当前位置:文档之家› 信号与系统、第四章习题解答

信号与系统、第四章习题解答

信号与系统、第四章习题解答
信号与系统、第四章习题解答

信号与系统课后答案.doc

1-1 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 1-3 1-5 判别下列各序列是否为周期性的。如果是,确定其周期。 (2))6 3cos()443cos()(2π πππ+++=k k k f (5))sin(2cos 3)(5t t t f π+= :

1-9 已知信号的波形如图1-11所示,分别画出 )(t f和 dt t df)( 的波形。 解:由图1-11知,) 3(t f-的波形如图1-12(a)所示() 3(t f-波形是由对) 2 3(t f- 的波形展宽为原来的两倍而得)。将) 3(t f-的波形反转而得到)3 (+ t f的波形,如图1-12(b)所示。再将)3 (+ t f的波形右移3个单位,就得到了)(t f,如图1-12(c)所示。dt t df)(的波形如图1-12(d)所示。 1-23 设系统的初始状态为)0(x,激励为)(? f,各系统的全响应)(? y与激励和初始状态的关系如下,试分析各系统是否是线性的。 (1)?+ =-t t dx x xf x e t y ) ( sin )0( )((2)?+ =t dx x f x t f t y ) ( )0( )( )( (3)?+ =t dx x f t x t y ) ( ])0( sin[ )((4))2 ( ) ( )0( )5.0( ) (- + =k f k f x k y k (5)∑=+ = k j j f kx k y ) ( )0( ) (

信号与线性系统分析_(吴大正_第四版)习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε=

(5)) f= r t ) (sin (t (7)) t = (k f kε ( 2 ) (10)) f kε k = (k + - ( ( ] )1 ) 1[

1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8) )]5()([)(--=k k k k f εε (11) )]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f

(5) )2()2()(t t r t f -=ε (8) )]5()([)(--=k k k k f εε (11) )]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε

信号与系统课后习题答案

信号与系统课后习题答 案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-

1-1 试分别指出以下波形是属于哪种信号 题图1-1 1-2 试写出题1-1图中信号的函数表达式。 1-3 已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形 图,并加以标注。 题图1-3 ⑴ )2(1-t x ⑵ )1(1t x - ⑶ )22(1+t x ⑷ )3(2+t x ⑸ )22 (2-t x ⑹ )21(2t x - ⑺ )(1t x )(2t x - ⑻ )1(1t x -)1(2-t x ⑼ )2 2(1t x -)4(2+t x 1-4 已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形 图,并加以标注。 题图1-4 ⑴ )12(1+n x ⑵ )4(1n x - ⑶ )2 (1n x ⑷ )2(2n x - ⑸ )2(2+n x ⑹ )1()2(22--++n x n x ⑺)2(1+n x )21(2n x - ⑻ )1(1n x -)4(2+n x ⑼ )1(1-n x )3(2-n x 1-5 已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。 题图1-5 1-6 试画出下列信号的波形图:

⑴ )8sin()sin()(t t t x ΩΩ= ⑵ )8sin()]sin(21 1[)(t t t x ΩΩ+= ⑶ )8sin()]sin(1[)(t t t x ΩΩ+= ⑷ )2sin(1 )(t t t x = 1-7 试画出下列信号的波形图: ⑴ )(1)(t u e t x t -+= ⑵ )]2()1([10cos )(---=-t u t u t e t x t π ⑶ )()2()(t u e t x t --= ⑷ )()()1(t u e t x t --= ⑸ )9()(2-=t u t x ⑹ )4()(2-=t t x δ 1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。 ⑴ )1(1)(2Ω-Ω= Ωj e j X ⑵ )(1 )(Ω-Ω-Ω =Ωj j e e j X ⑶ Ω -Ω---=Ωj j e e j X 11)(4 ⑷ 21 )(+Ω=Ωj j X 1-9 已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。 ⑴ )() ()(2 21t x dt t x d t x += ⑵ ττd x t x t ?∞-=)()(2 1-10 试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。 题图1-10 1-11 试求下列积分: ⑴ ?∞ ∞--dt t t t x )()(0δ ⑵ ?∞ ∞ ---dt t t u t t )2()(00δ ⑶ ?∞ ∞---dt t t t e t j )]()([0δδω ⑷ ?∞ ∞--dt t t )2 (sin π δ

信号与系统第四章练习题

第四章 连续时间系统的复频域分析 一、试写出几个常用信号的拉式变换 二、求下列函数(1)(2)的单边拉式变换(3)(4)的反变换。 1)t e t t f 21)1()(-+==2)2(3++s s 2)t e t t f 222)(-==3)2(2 +s 3)3524)(23+++=s s s s F 4)5 2)(24++=s s s s F 三、已知函数)4()()(--=t A t A t f εε,求)22(-t f 的拉式变换。 四、求图中各信号的拉式变换 五、已知某系统的输入-输出关系,其系统方程为 )(3)(')(2)('3)(''t f t f t y t y t y +=++各激励)()(t t f ε=,初始状态1)0(=-y , 2)0('=-y ,试求系统的响应)(t y 。

六、图a 所示的电路,激励为)(t u s ,求零状态响应)(t u c 。设(1) )(5)(3t e t u t s ε-=, (2))(2cos 5)(t t t u s ε=。 七、)(t f 如图中所示,试求: 1))(t f 的拉式变换; 2)利用拉式变换性质,求的拉式变换和)12()12 1(--t f t f 八、已知如图所示零状态电路,求电压)(t u 。 图a RC 电路

九、已知系统函数1216732)(23++++= s s s s s H 试画出系统的并联模拟框图和级联模拟框图。 十、若描述LTI 系统的微分方程为)()(')('2)(''t f t f t y t y +=+,并已知1)0(=y ,2)0('=y ,激励信号)(t f 如图所示,试求系统的响应)(t y

信号与系统第4章习题课

第四章习题 一、求下列信号的傅里叶变换: )1(e )()1(31-'=--t t f t δ (j ω+3)e –j ω )9()(22-=t t f ε 2πδ(ω)–6Sa(3ω) ) 23sgn(e )(3t t f jt -=)1(23 j e 12j ---ωω241)(t t t f += 二、某系统的输入f(t)与输出y(t)的关系为 τττπ d ) (1 )(? ∞-∞ -= t f t y (1)求该系统的频率响应H(j ω); (2)证明:y(t)与f(t)的能量相等。 三、求频谱函数F(j ω)=2ε(1-ω)的原函数。

六、已知f(t)= -│t │/2,求F(j ω) 七、函数 221 )(2 1++= t t t f ,求F(j ω)。 八、求图中所示信号的傅里叶变换F(j ω)。 t f(t)2-2041 2-4

九、已知F(j ω)的图形如图所示,求原函数f(t)。 F (jω) ω1 02 十、如图所示周期信号f(t),复傅里叶系数为F n ,则F 0等于 f (t )2 题6图 t 4 8 -2 -4 -8 6 … … 十一、已知信号f(t)如图所示,其傅里叶变换为F(j ω)。 (1)求F(0); -2 2 t f (t )20题18图 (2)求 ?∞ -∞ -ω ωω d e )(j j F ?∞ -∞ ωωd )(j F

?∞ -∞ ω ωd )(j 2 F ?∞ -∞ ω ωd |)(j |2F 十三、已知信号f(t)的傅里叶变换F(j ?)=R(?) +jX(?)为已知,求图(b)所示信号y(t)的傅里叶变换Y(j ?)。 f (t )t 1o 2 y (t )t o 1 2 1 -1-1-2 (a) (b)

信号与系统答案(刘卫东)第八章

8-1对连续非周期信号进行抽样获得离散非周期信号,说明离散非周期信号频谱和连续非周期信号频谱的 关系。 解:对非周期信号()a x t 进行冲激抽样,得到的非周期连续信号的傅里叶变换,等于对非周期信号()a x t 进 行数值抽样得到的离散非周期信号的离散时间傅里叶变换。即()()as d X X ωθ=,而冲激抽样信号的傅里叶变换()as X ω是被抽样的非周期连续信号的傅里叶变换()a X ω的周期延拓,延拓周期为2s s T πω=,如果()a x t 频率有限,且抽样过程满则抽样定理,即22s m s T πωω=≥,则延拓过程不产生混叠,()as X ω(即()d X θ)中有完整的()a X ω的波形,在此情况下,截取()as X ω的一个周期,它和()a X ω的关系为: ()()(),22 s s a s as s d X T X T X ωωωωθω==? << 8-2 已知)()(n u a n x d n d =(1

郑君里信号与系统习题第四章

例4-1 求下列函数的拉氏变换 拉氏变换有单边和双边拉氏变换,为了区别起见,本书以 表示 单边拉氏变换,以 表示 双边拉氏变换.若文字中未作说明,则 指单边拉氏变换.单边拉氏变换只研究 的时间函数,因此,它和傅里叶变换 之间有一些差异,例如在时移定理,微分定理和初值定理等方面.本例只讨论时移 定理.请注意本例各函数间的差异和时移定理的正确应用。 例4-2 求三角脉冲函数 如图4-2(a )所示的象函数 和傅里叶变换类似,求拉氏变换的时,往往要借助基本信号的拉氏变换和拉氏变换的性质,这比按拉氏变换的定义式积分简单,为比较起见,本例用多种方法求解。 方法一:按定义式求解 方法二:利用线性叠加和时移性质求解 方法三:利用微分性质求解 方法四:利用卷积性质求解 方法一:按定义式求解 ()() 1-=t tu t f ()s F ()t f ()s F B ()t f 0≥t ()()[]()()()[]s e s s t u t u t L t tu L s F -??? ??+=-+--=-=1111112()t f ()?????<<-<<=其它 02t 1 21t 0 t t t f ()() ( ) () 2 22222221101010102 1011 1 2221112112s s s s s s s st st st st st st st e s e s e s e s e s s e s e s dt te dt e dt e s e s t dt e t dt te dt e t f s F -------------∞--=-++-+--=-++??? ??-=-+==? ??? ?? --- --

信号与系统课后习题答案

《低频电子线路》 一、单选题(每题2分,共28分:双号做双号题,单号做单号题) 1.若给PN结两端加正向电压时,空间电荷区将() A变窄 B基本不变 C变宽 D无法确定 2.设二极管的端电压为 U,则二极管的电流与电压之间是()A正比例关系 B对数关系 C指数关系 D无关系 3.稳压管的稳压区是其工作() A正向导通 B反向截止 C反向击穿 D反向导通 4.当晶体管工作在饱和区时,发射结电压和集电结电压应为 ( ) A前者反偏,后者也反偏 B前者反偏,后者正偏 C前者正偏,后者反偏 D前者正偏,后者也正偏 5.在本征半导体中加入何种元素可形成N型半导体。() A五价 B四价 C三价 D六价 6.加入何种元素可形成P 型半导体。() A五价 B四价 C三价 D六价 7.当温度升高时,二极管的反向饱和电流将()。

A 增大 B 不变 C 减小 D 不受温度影响 8. 稳压二极管两端的电压必须( )它的稳压值Uz 才有导通电流,否则处于截止状态。 A 等于 B 大于 C 小于 D 与Uz 无关 9. 用直流电压表测得放大电路中某三极管各极电位分别是2V 、6V 、2.7V ,则三个电极分别是( ) A (B 、C 、E ) B (C 、B 、E ) C (E 、C 、B ) D (B 、C 、E ) 10. 三极管的反向电流I CBO 是由( )形成的。 A 多数载流子的扩散运动 B 少数载流子的漂移运动 C 多数载流子的漂移运动 D 少数载流子的扩散运动 11. 晶体三极管工作在饱和状态时,集电极电流C i 将( )。 A 随 B i 增加而增加 B 随B i 增加而减少 C 与 B i 无关,只决定于 e R 和 CE u D 不变 12. 理想二极管的正向电阻为( ) A A.零 B.无穷大 C.约几千欧 D.约几十欧 13. 放大器的输入电阻高,表明其放大微弱信号能力( )。 A 强 B 弱 C 一般 D 不一定 14. 某两级放大电路,第一级电压放大倍数为5,第二级电压 放大倍数为20,该放大电路的放大倍数为( )。 A 100

信号系统习题解答3版-第四章概论

第4章习题答案 4-1 判断下列系统是线性的还是非线性的,是时变的还是非时变的。 (1)1()4(3)2 (2)()() (3)()() (4)()()t t t y t x t y t x t y t e x t y t x d ττ--=+===? 121212*********[()()]4[(3)(3)]2 ()()=4(3)2+4(3)]2=4[(3)(3)]4[()()]()()T x t x t x t x t y t y t x t x t x t x t T x t x t y t y t +=+++++++∴+≠+∴() 但:系统解:是非线性的 000000T[()]4(3)2, ()4[3()]2 T[()](),x t t x t t y t t x t t x t t y t t -=-+-=-+∴-≠-所以系统是时变的。 1212121212122[()()]()()()()=()() [()()]()()T x t x t x t x t y t y t x t x t T x t x t y t y t +=+++∴+≠+∴() 但:系统是非线性的 000000T[()](), ()() T[()]=(),x t t x t t y t t x t t x t t y t t -=--=-∴--所以系统是时不变的。 1212121212123[()()][()()]()()=()() [()()]()()t t t T x t x t e x t x t y t y t e x t e x t T x t x t y t y t ---+=+++∴+=+∴() 系统是线性的 0()000000T[()](), ()() T[()](),t t t x t t e x t t y t t e x t t x t t y t t ----=--=-∴-≠-所以系统是时变的。 121212121 1 1 12124[()()][()()]()()=()()[()()]()()t t t t t t T x t x t x x y t y t x x T x t x t y t y t τττττττ ---+=+++∴+=+∴???()d d d 系统是线性的 00 0000011 1 00T[()]()(), ()()T[()](),t t t t t t t t t t x t t x t d x u du y t t x d x t t y t t ττττ --------=-=-=∴-=-?? ? 所以系统是时不变的。 4-4 对图题4-4(a)、(b)所示的电路列写出电流 12()()i t i t 、和电压()o v t 的微分方程 + ()o t

信号与系统课后习题答案—第章

第1章 习题答案 1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号? 解: ① 连续信号:图(a )、(c )、(d ); ② 离散信号:图(b ); ③ 周期信号:图(d ); ④ 非周期信号:图(a )、(b )、(c ); ⑤有始信号:图(a )、(b )、(c )。 1-2 已知某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。 解: 设T 为此系统的运算子,由已知条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。 ① 线性 1)可加性 不失一般性,设f(t)=f 1(t)+f 2(t),则 y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而 |f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)| 即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。 由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。 2)齐次性 由已知条件,y(t)=T[f(t)]=|f(t)|,则T[af(t)]=|af(t)|≠a|f(t)|=ay(t) (其中a 为任一常数) 即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。 ② 时不变特性 由已知条件y(t)=T[f(t)]=|f(t)|,则y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|, 即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。 依据上述①、②两点,可判定此系统为一非线性时不变系统。 1-3 判定下列方程所表示系统的性质: 解:(a )① 线性 1)可加性 由 ?+=t dx x f dt t df t y 0)()()(可得?????→+=→+=??t t t y t f dx x f dt t df t y t y t f dx x f dt t df t y 01122011111) ()()()()()()()()()(即即 则 即在)()()()()()()()(21212211t y t y t f t f t y t f t y t f ++前提下,有、→→→,因此系统具备可加性。 2)齐次性 由)()(t y t f →即?+=t dx x f dt t df t y 0)()()(,设a 为任一常数,可得 即)()(t ay t af →,因此,此系统亦具备齐次性。 由上述1)、2)两点,可判定此系统为一线性系统。 ② 时不变性 )()(t y t f → 具体表现为:?+=t dx x f dt t df t y 0)()()( 将方程中得f(t)换成f(t-t 0)、y(t)换成y(t-t 0)(t 0为大于0的常数),

信号与系统课后习题答案

1-1 试分别指出以下波形是属于哪种信号? 题图1-1 1-2 试写出题1-1图中信号的函数表达式。 1-3 已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并 加以标注。 题图1-3 t ) (b t ) (a t ) ( a t ) (b t ) (c n

⑴ )2(1-t x ⑵ )1(1t x - ⑶ )22(1+t x ⑷ )3(2+t x ⑸ )22 (2-t x ⑹ )21(2t x - ⑺ )(1t x )(2t x - ⑻ )1(1t x -)1(2-t x ⑼ )2 2(1t x -)4(2+t x 1-4 已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以 标注。 题图1-4 ⑴ )12(1+n x ⑵ )4(1n x - ⑶ )2 (1n x ⑷ )2(2n x - ⑸ )2(2+n x ⑹ )1()2(22--++n x n x ⑺)2(1+n x )21(2n x - ⑻ )1(1n x -)4(2+n x ⑼ )1(1-n x )3(2-n x 1-5 已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。 题图1-5 t n n )(a

1-6 试画出下列信号的波形图: ⑴ )8sin()sin()(t t t x ΩΩ= ⑵ )8sin()]sin(2 1 1[)(t t t x ΩΩ+ = ⑶ )8sin()]sin(1[)(t t t x ΩΩ+= ⑷ )2sin(1)(t t t x = 1-7 试画出下列信号的波形图: ⑴ )(1)(t u e t x t -+= ⑵ )]2()1([10cos )(---=-t u t u t e t x t π ⑶ )()2()(t u e t x t --= ⑷ )()() 1(t u e t x t --= ⑸ )9()(2 -=t u t x ⑹ )4()(2 -=t t x δ 1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。 ⑴ )1(1)(2Ω-Ω= Ωj e j X ⑵ )(1 )(Ω-Ω-Ω =Ωj j e e j X ⑶ Ω -Ω---=Ωj j e e j X 11)(4 ⑷ 21 )(+Ω=Ωj j X 1-9 已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。 ⑴ )() ()(221t x dt t x d t x += ⑵ ττd x t x t ?∞-=)()(2 1-10 试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。

信号与系统吴大正第四章作业

信号与系统吴大正第四章作业

信号与线形系统(第四版)吴大正主编 第四章课后习题: 4.1证明()()cos ,cos 2,,cos t t nt L (n 为正整数)是在区间()0,2π的正交函 数集。它是否是完备的正交函数集? 解:由于????=≠=ππ20 ,,0cos cos n m n m mtdt nt 所以在区间 ()0,2π内是正交函数集。 存在mt sin 使得??????=≠=ππ20 ,2,0sin cos n m n m mt nt 所以不是完备的正交函数集。 4.2上题中的函数集在区间 ()0,π是否是正交函数集? 解:??????=≠=π π0,2,0cos cos n m n m mtdt nt 所以仍为正交函数集。 4.3讨论图4.1-2所示的前6个沃尔什函数在 ()0,1区间内是否是正交函数集。 解:由题意得()?==1 05,4,3,2,1,0,k dt t k Wal ()()?≤≤≤≤≠=1 50,50,,0,,n m n m dt t n Wal t m Wal ()()?≤=≤=1 50,1,,n m dt t n Wal t m Wal 所以前6个沃尔什函数在 ()0,1区间内是正交函数集。 4.4前四个勒让德函数多项式为 ()10=t P ()t t P =1

()??? ??-=212322t t P ()??? ??-=t t t P 232 533 证明它们在 ()1,1-区间内是正交函数集。 解:由题意得()()01 111 10=?=?--tdt dt t p t p ()()0212311 221 1 0=???? ??-=?--dt t dt t p t p ()()0232 511 331 1 0=???? ??-=?--dt t t dt t p t p ()()0212 311 321 1 1=???? ??-=?--dt t t dt t p t p ()()0232 511 2431 1 1=???? ??-=?--dt t t dt t p t p ()()02123232 511 2331 1 2=???? ??-??? ??-=?--dt t t t dt t p t p 所以前四个勒让德函数多项式在 ()1,1-区间内是正交函数集。 4.5实周期信号()f t 在区间,22T T ?? - ??? 内的能量定义为 ()222T T E f t dt -=? 如有和信号 ()()()12f t t t f f =+ (1)若()1t f 与()2t f 在区间,22T T ?? - ??? 内相互正交,证明和信号的总能量等于

信号与系统课后习题答案

1 第一章习题参考解答 1.1 绘出下列函数波形草图。 (1) | |3)(t e t x -= (2) ()? ???<≥=0 2 021)(n n n x n n (3) )(2sin )(t t t x επ= (4) )(4 sin )(n n n x επ = (5) )]4()([4cos )(--=-t t t e t x t εεπ (6) )]4()1([3)(---=n n n x n εε (7) t t t t x 2 cos )]2()([)(π δδ--= (8) )]1()3([)(--+=n n n n x δδ

2 (9) )2()1(2)()(-+--=t t t t x εεε (10) )5(5)]5()([)(-+--=n n n n n x εεε (11) )]1()1([)(--+= t t dt d t x εε (12) )()5()(n n n x --+-=εε (13) ?∞--= t d t x ττδ)1()( (14) )()(n n n x --=ε 1.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。 (1) | |3)(t e t x -= 解 能量有限信号。信号能量为: ()??? ?∞ -∞ -∞ ∞ --∞ ∞-+===0 2022 ||2 993)(dt e dt e dt e dt t x E t t t ∞<=?-?+??=∞ -∞ -9)2 1 (921 90 202t t e e (2) ()?????<≥=0 2 021)(n n n x n n 解 能量有限信号。信号能量为: () ∞<=+=+= = ∑∑∑∑∑∞ =--∞=∞ =--∞ =∞ -∞ =35)4 1(4])21[(2)(01021 2 2 n n n n n n n n n n x E (3) t t x π2sin )(=

信号与线性系统题解第四章

第四章习题答案 收集自网络 4.1 由于复指数函数是LTI 系统的特征函数,因此傅里叶分析法在连续时间LTI 系统分析 中具有重要价值。在正文已经指出:尽管某些LTI 系统可能有另外的特征函数,但复指数函数是唯一..能够成为一切..LTI 系统特征函数的信号。 在本题中,我们将验证这一结论。 (a) 对单位冲激响应()()h t t δ=的LTI 系统,指出其特征函数,并确定相应的特征值。 (b) 如果一个LTI 系统的单位冲激响应为()()h t t T δ=-,找出一个信号,该信号不具有st e 的形式,但却是该系统的特征函数,且特征值为1。再找出另外两个特征函数,它们的特征值分别为1/2和2,但不是复指数函数。 提示:可以找出满足这些要求的冲激串。 (c) 如果一个稳定的LTI 系统的冲激响应()h t 是实、偶函数,证明cos t Ω和sin t Ω实该系统的特征函数。 (d) 对冲激响应为()()h t u t =的LTI 系统,假如()t φ是它的特征函数,其特征值为λ,确定()t φ应满足的微分方程,并解出()t φ。 此题各部分的结果就验证了正文中指出的结论。 解:(a) ()()h t t δ=的LTI 系统是恒等系统,所以任何函数都是它的特征函数,其特征值 为1。 (b) ()()h t t T δ=-,∴()()x t x t T →-。如果()x t 是系统的特征函数,且特征值为 1,则应有()()x t x t T =-。满足这一要求的冲激序列为()()k x t t kT δ∞ =-∞ = -∑。 若要找出特征值为1/2或2的这种特征函数,则可得: 1 ()()()2 k k x t t kT δ∞ =-∞=-∑, 特征值为1/2。 ()2()k k x t t kT δ∞ =-∞ = -∑, 特征值为2。 (c) 1cos ()2 j t j t t e e ΩΩ-Ω= +

信号与系统王明泉第四章习题集解答

第4章 拉普拉斯变换与连续系统复频域分析 4.1 学习要求 (1)深刻理解拉普拉斯变换的定义、收敛域及基本性质;会根据定义和性质求常用信号的拉普拉斯变换; (2)正确理解拉普拉斯变换的时移、频移、时域微分、频域积分、初值定理、终值定理等性质及其应用条件; (3)能应用部分分式法和常用的拉普拉斯变换对求解拉普拉斯反变换; (4)掌握复频域方法分析线性时不变系统,求解系统的全响应、零输入响应、零状态响应和单位冲激响应; (5)正确理解复频域法中,输入、系统状态与响应的关系,理解复频域方法与频域方法的异同点和各自的优缺点; (6)掌握系统的零极点分析。 4.2 本章重点 (1)单边拉普拉斯变换的定义和收敛域; (2)单边拉普拉斯变换及逆变换的计算; (3)单边拉普拉斯变换的性质及常用变换对的综合应用; (4)线性时不变系统的复频域分析方法; (5)系统函数与零极点的概念及s 域系统特性分析; (4))(s H 与系统稳定性; 4.3 本章的内容摘要 4.3.1拉普拉斯变换 (1)单边拉普拉斯变换的定义 正变换 0()()st X s x t e dt - ∞ -==? 逆变换 1 ()()2j st j x t X s e ds j σσ π+∞-∞ =? 式中,0ωσj s +=。 (2)收敛域 把使信号()x t 的拉氏变换存在的s 值的范围称为()X s 的收敛域(Region of Convergence ),缩写为ROC ,可以用下面极限表示: 0)(lim =-∞ →t t e t x σ 0σσ> 上式表明,极限在0σσ>条件下为零,在S 平面上0σσ>就是收敛域。0σ称为收敛坐标,通过0σ的垂直线是收敛域的边界,称为收敛轴。如图4-1所示。

信号与系统第八章答案

8.1 (2) a=[1 4 2 ]; b=[1 0 3]; t=0:0.001:10; f=exp(-t).*Heaviside(t); sys=tf(b,a); lsim(sys,f,t) title('8.1.(2)') xlabel('t') Warning: Function call Heaviside invokes inexact match 8.3 (1) a=[1,3,2]; b=[1]; y1=impulse(b,a,0:1:10) y2=step(b,a,0:1:10) subplot(1,2,1); impulse(b,a,10); title('冲击信号'); subplot('1,2,2'); step(b,a,10); title('阶跃响应'); y1 = 0.2325 0.1170 0.0473 0.0180 0.0067

0.0009 0.0003 0.0001 0.0000 y2 = 0.1998 0.3738 0.4515 0.4819 0.4933 0.4975 0.4991 0.4997 0.4999 (3) a=[1,4,5]; b=[1,0]; y1=impulse(b,a,0:1:10) y2=step(b,a,0:1:10) subplot(1,2,1); impulse(b,a,5) title('冲击响应') subplot(1,2,2) step(b,a,5) title('阶跃响应') y1 = 1.0000 -0.1546 -0.0409

0.0003 0.0001 0.0000 -0.0000 -0.0000 -0.0000 0.0000 y2 = 0.1139 0.0167 0.0003 -0.0003 -0.0000 -0.0000 0.0000 0.0000 0.0000 8.4 (2) a=[1,1/2]; b=[1,2]; n=0:20; f=2*cos(n.*pi/3); y=filter(b,a,f) subplot(1,2,1) stem(n,f,'filled') title('输入x(n)') subplot(1,2,2) stem(n,y,'filled') title('响应序列y')

信号与系统第四章习题

一 填空(20) 1. 已知的频谱在)(1t f ),(11ωω?的区间内不为0,的频谱函数在)2(2f ),(22ωω?区 间内不为0,且12ωω>现对信号进行理想取样,则奈亏斯特取样率为 )(*)(21t f t f 3. 非周期连续信号的频谱是 的。 2. 已知一信号x(t)的频谱)(ωj X 的带宽为1ω,则的频谱的带宽为 )2(2t x 4. 求付氏变换1? 8.设为一带限信号,其截至频率)(t f rad/s 8=m ω。现对取样,则不发生混叠时的最大间隔 )4(t f =max T 5 求付氏变换 ?)(,t δ 9. 设为一带限信号,最高频率是100Hz,若对下列信号进行时域取样,求最小取样频率 )(t f )3(t f ?t 06. 求付氏变换cos ω 10设为一带限信号,最高频率是100Hz,若对下列信号进行时域取样,求最小取样频率 )(t f )(2t f ?t 07. 求付氏变换sin ω 12设为一带限信号,最高频率是100Hz,若对下列信号进行时域取样,求最小取样频率 )(t f )()(2t f t f + 13从信号频谱的连续性和离散性来考虑,周期信号的频谱是 。 14.连续周期信号)6cos(3)2cos()(t t t f ππ+=的傅立叶级数 =n a =n b 11设为一带限信号,最高频率是100Hz,若对下列信号进行时域取样,求最小取样频率 )(t f )2(*)(t f t f 二 选择题 1.对信号f (t ) = cos (πt +30°) +2sin(4πt +45°),当取样间隔 T 至多为何值时,f (t )就能唯一地由均匀取样样本f (kT ) (k = 0,1,2,···)确定。 (A) 0.25 s (B) 0.5s (C) 1s (D) 2s

信号与线性系统分析_(吴大正_第四版)第四章习题答案

第四章习题 4.6求下列周期信号的基波角频率Q和周期T。 (1 ) e j100t( 2) cos^td)] (3) cos(2t) sin( 4t) ( 4) cos(2p cos(3二t) cos(5「:t) (5) cos^-t) sinqt) ( 6) cos^t) cos^t) cos铸t) 解(l)角频率为0=100 rad/s,周期丁=三=亍2 s 0 100 o ⑵角频率为Q =今rad/s T周期T = -^ = 4 s (3) 角频率为Q = 2rad豊,周期T =—=沢s (4) 角频率为Q = Jr rad/s,周期T = ^ = 2 s 12 (5) 角频率为Q =耳rad/s*周期T = = 8 s 4 £2 ⑹角频率为C =盒rad/s,周期T = yy = 60 S 4.7用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数(三角形式或指数形式)。 图4-15

9 ft 1啓 料十 b n = -= /(r)sin(nOr)dt =万 /(f)sin(-^-)dj =£ I stn 年Q = = 1,2"? 2 J-L 2 (2)周期丁 = 2』=年=兀,则有 :sin(rtz), 心0, 由此可得 1 ft ^ i ri ^ i ri . 帀 T )e _ r ^' dr = — /(r )e _:rlfir dr —可 sin( n-f )e _ df J J —-Jr —『=| 2 J 0 1上厂檢 2iz( 1 — ?i 2) 所含有的频率分量 mkvv _T _f i 7 f 2 2 1 NT ; VN ~T/^ i J.it / 子/ "T k /I 'r ( h > (1)周期 T = 4/ =2囂=h —亍— 戈円则有 由此可得 a n = -^= f T T /(t )cos (riflt )dz = /(Z)cos( J J —苗 乙 J — 2 ] ■ j] T / = —sin 2 ?j;r 2 >dr J??r 2J-j 4.10利用奇偶性判断图 4-18示各周期信号的傅里叶系数中 ? = 0, ± 1, + 2 …

信号与线性系统第四章答案(简)

4-1. 根据拉氏变换定义,求下列函数的拉普拉斯变换。 ()()()()()()t at t e t t e t δεδε---+---21 2(2) 3 213 解:(1) ()s F s s -=+ +2121 e (2) ()332s F s s a e -=-+ 4-3. 利用拉变的基本性质,求下列函数的拉氏变换。 ()())()()()()()[()()]()()()() t t t t t t t t t t t t t t δ -----++---+-+- 2121 (2 3 [12e ] 5 e 2 7 e e 12εεεεεε解: () ()()()()()()()()()32 2212221121 3 11e e 115 7 e 11 21 s s s F s F s s s s s s F s F s s s s s -+--=+=+-++=-= ++++++ 4-4. 求图示信号的拉氏变换式。 解: ()();22 22112a e e s s F s s s s --=-- ()()()235e 2e e e s s s F s s ---=+- △4-5. 解:()(),();()(),(). f f f f =∞==∞=201030005 4-6. 求下列函数的拉氏反变换。 ()()() ()() s se s s s s s s s -++++++++2 222226191542 4 6 43144 解:()()()()1542 1e 3 t f t t -=-ε. ()()()()()()[]();t t t t f t t t ------=-+--32234e e 3e e 2εε ()()[()]().262e 4e t t f t t t ε --=+-

北京交通大学信号与系统第四章典型例题

第四章 典型例题 【例4-1-1】写出下图所示周期矩形脉冲信号的Fourier 级数。 A T 0 -T 0 t ) (~t x ? ??? ??2 /τO 2/τ- 周期矩形信号 分析: 周期矩形信号)(~t x 是实信号,其在一个周期[T 0/2,T 0/2]的定义为 ???>≤=2/ 02/ )(~ττt t A t x 满足Dirichlet 条件,可分别用指数形式和三角形式Fourier 级数表示。 解: 根据Fourier 级数系数C n 的计算公式,有 t t x T C t n T T n d e )(~ 1000j 2/2/0ω--?=== --? t A T t n d e 10j 2/2 /0ωττ 2/2/j 000e )j (ττωω=-=--t t t n n T A 2/)2/sin(00τωτωτTn n A =)2 (Sa 00τωτn T A = 故周期矩形信号)(~t x 的指数形式Fourier 级数表示式为 t n n t n n n n T A C t x 00j 00j e )2(Sa )(e )(~ωωτωτ∑∑∞ -∞ =∞-∞=== 利用欧拉公式 2 e e )cos(00j j 0t n t n t n ωωω-+= 可由指数形式Fourier 级数写出三角形式的Fourier 级数,其为 ()t n n T A T A t x n 0001 0cos )2(Sa )2()(~ωτωττ∑ ∞ =+= 结论: 实偶对称的周期矩形信号)(~t x 中只含有余弦信号分量。 【例4-1-2】写出下图所示周期三角波信号的Fourier 级数。 A -A 1 0.5 -1 t ) (~t x ? ??? ??-0.5 -2 2 周期三角波信号 分析: 周期矩形信号)(~ t x 是实信号,其在一个周期 [1/2,3/2]的表达式为

相关主题
文本预览
相关文档 最新文档