当前位置:文档之家› 钨银复合材料的应用与研究进展

钨银复合材料的应用与研究进展

钨银复合材料的应用与研究进展
钨银复合材料的应用与研究进展

万方数据

万方数据

万方数据

万方数据

万方数据

钨银复合材料的应用与研究进展

作者:张福斌, 胡业奇, 许龙山, 陈永鑫, ZHANG Fubin, HU Yeqi, XU Longshan, CHEN Yongxin 作者单位:张福斌,ZHANG Fubin(厦门理工学院机械与汽车工程学院,厦门,361024), 胡业奇,许龙山,陈永鑫,HU Yeqi,XU Longshan,CHEN Yongxin(厦门理工学院材料科学与工程学院,厦门,361024)

刊名:

材料导报

英文刊名:Materials Review

年,卷(期):2014,28(7)

本文链接:https://www.doczj.com/doc/4010890614.html,/Periodical_cldb201407006.aspx

复合材料总思考题及参考答案

复合材料概论总思考题 一.复合材料总论 1.什么是复合材料?复合材料的主要特点是什么? ①复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。 ②1)组元之间存在着明显的界面;2)优良特殊性能;3)可设计性;4)材料和结构的统一 2.复合材料的基本性能(优点)是什么?——请简答6个要点 (1)比强度,比模量高(2)良好的高温性能(3)良好的尺寸稳定性(4)良好的化学稳定性(5)良好的抗疲劳、蠕变、冲击和断裂韧性(6)良好的功能性能 3.复合材料是如何命名的?如何表述?举例说明。4种命名途径 ①根据增强材料和基体材料的名称来命名,如碳纤维环氧树脂复合材料 ②(1) 强调基体:酚醛树脂基复合材料(2)强调增强体:碳纤维复合材料 (3)基体与增强体并用:碳纤维增强环氧树脂复合材料(4)俗称:玻璃钢 4.常用不同种类的复合材料(PMC,MMC,CMC)各有何主要性能特点? PMC MMC CMC(陶瓷基) 使用温度60~250℃400~600℃1000~1500℃ 材料硬度低高最高 强度较高较高较高 耐老化性能差中优 导热性能差好一般 耐化学腐蚀性能好差好 生产工艺难易程度成熟居中最复杂 生产成本最低居中最高 5.复合材料在结构设计过程中的结构层次分几类,各表示什么?在结构设计过程中的设计层次如何,各包括哪些内容?3个层次 答:1、一次结构:由集体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何和界面区的性能; 二次结构:由单层材料层复合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何三次结构:指通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结构几何。 2、①单层材料设计:包括正确选择增强材料、基体材料及其配比,该层次决定单层板的性能; ②铺层设计:包括对铺层材料的铺层方案作出合理安排,该层次决定层合板的性能; ③结构设计:最后确定产品结构的形状和尺寸。 6.试分析复合材料的应用及发展。 答:①20世纪40年代,玻璃纤维和合成树脂大量商品化生产以后,纤维复合材料发展成为具有工程意义的材料。至60年代,在技术上臻于成熟,在许多领域开始取代金属材料。 ②随着航空航天技术发展,对结构材料要求比强度、比模量、韧性、耐热、抗环境能力和加工性能都好。针对不同需求,出现了高性能树脂基先进复合材料,标志在性能上区别于一般低性能的常用树脂基复合材料。以后又陆续出现金属基和陶瓷基先进复合材料。 ③经过60年代末期使用,树脂基高性能复合材料已用于制造军用飞机的承力结构,今年来又逐步进入其他工业领域。

复合材料的发展和应用

复合材料的发展和应用 复合材料的发展和应用 具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候 论文格式论文范文毕业论文 全球复合发展概况复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电气、、健身器材等领域,在近几年更是得到了飞速发展。另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。树脂基复合材料的增强材料树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道

的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。 2、碳纤维 3、芳纶纤维 20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。 4、超高分子量聚乙烯纤维超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。 5、热固性树脂基复合材料热塑性树脂基复合材料热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料、连

金属基复合材料综述

金属基复合材料综述 专业: 学号: 姓名: 时间:

金属基复合材料综述 摘要:新材料的研究、发展与应用一直是当代高新技术的重要内容之一。其中复合材料,特别是金属基复合材料在新材料技术领域中占有重要的地位。金属基复合材料对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用,因此倍受人们重视。本文概述了金属基复合材料的发展历史及研究现状,对金属基复合材料的分类、性能、应用、制备方法、等进行了综述,提出了金属基复合材料研究中存在的问题,探讨了金属基复合材料的发展趋势。 关键词:金属基复合材料;分类;性能;应用;制备;发展趋势 Abstract: The research development and application of new composites are one of the important matters in modern high science and technology. This paper summarizes the met al matrix composites and the development history of the present situation and the classific ation of the metal matrix composites, performance, application and preparation methods, w as reviewed, and put forward the metal matrix composites the problems existing in the res earch, discusses the metal matrix composites trend of development. Keywords: Metal matrix composites; Classification; Performance; Application; Preparation; Development trend. 1.引言 复合材料是继天然材料,加工材料和合成材料之后发展起来的新一代材料。按通常的说法,复合材料是指两种或两种以上不同性质的单一材料,通过不同的复合方法所得到的宏观多相材料。随着现代科学技术的迅猛发展,对材料性能的要求日益提高。常希望复合材料即具有良好的综合性能,又具有某些特殊性能。金属基复合材料是近年来迅速发展起来的高性能材料之一,对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用。相信随着科学技术的不断发展,新的制造方法的出现,高性能增强物价格的不断降低,金属基复合材料在各方面将有越来越广阔的应用前景。

复合材料期末考试复习题(汇编)

1.复合材料的分类方法? 复合材料的分类方法也很多。常见的有以下几种。 按基体材料类型分类聚合物基复合材料以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体制成的复合材料。 金属复合材料以金属为基体制成的复合材料,如铝墓复合材料、铁基复合材料等。 无机非金属基复合材料以陶瓷材料(也包括玻璃和水泥)为基体制成的复合材料。 按增强材料种类分类 玻璃纤维复合材料。 碳纤维复合材料。 有机纤维(芳香族聚酰胺纤维、芳香族聚酯纤维、高强度聚烯烃纤维等)复合材料。 金属纤维(如钨丝、不锈钢丝等)复合材料。 陶瓷纤维(如氧化铝纤维、碳化硅纤维、翩纤维等)复合材料。 此外,如果用两种或两种以上的纤维增强同一基体制成的复合材料称为“混杂复合材料”。混杂复合材料可以看对免戈趁两种或多种单一纤维复合材料的相互复合,即复合材料的“复合材料”。 按增强材料形态分类 连续纤维复合材料作为分散相的纤维,每根纤维的两个端点都位于复合材料的边界处。 短纤维复合材料短纤维无规则地分散在基体材料中制成的复合材料。 粒状填料复合材料微小颗粒状增强材料分散在基体中制成的复合材料。 编织复合材料以平面二维或立体三维纤维编织物为增强材料与基体复合而成的复合材料。 按用途分类 复合材料按用途可分为结构复合材料和功能复合材料。 2.举例说明复合材料在现代工业中的应用? <1>建筑工业中,复合材料广泛应用于各种轻型结构房屋,建筑装饰、卫生洁具、冷却塔、储水箱、门窗及其门窗构件、落水系统和地面等。 <2>化学工业中,复合材料主要应用于防腐蚀管、罐、泵、阀等。 <3>交通运输方面,如汽车制造业中,复合材料主要应用于各种车身结构件、引擎罩、仪表盘、车门、底板、座椅等;在铁路运输中用于客车车厢、车门窗、水箱、卫生间、冷藏车、储藏车、集装箱、逃生平台等。

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

航空航天先进复合材料

航空航天先进复合材料现状 2014-08-10 Lb23742 摘要:回顾了树脂基复合材料的发展史;综述了先进复合材料工业上通常使用环氧树脂的品种、性能和特性;复合材料使用的增强纤维;国防、军工及航空航天用树脂基复合材料;用于固体发动机壳体的树脂基体;用于固体发动机喷管的耐热树脂基体;火箭发动机壳体用韧性环氧树脂基体;树脂基结构复合材料;防弹结构复合材料;先进战斗机用复合材料;树脂基体;航天器用外热防护涂层材料;飞机结构受力构件用的高性能环氧树脂复合材料;碳纤维增强树脂基复合材料在航空航天中的其它应用;民用大飞机复合材料;国产大飞机的软肋还是技术问题;复合材料之惑。 关键词:树脂基体;复合材料;国防;军工;航空航天;结构复合材料 0 前言 复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料工业水平,已成为衡量其科技与经济实力的标志之一。先进复合材料是国家安全和国民经济具有竞争优势的源泉。到2020年,只有复合材料才有潜力获得20-25%的性能提升。 环氧树脂是优良的反应固化型性树脂。在纤维增强复合材料领域中,环氧树脂大显身手。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题 1 树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、

SMC复合材料的应用和特点

SMC复合材料是Sheet molding compound的缩写,即片状模塑料。主要原料由GF (专用纱)、UP (不饱和树脂)、低收缩添加剂,MD (填料)及各种助剂组成。它在二十世纪六十年代初首先出现在欧洲,在1965年左右,美、日相继发展了这种工艺。 我国于80年代末,引进了国外先进的SMC生产线和生产工艺。SMC复合材料及其SMC模压制品,具有优异的电绝缘性能、机械性能、热稳定性、耐化学防腐性。所以SMC制品的应用范围相当广泛。现在发展趋势是SMC复合材料最终取代BMC材料。 材料中以纤维增强材料应用广、用里大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500C时仍能保持足够的强度。

材料成型工艺灵活,其结构和性能具有很强的可设计性。用模具一次成型法制造各种构件,可提高结构强度,通过纤维种类和不同排布的设计,可提高构件不同部位的性能。通过调节复合材料各组分的成分、构成及排列方式,既可使构件在不同位置承受不同的作用力,还可制成兼有刚性、韧性和塑性等矛盾性能的复合材料多功能产品,这些都是传统材料所不具备明显海洋气候的地下环境时其腐蚀危害更为明显,再加上地铁工程的杂散电流腐蚀,大大降低了金属材料的使用年限。的优点。复合材料疏散平台与电缆支架的应用技术中,复合材料性能的“可设计性”起到很大作用。 杭州金盟道路设施有限公司是一家专注于复合材料检查井盖以及复合材料整体技术解决方案的国家高新技术企业。在SMC复合材料的应用中我们也有丰富的经验,如果想了解更多复合材料产品,可以登录我们官网咨询。

复合材料的发展前景,发展与应用

复合材料的发展及应用 随着科学技术迅速发展,特别是尖端科学技术的突飞猛进,对材料性能提出越来越高,越来越严和越来越多的要求。在许多方面,传统的单一材料已不能满足实际需要。这时候复合材料就出现在了这百家争鸣的舞台上。 基本概论 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。此定义来自ISO。在复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。从上述定义中可以看出,复合材料是两个或多个连续相与一个或多个分散相在连续相中的复合,复合后的产物为固体时才称为复合材料。所以我们可根据增强材料与基体材料的名称来给复合材料命名,增强基体复合材料。如:玻璃钎维环氧树脂复合材料,可写作玻璃/环氧复合材 料。 分类与性能 按增强材料形态分类可分为(1)连续纤维复合材料;(2)短纤维复合材料;(3)粒状填料复合材料;(4)编织复合材料。按增强纤维种类分类可分为(1)玻璃纤维复合材料;(2)碳纤维复合材料;(3)有机,金属,陶瓷纤维复合材料。在此篇文章中主要讨论以基体材料分类的几种复合材料。1.聚合物基复合材料——比强度,比模量大;耐疲劳性好;减震性好;过载时安全性好;具有多种功能性;

有很好的加工工艺性。2金属基复合材料——高比强度,高比模量;导热,导电性能;热膨胀系数小,尺寸稳定性好;良好的高温性能;耐磨性好;良好的疲劳性能和断裂韧性;不吸潮,不老化,气密性好。此外还有陶瓷,水泥基复合材料,都有与上类似的特点。 基体材料 一:金属材料 选择基体的原则:使用要求,组成特点,基体金属与增强物的相 容性。 结构复合材料的基体:450℃以下的轻金属基体(“铝基和镁基”用于航天飞机,人造卫星,空间站,汽车发动机零件,刹车盘等);450-700℃的复合材料的金属基体(“钛合金”用于航天发动机);1000℃以上的高温复合材料的金属基体(“镍基,铁基耐热合金和金属间化合物”用于燃气轮机)。 二:陶瓷材料 陶瓷是金属和非金属元素的固体化合物,其键合为共价键或离子键,与金属不同,它们不含有大量的电子。一般而言,陶瓷具有比金属更高的熔点和硬度,化学性质非常稳定,耐热性,抗老化性皆佳。常用的陶瓷基体主要包括玻璃(无机材料高温烧结),玻璃陶瓷,氧化物陶瓷(MgO,Al2O3,SiO2,莫来石等),非氧化物陶瓷(氮化物,碳化物,硼化物和硅化物等)。 三:聚合物材料

复合材料的种类定义

复合材料的种类、定义 复合材料的定义 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。复合材料的组分材料虽然保待其相对独立性。但复合材料的性能却不是组分材料性能的简单加和,而是有着重要的改进.在复合材料中,通常有一相为连续相。称为基体;另一相为分散相,称为增强相(增强体)。分散相是以独立的形态分布在整个连续相中的。两相之间存在着相界面。分欣相可以是增强纤维,也可以是顺村状成弥散的坡料。 从上述的定义中可以看出。复合材料可以是一个连续物理相与一个连续分散相的复合。也可以是两个或者多个连续相与一个或多个分散相在连续相中的复合,复合后的产物为固体时才称为复合材料。若复合产物为液体或气体时,就不能称为复合材料。复合材料既可以保持原材料的某些特点,又能发挥组合后的新特征.它可以根据需要进行设什。从而最合理地达到使用所要求的性能。 复合材料的分类 随着材料品种不断增加,人们为了更好地研究和使用材料,需要对材料进行分类.材料的分类方法较多。如按材料的化学性质分类,有金属材料、非金属材料之分;如按物理性质分类,有绝缘材料、磁性材料、透光材料、半导体材料、导电材料等。按用途分类,有航空材料、电工材料、建筑材料、包装材料等。 复合材料的分类方法也很多。常见的有以下几种。 按基体材料类型分类 聚合物基复合材料以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体制 成的复合材料。 金属从复合材料以金属为基体制成的复合材料,如铝墓复合材料、铁基复合材料等。 无机非金属基复合材料以陶瓷材料(也包括玻璃和水泥)为基体制成的复合材料。 按增强材料种类分类 玻璃纤维复合材料。 碳纤维复合材料。 有机纤维(芳香族聚酰胺纤维、芳香族聚酯纤维、高强度聚烯烃纤维等)复合材料。 金属纤维(如钨丝、不锈钢丝等)复合材料。 陶瓷纤维(如氧化铝纤维、碳化硅纤维、翩纤维等)复合材料。 此外,如果用两种或两种以上的纤维增强同一基体制成的复合材料称为“混杂复合材料”。混杂复合材料可以看对免戈趁两种或多种单一纤维复合材料的相互复合,即复合材料的“复合材料”。 按增强材料形态分类 连续纤维复合材料作为分散相的纤维,每根纤维的两个端点都位于复合材料的边

植物纤维的现状及其发展前景

植物纤维的现状及其发展前景 植物纤维的现状及其发展前景 植物纤维用于复合材料的潜在优势越来越引起人们的注意,它价格低廉,密度小,具有较高的弹性模量,与无机纤维相近,而它的生物 降解性和可再生性是最突出的优点,是其它任何增强材料无法比拟的;另一方面,植物纤维与通用塑料共混制得的塑料是不完全生物降解的,即在微生物作用下,合成高分子仅能被分解为散乱碎片,这种材料使 用后仍会对环境带来负面影响,因而植物纤维在全生物降解、复合材料中得到了重视并迅速发展。国外采用植物纤维改性的复合材料,已经在汽车内部装饰、室内外装修饰材、建筑结构部件等一些领域有 广泛的应用。但国内的研究发展相对较落后,近年来对植物纤维复合材料的研究有了较大的进展,特别是对生物降解材料的复合已成为研究开发的热点。本文综述了植物纤维改性高分子材料的一些性能变化,影响植物纤维复合材料综合性能的因素以及植物纤维的发展前景。 1.不同种类的植物纤维复合材料 植物纤维与高分子材料制备的复合材料中,采用的天然植物纤维主要有麻蕉、黄麻、xx、亚麻、剑麻等麻类材料及木材、竹材、棉 纤维、纸浆纤维等。材料形态主要是纤维态和粉态。麻纤维由于强 度好、可再生等优点,用来增强聚烯烃塑料用于汽车内饰及部件,在 欧洲汽车工业已广泛应用。随着各行各业对环保的关注,用天然麻类纤维与高分子材料制备复合材料的研究较多,而使用木纤维或木粉与高分子材料制备复合材料的研究相对较少。就生物降解材料而言目 前研究较多的是PLA。PLA结晶温度介于170~180℃之间,其力学性 能接近于聚丙烯和聚酯树脂,所以其复合材料具有较高强度,某些性 能接近于天然植物纤维/聚丙烯复合材料。椰纤维和竹纤维同样具有非常好的力学性能,具有较高的韧性,也比较适合作增强材料。

复合材料的发展和应用的论文

复合材料的发展和应用的论文 全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商ppg公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国gdp增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达万吨,欧洲汽车复合材料用量到2003年估计可达万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达万吨,汽车等领域的用量仅为万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。 另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。 树脂基复合材料的增强材料 树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维 目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃

先进复合材料在航空航天领域的应用

龙源期刊网 https://www.doczj.com/doc/4010890614.html, 先进复合材料在航空航天领域的应用 作者:周庆庆 来源:《科技风》2017年第17期 摘要:复合材料是在随着科技发展所衍生出的一种新型材料,尤其是先进复合材料目前 已经被广泛应用到了航空航天领域,并发挥着至关重要的作用价值。本文简要介绍了先进复合材料的特性,而后重点就先进复合材料在航空发动机、无人机等航空领域,以及导弹结构、运载火箭结构、卫星和宇航器结构等航天领域中的具体应用展开了深入的探究工作。 关键词:先进复合材料;航空航天;应用 伴随着当前科技水平的不断提高,尤其是航空航天领域的快速发展,材料的应用环境愈发恶劣,对于材料本身也提出了更为严苛的要求。新型材料的研发是为了更好的满足于高新技术发展的需求,其中复合材料是目前在材料科学领域中的一个主要发展方向,同时也是新材料发展最好的一个分支,随着复合材料的快速发展,其目前已经成为了与高分子材料金属材料、无机非金属材料所并列的四大材料体系之一。 一、复合材料的特性 先进复合材料有着十分明显的优势特性,具体可概括为结构整体化、经济效益最大化、可设计性以及功能多样性,现具体分析如下: (1)结构整体化。先进复合材料能够被加工为整体部件,也就是应用先进复合材料部件来取代金属部件。在一些较为特殊的轮廓及表层比较复杂的部件当中,利用金属制造往往可行性相对较差,而应用先进复合材料往往便可有效满足于实际的工作需求。 (2)经济效益最大化。将先进复合材料应用于航空航天领域内,可实现对产品数量的大幅度精减。因对复杂部件的连接往往无需采取焊接、铆接等方式,因而对于连接部件的需求量也便可以大大减少,进而使得材料的装配成本与时间也能够有效降低,从而实现经济效益的最大化。 (3)可设计性。应用纤维、树脂、复合结构等方式可得到多种性能、形状存在明显差异化的复合材料,选取出适当的材料及铺层次序便可加工出没有膨胀系数的复合材料,同时其尺寸稳定性也要明显优于一般的金属材料。 (4)功能多样性。随着先进复合材料材料的不断发展,其不断融合了许多优异的物理性能、化学性能、生物性能、力学性能等。如先进复合材料所具备的阻燃性能、吸波性能、防热性能、屏蔽性能、半导性能及超导性能,而且各类先进复合材料其本身的构成也不尽相同,在功能方面也会产生出一定的差异性,目前综合性及多功能性现已成为先进复合材料发展的一项主流趋势。

常用复合材料介绍

非金属材料及复合材料 学习目标:了解非金属材料和复合材料的种类、性能特点及应用,特别是塑料、橡胶、陶瓷、复合材料的性能特点及应用。 本章导读:塑料与橡胶为有机高分子材料,与金属相比质量轻,具有金属材料不可比拟的特殊性能,使用极为广泛;陶瓷为无机非金属材料,具有高硬度、耐蚀的性能,除日用陶瓷外,工业上使用的特种陶瓷更具有其独特的性能,在机械加工、航空航天、化学工业等领域都有应用;复合材料是由两种或多种材料组成的多相材料,具有较好的综合性能,其应用越来越受到广泛的重视,大家熟悉的玻璃钢、塑钢门窗、羽毛球拍等,都是用复合材料制造的。 第一节塑料与橡胶 塑料与橡胶属高分子材料,目前,全世界合成高分子材料的年产量按体积计已超过钢铁材料,并正以每年14%的速度增长,其使用领域广泛,涉及工业制造及日常生活。 高分子材料是由若干原子按一定规律重复地连接而成的长链分子,长链分子的最大伸直长度可达毫米级,其分子量一般大于5000。高分子材料按来源可分为天然高分子(天然橡胶、蚕丝、皮革、木材等)和合成高分子化合物(塑料、橡胶等)。 合成高分子化合物是由一种或几种单体(简单结构的低分子化合物)聚合而成的,因此高分子化合物又称高聚物或聚合物。如聚乙烯分子就是由单体乙烯经聚合反应连接而成: n(CH2=CH2)—— --[ CH2—CH2 ]-- n 乙烯聚乙烯 高分子化合物的化学组成一般并不复杂,是由重复连接的结构单元组成的,这种重复连接的结构单元称为“链节”,如聚乙烯中的 --[ CH-2—CH2 ]--。大分子链之间存在的相互作用力使链节连接起来,其连接方式决定了高分子化合物的性能。 一、塑料 1.塑料的组成 塑料的主要组成是合成树脂和添加剂。合成树酯是具有可塑性的高分子化合物的统称,它是塑料的基本组成物,它决定了塑料的基本性能,塑料中合成树酯含量一般为30%~100%。树酯在塑料中还起粘结剂的作用,许多塑料的名称是以树酯来命名的,如聚苯乙烯塑料的树酯就是聚苯乙烯;添加剂的作用主要是改善塑料的某些性能或降低成本,常用的添加剂有填充剂、增塑剂、稳定剂、润滑剂、固化剂、着色剂等。

复合材料的发展和应用(1)

复合材料的发展和应用(1) 全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,20XX年欧洲的复

合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。20XX年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,20XX年的总产量约为145万吨,预计20XX年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。20XX年美国汽车零件的复合材料用量达万吨,欧洲汽车复合材料用量到20XX年估计可达万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在20XX年的用量达万吨,汽车等领域的用量仅为万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,

先进的复合材料

先进的复合预浸纱 (5码起订) 薄膜粘合材料:BMS5-101(AF163-2K),BMS5-129等。 核心接合剂/泡沫粘合剂:BMS5-90,BMS5-139,环氧树脂和聚脂石墨:BMS8-168,BMS8-212,纤维和单向带。 纤维B:BMS8-219,BMS8-129,纤维 管/密封复合材料 粘合管:BMS5-89(EC3960,BR127) 燃料电池密封剂:PR1422B2 或PR1422B1/2(MIL-S-8802) 抗腐蚀密封剂:PS870B2 或PSB870B1/2 防腐复合材料:BMS3-27(Mastionx6856K) 真空包装/加工材料 送气/抽吸帆布:4盎司和10盎司 闪光带:硅制和非硅制 特氟纶带:压力敏感型 玻璃纤维带:宽度范围50英寸至60英寸 密封带/包装带:“胶带” 松解薄膜:FEP(打孔型和非打孔型) 松解纤维:特氟纶外包裹玻璃纤维(多孔渗水型和非多孔渗水型)真空包装带:尼龙(V字折叠型,管型,平板型) 干性材料(纤维) 石墨:BMS9-8,AH370-5H 玻璃纤维:BMS9-3 纤维B:纤维B49 复合修复设备: 热补仪:威奇技术HB1单层环带,HB2双层环带,危险环境。 电热毯:电压标准110—220伏,现货,接受订货 热(电)偶适应器:BAC5621,带测试报告证明 真空附件:泵,量规,管线,软管接头,吸气探针 预填装铝: (填充物为BAC5555和BAC5514-589) 尺寸为:48英寸*48英寸 按平方尺出售 起订量为3平方尺 可以以绝缘材料包装,也可以不以绝缘材料包装 标准厚度:0.012英寸—0.032英寸 保存期限:按保存说明可保存60个月 所有材料的运输都严格按照美国军方的加工标准 可接受定货 人造树脂补充剂/粉末 微型气球:玻璃和酚醛塑料 CAB-O-SIL:熏制硅土 磨细的玻璃纤维 蜂窝状中心[芯轴]

复合材料种类

1.2.2石墨烯/聚合物纳米复合材料种类 最近几年,以聚丙烯、聚甲基丙烯酸甲酯、聚苯胺、环氧树脂、硅橡胶等为基体的石墨烯复合材料的研究都有所报道。其中出现了较多,关于石墨烯在高分子基体中达到纳米水平分散的研究。这里简要介绍一些主要的石墨烯/聚合物纳米复合材料。 (1)聚苯胺(PANI)/石墨烯纳米复合材料 聚苯胺(PANI)/石墨烯纳米纤维复合材料是用原位聚合方法,在酸性条件下,氧化石墨烯与苯胺单体聚合得到的[1]。然后,使用水合肼还原不同氧化石墨烯质量比的PANI/氧化石墨烯复合材料。最后,对还原的PANI再氧化和质子化生成PANI/石墨烯纳米复合材料。Bhadra等[2]也报道过纯PANI这种类型的热降解。PANI和PANI/石墨烯复合材料样品在同一温度范围内质量损失分别是40%和25%。结果表明,PANI/石墨烯纳米复合材料热稳定性较之纯的PANI提高了。同时,复合材料的导电率也有很大的增加。 (2)聚氨酯/石墨烯纳米复合材料 使用原位聚合的方法制备功能化的石墨烯(FGS)/水性聚氨酯(WPU)纳米复合材料[3]。由于FGS粒子在WPU基体中的均匀分散使纳米复合材料电导率比初始WPU增加了105倍。由于导电通道的形成,在高分子基体中引发了电导率的突变。当填充FGS仅为2%(Wt)时,可得到渗滤阀值。 (3)环氧树脂/石墨烯纳米复合材料 Kuilla等[4]用原位插层聚合制备了环氧树脂石墨烯纳米复合材料环氧树脂的热导率很小。但是,加入石墨烯后其热导率得到了显著提高。填充5%(Wt)GO 的环氧树脂基复合材料其热导率是1W/mK,这是纯环氧树脂热导率的4倍。当填充20%(Wt)GO的环氧树脂基复合材料其热导率增加到6.44W/mK。这些结果表明石墨烯复合材料用于散热是一种很有前途的热界面材料。 (4)聚碳酸酯/石墨烯纳米复合材料 通过熔融复合法,制备石墨和功能化石墨烯(FGS)增强的聚碳酸酯(PC)复合材料[5]。聚碳酸酯/石墨烯纳米复合材料中,FGS呈现高度的片状剥离状态。导电性能测试表明,产生导电性渗流阈值时FGS 的添加量比石墨的添加量要低。PC/ FGS纳米复合材料的拉伸模量高于纯PC的拉伸模量。并且,随着FGS 的填充复合材料的热膨胀系数(CTE)大幅度地下降。 (5)聚乙烯醇(PV A)/石墨烯纳米复合材料 Liang 等[6]报道了用水作为溶剂,把GO加入PV A基体中制备出PV A/石墨烯纳米复合材料。PV A/石墨烯纳米复合材料的机械性能优于纯PV A。例如,GO 含量仅为0.7 wt%时,拉伸强度和杨氏模量分别增加了76%和62%。这是由于石墨烯片层的大的宽高比,PV A 基体中石墨烯片层分子水平的分散和石墨烯与PV A 间氢键引起的强界面粘结。

铜钨复合材料

铜钨复合材料及在热加工方面的应用 铜钨复合材料是以铜、钨元素为主组成的一种两相结构假合金,是金属基复合材料。铜、钨无论在固态、液态都不互相溶,均匀混合后无化学反应发生,各自保持原来的物理和机械性能。这种合金用粉末冶金特定的工艺方法制取。钨在"合金"中形成骨架,铜渗透于钨骨架间隙,综合了钨本身熔点高、耐高温;铜塑性好,填充于烧结钨孔隙之间,并有部分铜渗入钨颗粒,因而降低了"合金"的缺口敏感性,提高了"合金"塑性。 多孔钨浸渗低熔点材料(银、铜等)这种合金在几十年前即用高压电器触头方面。近年来,经过对铜、钨二元成分调整并适当增加耐磨相和添加元素,这种改性的合金在热加工方面如轧钢导卫、小压铸模等方面,取得较好效果,尤其是在轧钢精轧导卫方面获得广泛认可。 1合金制取: 铜钨合金这种假"合金"一般采用粉末冶金方法制取。 制取工艺流程如下: 制粉--配料混合--压制成型--烧结溶渗--冷加工 1.1铜、钨特性: 1.2组成: 1.2.1钨:构成该复合材料的耐熔相起到骨架作用,保持制品的几何形状。要求钨粉纯99.7%,平均粒度8一15μm,氧含量≤ 0.2%。粒度越细,形成的钨骨架毛细管间隙越细,铜度≥ 渗透在这个毛细管间隙中。当钨粉粒度过于细小时,又易造成多孔骨架内部间隙阻塞,难于渗铜。因此,适当的粉末粒度及合理的粒度组成影响最终材料的性能。 粉末比表面积大,在氧化条件下粉末含氧量高时,严重影响铜、钨浸润效果。熔渗仅能限于局部、表层,制品严重"夹心",材料性能下降,产品在使用过程(如导卫)出现横裂。 1.2.2铜:构成材料的易熔相,具有良好的导热性,又由于其熔点与钨比低得多,熔融铜,由于毛细管效应,延着钨骨架形成的毛细管包围在钨骨架周围,起着粘结相作用。又因为铜良好塑性,大大提高材料的常温塑性及导热性。要求铜纯度>99.5%,其中诱导铜粉粒度>200目。 1.2.3耐磨相:为进一步提高材料的耐磨性能,以适应制品使用的需要,需按比例添入耐磨物质,有效地改善和提高了诸如轧钢导卫、电极等的使用性能。 1.2.4添加元素:为了改善铜对钨及耐磨相的浸润性能,浸润角越小,越有利于物质间的浸润。适量加入镍等元素,有效的改善了材料的熔渗性能。 1.3成型:材料密度提高直接影响材料的性能,其直接取决于粉末冶金工艺过程中的坯料

复合材料开发以及运用

复合材料开发以及使用 世界复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它能够发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用 范围。因为复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应 用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年 更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上持续进步,生产厂家的制 造水平普遍提升,使得玻纤增强复合材料的价格成本已被很多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。所以,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备, 已经成为众多产业的必备材料。当前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高 价值产品计入,其产值将更为惊人。从世界范围看,世界复合材料的 生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中 国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料世界占有率约为32%,年产量约200万吨。与 此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增 长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万 吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在世界市场 上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化 密切相关,各国的占有率变化很大。总体来说,亚洲的复合材料仍将 继续增长,2000年的总产量约为145万吨,预计2005年总产量将达 180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料

相关主题
文本预览
相关文档 最新文档