下,回路电流I 的频率特性才会产生负斜率的相频特性,如图(b)所示。 7-3电路如题7-3图所示,试求解:(1)R W的下限值;(2)振荡频率的调节范围。 ^ 题7-3图 解:(1) 根据起振条件

''2,2f W W R R R R k +>>Ω 故R w 的下限值为2k Ω。 (2) 振荡频率的最大值和最小值分别为 0max 11 1.62f kHz R C π= ≈, 0min 1211452()f Hz R R C π=≈+ 7-4 在题7-4图所示电路中,已知R 1=10k Ω,R 2=20k Ω,C = μF ,集成运放的最大输出电压幅 值为±12V ,二极管的动态电阻可忽略不计。(1)求出电路的振荡周期;(2)画出u O 和u C 的波形。 题7-6图 解7-6图 解:(1)振荡周期: 12()ln 3 3.3ms T R R C ≈+≈ (2)脉冲宽度:11ln 3 1.1T R C mS ≈≈ ) ∴u O 和u C 的波形如解7-6图所示。 7-5 试判断如图所示各RC 振荡电路中,哪些可能振荡,哪些不能振荡,并改正错误。图中, C B 、C C 、C E 、C S 对交流呈短路。

波形产生电路实验报告

波形产生电路实验报告 一、实验目的 1. 通过实验掌握由集成运放构成的正弦波振荡电路的原理与设计方法; 2. 通过实验掌握由集成运放构成的方波(矩形波)和三角波(锯齿波)振荡电路的原理与设计方法。 二、实验内容 1. 正弦振荡电路 实验电路图如下图所示,电源电压为。 U1A LF347N 3 2 11 4 1 R116kΩ R2 16kΩR310kΩR410kΩC10.01μF C20.01μF R847kΩKey=A 37.9 %D2D1 212V VDD -12V VCC VDD 5 3 4 1 (1)缓慢调节电位器,观察电路输出波形的变化,解释所观察到的现象。 (2)仔细调节电位器 ,使电路输出较好的正弦波形,测出振荡频率和幅度以及相 对 应的之值,分析电路的振荡条件。 (3)将两个二极管断开,观察输出波形有什么变化。 2. 多谐振荡电路 (1)按图 2 安装实验电路(电源电压为±12V )。观测、 波形的幅度、周期(频 率)以及的上升时间和下降时间等参数。 (2)对电路略加修改,使之变成矩形波和锯齿波振荡电路,即 为矩形波, 为 锯齿波。要求锯齿波的逆程(电压下降段)时间大约是正程(电压上升段)时间的 20% 左右。观测 、 的波形,记录它们的幅度、周期(频率)等参数。 3. 设计电路测量滞回比较器的电压传输特性。

三、预习计算与仿真 1. 预习计算 (1)正弦振荡电路 由正反馈的反馈系数为: f 1 12 0o 013V Z F Z Z V j ωωωω? ? ? = = = +??+- ? ?? 由此可得RC 串并联选频网络的幅频特性与相频特性分别为 2 00231? ??? ??-+= ωωωωF 0F arctan 3 ωωωω φ-=- 易知当RC 1 0==ωω时,?f V 和?o V 同相,满足自激振荡的相位条件。 若此时f 3v A >,则可以满足f 1v A F >,电路起振,振荡频率为 000 111 994.7Hz 1.005ms 2216k 10nF f T RC f ππ= ====?Ω?,。 若要满足自激振荡,需要满足f v A F 在起振前略大于1,而max 1 3 F =,令f 3v A =,即满足条件的R w 应略大于10kΩ。 (2)多谐振荡电路 对 电 路 的 滞 回 部 分 , 输出电压 ,当时,可 以得到。

波形变换电路

4.13波形变换电路 4.14.1实验目的 (1)熟悉波形变换电路的工作原理及特性 (2)掌握波形发生电路的参数选择和调试方法 4.13.2实验仪器和器材 (1)数字万用表DT9208 1块 (2)信号源HH1630 1台 (3)毫伏表DA16B 1台 (4)示波器HH4310 1台 (5)模拟电路试验箱TPE—A3 1台 (6)若使用亚龙DS系列实验台,按实验原理图准备下列元器件,见图4-50。 4.12.3预习要求 (1)阅读本节内容,分析图4-42所示电路的工作原路,这种电路对工作频率要求如何?(2)定性画出图4-43电路中Va和Vo的波形图。 (3)设计实验内容3要求的正弦波变方波电路。 (4)自拟全部实验步骤与记录表格。 4.13.4实验原理 如图4-42所示电路是一个考虑泄露电阻时的积分运算电路(方波变三角波),在这种情况下,对应与阶跃试的输入电压,向C充电的电流将不是一个恒定的电流,因此Va也不再是直线上升,而是按照指数曲线的形式上升。设输入电流可忽略,利用虚地的概念则有 Ic= CdV/dt= - (i1+i f)= - (Vi/R1+V o/Rf) 或R1CdV o/dt+R1V o/Rf= - Vi (Rf=Rp) 在一段时间内是一个负向阶跃电压时,与之对应的输出电压变化为如图4-42电路中的三角波。

4.13.5实验内容与步骤 1.方波变三角波 实验电路如图4-42所示 (1)按图4-42在TPE—A3试验箱“集成运放”功能模板的“A1”或“A2”上接线,若使用亚龙DS系列实验台,则利用透明元件盒在桌面上搭接电路。准确无误后,接通12V直流电源。输入f=500Hz、幅值为±4V的方波信号,用示波器观察比记录V o的波形。填入表4-51中。 (2)改变方波的频率,观察波形的变化。如波形失真如何调节电路参数?试在TPE—A3试验箱元件参数允许范围调整,并验证分析。 (3)改变输入方波的幅值,观察输出三角波的变化。将实验结果填入表4-52中。 2.精密整流电路 精密整流电路原理图如图4-43所示。 (1)按图4-43在TPE—A3模拟电路试验箱“集成运放电路”功能模块中接线,由信号源输入f=500Hz,有效值为1V的正弦波信号,用示波器观察输出波形。 (2)改变输出频率及幅值(至少三个值)用示波器观察波形,并完成表格4-53. (3)将正弦波换成三角波,重复上述实验。

第7章波形发生电路习题及习题解答分析

7-1 判断下面所述的正误 1. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。 ( ) 2. 电感三点式振荡器的输出波形比电容三点式振荡器的输出波形好。 ( ) 3. 反馈式振荡器只要满足振幅条件就可以振荡。 ( ) 4. 串联型石英晶体振荡电路中,石英晶体相当于一个电感而起作用。 ( ) 5. 放大器必须同时满足相位平衡条件和振幅条件才能产生自激振荡。 ( ) 6. 正弦振荡器必须输入正弦信号。 ( ) 7. LC 振荡器是靠负反馈来稳定振幅的。 ( ) 8. 正弦波振荡器中如果没有选频网络,就不能引起自激振荡。 ( ) 9. 反馈式正弦波振荡器是正反馈一个重要应用。 ( ) 10. LC 正弦波振荡器的振荡频率由反馈网络决定。 ( ) 11. 振荡器与放大器的主要区别之一是:放大器的输出信号与输入信号频率相同, 而振荡器一般不需要输入信号。 ( ) 12. 若某电路满足相位条件(正反馈),则一定能产生正弦波振荡。 ( ) 13. 正弦波振荡器输出波形的振幅随着反馈系数F 的增加而减小。 ( ) 7-2 并联谐振回路和串联谐振回路在什么激励下(电压激励还是电流激励)才能产生负斜率 的相频特性? 解:并联谐振回路在电流激励下,回路端电压V 的频率特性才会产生负斜率的相频特性,如图(a)所示。串联谐振回路在电压激励下,回路电流I 的频率特性才会产生负斜率的相频特性,如图(b)所示。 7-3 电路如题7-3图所示,试求解:(1)R W 的下限值;(2)振荡频率的调节范围。 题7-3图 解:(1) 根据起振条件 ''2,2f W W R R R R k +>>Ω 故R w 的下限值为2k Ω。 (2) 振荡频率的最大值和最小值分别为 0max 11 1.62f kHz R C π= ≈, 0m i n 1211452()f Hz R R C π=≈+ 7-4 在题7-4图所示电路中,已知R 1=10k Ω,R 2=20k Ω,C = 0.01μF ,集成运放的最大输出电

波形发生电路 实验报告

实验报告 课程名称:电路与模拟电子技术实验 指导老师: 张冶沁 成绩: 实验名称:波形发生器电路分析与设计 实验类型: 电路实验 同组学生姓名: 一、 实验目的和要求: 桥式正弦振荡电路设计 1.正弦波振荡电路的起振条件。 2.正弦波振荡电路稳幅环节的作用以及稳幅环节参数变化对输出 波形的影响。 3.选频电路参数变化对输出波形频率的影响。 4.学习正弦振荡电路的仿真分析与调试方法。 B.用集成运放构成的方波、三角波发生电路设计 1.掌握方波和三角波发生电路的设计方法。 2.主要性能指标的测试。 3.学习方波和三角波的仿真与调试方法。 二、 实验设备: 示波器、万用表 模电实验箱 三、 实验须知: 1. RC 桥式正弦波振荡电路,起振时应 满足的条件是: 闭环放大倍数大于 3,即R f >2R 1,引入正反馈 RC 桥式正弦波振荡电路,稳定振荡时应 满足的条件是: 电路中有非线性元 件起自动稳幅的作用 3.RC 桥式正弦波振荡电路的振荡频率: =0f 1/(2πRC) 4.RC 桥式正弦波振荡电路里C 的大小: =C 专业: 姓名: 学号: 日期:

四、实验步骤:

A .RC 桥式正弦波振荡电路: 原理图: 1. PSpice 仿真波形: 示波器测量的波形: T=616us ,=pp v ,=RMS v 667mV 根据实际波形,比较实际数据和理论数据之间的差异: 理论周期为650us ,略大于试验数据,但非常接近,由于实际电阻和二极管的线性或非线性特性与理想状态有所不同,在误差允许范围内认为符合要求 2. 改变R2的参数(减小或增大R2),使输出0v 从无到有,从正弦波直 至削顶,分析出现这三种情况的原因和条件。

集成运算放大器组成的波形变换与产生电路

实验六集成运算放大器组成的波形变换与产生电路 一.实验目的 1.掌握运放在开环,正反馈下的特点 2.熟悉比较器电路,搞清其工作原理 3.掌握正弦波发生器,方波发生器,三角波发生器的电路及其工作原理 二.实验原理 1.运放在开环,正反馈下的特点 运放在开环或引入正反馈下,它工作在限幅区(非线性工作区),这时运放有两个重要特点:1)运放的两个输入端不取电流。

上门限电压OM f 11 1V R R R V += 当OM O V V -=时

直至1f R 2R =时振荡稳定。二极管两端并联电阻R 2用于适当削弱二极管的非线性影响,以改善输出波形。

三.实验内容 1. 滞回比较器 1)按图6—3接好电路。 2)观察输入、输出波形。 输入加正弦信号,频率f = 150HZ ,大小V i = 2V (有效值),用示波器观察V i ,V O 的波形(注意将V i 接CH 1,V O 接CH 2)。 3) 观察、测量传输特性曲线。 将示波器置于X —Y 显示方式,观察传输特性曲线,测出传输特性曲线上输出电压的限幅值,输入电压的两个门限电压值。 2.方波信号发生器 1)按图6—4(a )接好电路。 2)观察V O 、V C 的波形,分别在R = 10K 、R = 20K 的情况下测量V O 、V C 的峰峰值V OPP 、V CPP ,振荡周期T ,频率 f ,且和理论值相比较。 3.三角波信号发生器 1)按图6—5 ( a ) 接好电路。 2)用示波器观察V O1、V O2的波形,测量三角波的峰峰值V O2m ,周期T ,且和理论值相比较。 4.正弦波信号发生器 1)按图6—6接好电路。 2)调整电路使之振荡,观察输出电压波形,测量振荡频率。 适当调节电位器R P ,使电路产生振荡,用示波器观察输出波形,应为稳定的最大不失真正弦波,测量输出电压的大小V Om (峰值),周期T ,计算出振荡频率T 1 f = ,且与理论值相比较。 3)验证幅度平衡条件 在输出为稳定的最大不失真正弦波情况下,测量V +(V f )、V-、V O ,验证同相比例放大器放大倍数f O V V A = 是否等于3(V +、V-、V O 均为有效值,用交流毫伏表测量)。 5.设计一个方波信号发生电路,要求方波的频率为2KHZ 。 四.预习要求 1.搞清运放在开环,正反馈下的基本特点。 2.搞清滞回比较器的基本电路及其工原理。对图6—5(a )中同相输入滞回比较器,分析其电压传输特性)V (f V 2O 1O = 。 3.对方波、三角波信号发生器实验电路,理论计算它们的振荡周期,频率,输出电压的峰峰值,以便和测量值相比较。理论计算正弦波振荡器实验电路的振荡频率。 4.复习示波器的X —Y 显示、测量方法。 五.思考题 1.反相输入滞回比较器与同相输入滞回比较器的传输特性曲线有何不同? 2.试推导方波发生器,三角波发生器振荡周期公式。 3.正弦波发生器中,集成运放的两个输入端是否应等电位,运放工作在线性区还是非

相关主题
相关文档 最新文档