当前位置:文档之家› 金相组织分析

金相组织分析

金相组织分析
金相组织分析

实验三碳钢的非平衡组织及常用金属材料显微组织观察

实验目的概述实验内容实验方法实验报告思考题

一、实验目的

1. 观察碳钢经不同热处理后的显微组织。

2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。

3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。

4. 了解上述材料的组织特征、性能特点及其主要应用。

TOP

二、概述

1. 碳钢热处理后的显微组织

碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。

为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。

在缓慢冷时(相当于炉冷,见图2-3中的V

1)应得到100%的珠光体;当冷却速度增大到V

2

。时(相当于空冷),

得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马

氏体;当冷却速度增大至V

4、V

5

,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,

瞬时转变成马氏体。其中与C曲线鼻尖相切的冷却速度(V

4

)称为淬火的临界冷却速度。

亚共析钢的C 曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,当奥氏体缓慢冷却时(相当于炉冷,如图2-3中V 1:),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即V 3>V 2>V ,时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。因此,V 1的组织为铁素体+珠光体;V 2的组织为铁素体+索氏体;

V 3,的组织为铁素体+屈氏体。当冷却速度为V 4,时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3-3);当冷却速度V 5,超过临界冷却速度时,钢全部

转变为马氏体组织(如图3-6,3-7)。

过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 ① 珠光体(P ) 珠光体的组织形态主要有两种:片状珠光体和颗粒状珠光体。片状珠光体由一片片相互交错排列的铁素体和渗碳体所组成形成珠光体的先行条件是事先形成均匀的奥氏体,而后缓慢冷却在A1以下附近温度形成。片状珠光体似手指纹的层状结构,它是一层铁素体和一层渗碳体的机械混合物(见图3-1)。颗粒状珠光体是在铁素体的基体上分布着细小颗粒状的渗碳体的球化组织(见图3-2)。

图3-1片状珠光体500×4%硝酸酒精 图3-2 颗粒状珠光体500×4%硝酸酒精

② 索氏体(s) 是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨(见图3-3)。

③ 屈氏体(T) 也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3-4)。

图3-3 索氏体500×4%硝酸酒精 图3-4 屈氏体+马氏体500×4%硝酸酒精

④ 贝氏体(B) 为奥氏体的中温转变产物,它也是铁素体与渗碳体的两相混合物。在显微形态上,主要有三种形态;

a. 上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的非层状

组织。当转变量不多时,在光学显微镜下为成束的铁素体条向奥氏体晶内伸展,具有羽毛状特征。在电镜下,铁素体以几度到十几度的小位向差相互平行,渗碳体则沿条的长轴方向排列成行,(如图3-5)。

b. 下贝氏体是在片状铁素体内部沉淀有碳化物的两相混合物组织。它比淬火马氏体易受

浸蚀,在显微镜下呈黑色针状(见图3-6)。在电镜下可以见到,在片状铁素体基体中分布有很细的碳化物片,它们大致与铁素体片的长轴成55~60°的角度。

c. 粒状贝氏体是最近十几年才被确认的组织。在低、中碳合金钢中,特别是连续冷却时

(如正火、热轧空冷或焊接热影响区)往往容易出现,在等温冷却时也可能形成。它的形成温度范围大致在上贝氏体转变温度区的上部,由铁素体和它所包围的小岛状组织所组成。

图3-5上贝氏体+马氏体500×图3-6 下贝氏体500×4%硝酸酒精

⑤ 马氏体(M) 是碳在αFe中的过饱和固溶体。马氏体的形态按含碳量主要分两种,即板条状和针状(见图3-7、3-8所示);

a. 板条状马氏体一般为低碳钢或低碳合金钢的淬火组织。其组织形态是由尺寸大致相同

的细马氏体条定向平行排列组成马氏体束或马氏体领域。在马氏体束之间位向差较大,一个奥氏体晶粒内可形成几个不同的马氏体领域。板条马氏体具有较低的硬度和较好的韧性。

b. 针状马氏体是含碳量较高的钢淬火后得到的组织。在光学显微镜下,它呈竹叶状或针

状,针与针之间成一定的角度。最先形成的马氏体较粗大,往往横穿整个奥氏体晶粒,将奥氏体晶粒加以分割,使以后形成的马氏体片的大小受到限制。因此,针状马氏体的大小不一。同时有些马氏体有一条中脊线,并在马氏体周围有残留奥氏体。针状马氏体的硬度高而韧性差。

图3-7 板条状马氏体500×图3-8 针状马氏体1600×

⑤ 残余奥氏体(A残) 是含碳量大于0.5%的奥氏体淬火时被保留到室温不转变的那部

分奥氏体。它不易受硝酸酒精溶液的浸蚀,在显微镜下呈白亮色,分布在马氏体之间,无固定形态。

2. 回火组织与性能

① 回火马氏体。是低温回火(150~250℃)组织。它仍保留了原马氏体形态特征。针状马氏体回火析出了极细的碳化物,容易受到浸蚀,在显微镜下呈黑色针状。低温回火后马氏体针变黑,而残余奥氏体不变

仍呈白亮色(如图3-10所示)。低温回火后可以部分消除淬火钢的内应力,增加韧性,同时仍能保持钢的高硬度。

② 回火屈氏体。是中温回火(350—500℃)组织。回火屈氏体是铁素体与粒状渗碳体组成的极细混合物。铁素体基体基本上保持了原马氏体的形态(条状或针状),第二相渗碳体则析出在其中,呈极细颗粒状,用光学显微镜极难分辨(如图3-11所示)。中温回火后有很好的弹性和一定的韧性。

图3-10 回火马氏体(黑色针状)+残余奥氏体图3-11 回火屈氏体1000×

(白色区域) 500×

③ 回火索氏体;是高温回火(500~650℃)组织。回火索氏体是铁素体与较粗的粒状渗碳体所组成的机械混合物。碳钢回火索氏体中的铁素体已经通过再结晶,呈等轴细晶粒状。经充分回火的索氏体已没有针的形态。在大于500倍的光镜下,可以看到渗碳体微粒(如图3-12所示)。回火索氏体具有良好的综合机械性能。

应当指出,回火屈氏体、回火索氏体是淬火马氏体回火时的产物,它们的渗碳体是颗粒状的,且均匀地分布在铁素体基体上;而淬火索氏体和淬火屈氏体是奥氏体过冷时直接形成的,其渗碳体是呈片状。回火组织较淬火组织在相同的硬度下具有较高的塑性与韧性。

图3-12 回火索氏体500×

3. 铸铁

铸铁是工业上广泛应用的一种铸造金属材料,它是以Fe-C-Si为主的多元铁基合金,其含碳量大于2.11%。铸铁的熔点比较低,具有良好的铸造性能,通过采用冶金控制能够得到比较高的强度,和某些其它合金不易得到的特殊性能。按铸铁在结晶过程中石墨化程度不同,可分为白口铸铁(其组织具有莱氏体特征而没有游离的石墨,即全部碳均以碳化物的形式存在于铸铁中)、灰口铸铁(碳全部或大部以片状石墨的形式存在于铸铁中)和麻口铸铁(其组织特征介于白口铸铁与灰口铸铁之间),即表面为白口铸铁,中心为灰口铸铁;白口铸铁和麻口铸铁由于有莱氏体组织存在,因而有较大的脆性,在工业上很少应用。

根据铸铁中石墨的形态、大小和分布情况不同,铸铁分为灰口铸铁(石墨呈片状)、可锻铸铁(石墨呈团絮状)和球墨铸铁(石墨呈球状);

根据石墨化第三阶段发展程度不同,铸铁的基体可有三种,即珠光体、珠光体加铁素体、铁素体,而珠光体基体的铸铁强度最高。石墨的强度和塑性几乎为零,所以通常把铸铁看成是布满裂纹和空洞的钢。

因而铸铁的强度和塑性比较低,并且石墨的数量愈多,尺寸愈大、分布愈不均匀,石墨对基体的割裂作用愈大,铸铁的性能也愈差。

① 灰口铸铁根据基体组织的不同,灰口铸铁可分为:铁素体灰口铸铁,铁索体十珠光体灰口铸铁,珠光体灰口铸铁。图3-13所示,为铁素体灰口铸铁的显微组织,其中石墨呈灰色条片状分布在亮白色的铁素体基体上。图3-14所示,为铁素体十珠光体灰口铸铁的显微组织,其中除灰色条片状石墨外,暗黑色团块为珠光体,亮白色部分为铁素体。图3-15所示,为珠光体灰口铸铁的显微组织,其中石墨呈灰色条片状,基体为珠光体。

图3-13 铁素体十粗大石墨片图500× 3-14 铁素体十珠光体+粗大石墨片500×

图3-15 珠光体十粗片状石墨500×图3-16 铁素体十球状石墨500×

图3-17铁素体+珠光体+球状石墨500×图3-18珠光体+球状石墨500×

② 球墨铸铁球墨铸铁是一种铸态下呈现球状石墨的铸铁。当向铸态中加入球化剂(纯镁、稀土镁等合金)和孕育剂(硅铁或硅钙合金),则可改变铸铁的共晶特性。一般灰铁在共晶转变时,液相既与奥氏体又与石墨接触,所以石墨呈片状生成。加镁铸铁在共晶转变时,它只与奥氏体接触,在石墨周围形成奥氏体外壳,当铸件凝固后碳是通过周围的奥氏体外壳向石墨堆集,使石墨均匀生长成球状。由于石墨呈球状对基体的削弱作用最小,使球墨铸铁的金属基体强度利用率高达70%~90%(灰口铸铁只达30%左右),因而其机械性能远远优于普通灰口铸铁和可锻铸铁。图3-16所示,为铁素体基体球墨铸铁的显微组织,其中亮白色晶粒为铁索体基体,灰色球状为石墨。图3-17所示,为铁素体十珠光体基体球墨铸铁显微组织,其中呈暗黑色块状为珠光体,分布在球状石墨周围的亮白色基体是铁素体。图3-18为珠光体基体的球墨铸

铁-显微组织,其中呈暗黑色块状为珠光体,灰色球状为石墨。

如上所述,铸铁的基体既然是铁素体和珠光体所组成,很显然和钢一样可以通过热处理来改变基体组织,从而改善铸铁的机械性能,特别是球墨铸铁常常通过正火、调质和等温淬火来提高其机械性能。球铁正火的目的主要是增加基体中珠光体数量,从而提高球铁的强度和耐磨性。球铁调质处理后得到回火索氏体,从而有更高的综合机械性能。球铁经等温淬火后的组织为下贝氏体,部分马氏体和少量残余奥氏体。这种组织不仅具有较高的综合机械性能。而且具有很好的耐磨性,内应力也小。

③ 可缎铸铁可锻铸又称展性铸铁,马铁、玛钢。是凝固为白口铸铁的生坯经过固态石墨化-高温退火处理,使共晶渗碳体分解而形成团絮状石墨的一种铸铁。团絮状石墨减弱了对基体的割裂作用,因而使可锻铸铁的力学性能比灰口铸铁有明显的提高,并具有良好的韧性,其耐磨性和减振性优于普通碳素钢,铸造性能略低于灰口铸铁,可锻铸铁实际上并不可锻,仅说明它具有一定的韧性和塑性,在使用中能承受一定的变形,适用于大量生产薄壁中小型铸件,如各种管接头、汽车后桥外壳、低压阀门等。白口铸铁中的渗碳体在退火过程中充分进行石墨化,析出团絮状石墨,基体为铁素体。如果一次渗碳体、二次渗碳体石墨化后,采用较快的冷却速度,使共析渗碳体来不及分解,冷却后得到以珠光体为基体的可锻铸铁可锻铸铁。图3-19所示为铁素体基体可锻铸铁的显微组织,其中石墨呈暗灰色团絮状,亮白色晶粒为基体。图

3-20所示为珠光体可缎铸铁的显微组织,在珠光体基体上分布着黑色的团絮状石墨。

图3-19 铁索休基体十团絮状石墨500×图3-20 珠光体+团絮状石墨500×

4. 有色金属及合金

① 铝合金铝合金质轻、且由于密度小(2.65~2.9),具有高的比强度,因铝是面心立方结构故具有很高的塑性,易于加工,可制成各种形材、板材抗腐蚀性能好导电性能仅次于铜。因而广泛用于机械工业特别是航空工业。

铸造铝合金中应用最广泛的是铸造铝合金,俗称硅铝明。典型的牌号有ZLl02,含硅10%~13%,由Al-Si合金相图可知,硅铝明合金成分在共晶点附近,组织为粗大针状的硅晶体和α固溶体组成的共晶体,以及少量呈多面体形的初生硅晶体,如图3-21所示。这种粗大的针状硅晶体严重降低合金的塑性。

为了提高硅铝明的力学性能,通常进行变质处理,即在浇注以前向合金熔体中加入占合金重量2%~3%的变质剂(常用2/3NaF+1/3NaCl)。处理后使合金的共晶点从11.6%Si右移,得到亚共晶组织,其组织为初生α相固溶体枝晶(白亮)及细小的共晶体(α十Si)(黑底)。由于共晶中的硅呈细小点状颗粒,因而使合金的强度与塑性提高。如图3-22所示。

图3-21 灰色方块初生硅晶体十共晶体图3-22 树枝状的初生α固溶体十共晶体

(针状Si晶体+白色基体。α固溶体) (基体)450× 500×

② 铜合金工业上广泛使用的铜合金是黄铜和青铜,黄铜是以锌为主要元素的Cu-Zn合金。

a. α单相黄铜含锌在39%以下的黄铜属单相α固溶体,典型牌号为H70(即三七黄铜)。其塑性和耐腐蚀性尚好。其金相组织特征是:铸态α固溶体呈树枝状,铸态冷却较快时,α枝晶间可能出现β

相(用氯化铁溶液腐蚀后,枝晶主轴富铜,呈亮白色,而枝间富锌呈暗色),经变形和再结晶退火其组织为多边形α晶粒,有退火孪晶特征。由于各个晶粒方位不同,所以具有不同的颜色。退火处理后的。黄铜能承受极大的塑性变形,可以进行深冲变形。单相黄铜的显微组织如图3-23所示。

图3-23 α单相黄铜(其上有退火孪晶)500×图3-24 α十β两相黄铜500×

b. α+β′两相黄铜含锌量为39%~45%的黄铜为α+β′两相黄铜,典型牌号有H62(即四六黄铜)。在室温下β′相较α相硬得多,因而可用于承受较大载荷的零件。β′是CuZn为基的有序固溶体,在低温下较硬且脆,但在高温下转变成β相,具有较好的塑性,所以两相黄铜可在600℃以上进行热加工。α+β两相黄铜显微组织:白亮色为α相,暗黑色为β相。α相的形态及分布与合金的成分及冷却速度有关。快冷时α相呈拉长形态,有时呈针状,缓冷时则得均匀的α晶粒。细针状分布的α相较之粗针、块状、及网状分布的α相强度要高。如图3-24所示。

③ 轴承合金轴承合金又称巴氏合金。巴氏合金是应用较多的轴承合金,常用来制造滑动轴承的轴瓦和内衬,轴瓦材料要求同时兼有硬和软的两种性能,因此轴承合金的组织往往是软、硬两相组成的混合物。例如,在软基体上分布着硬质点,铅基或铴基轴承合金就具有这种组织特点。铴基巴氏合金中,基本组元为Sn83%、Sbll%及Cu6%。其牌号为ZChSnSbll-6,它的显微组织如图3-25所示。其中暗黑色部分为软基体α相(Sb在Sn中形成的固溶体);白色方块为硬质点β′(以SnSb为基的有序固溶体);而白色枝状析出物为Cu3Sn或Cu6Sn5化合物(η相),作为阻碍β′上浮,减少偏析的作用。如图3-25所示这种既硬又软的混合物,保证了轴承合金具有足够的强度与塑性的配合从而使轴承合金有良好的减摩性及抗振性。

图3-25 铸态ZChSnSbll-6 轴承合金500×

5. 几种常用合金钢的显微组织

合金钢依合金元素含量的不同,可分为三种,合金元素总量<5%的称为低合金钢;合金元素为5%~10%的称为中合金钢,合金元素>10%的称为高合金钢。

一般合金结构钢、合金工具钢都是低合金钢。由于合金元素的加入,使铁碳相图发生一些变化,但其平衡状态的显微组织与碳钢没有本质的区别。低合金钢热处理后的显微组织与碳钢没有根本的不同,差别只在于合金元素加入后,使C曲线右移(除Co以外),即以较低的冷却速度也可获得马氏体组织。合金钢种类繁多,本实验仅选择几种常用的典型钢号进行观察和分析。

① 合金结构钢

a. 渗碳钢当零件承受复杂的交变负荷的同时还承受着冲击、磨损时,仅用一种钢材单一的热处理是不能满足需要的,只有通过一定的化学热处理后,促使零件的表面层化学成份发生变化,从而获得高的疲劳强度、硬度、防腐蚀性、和耐磨性,同时心部能保持足够的强度和韧性。渗碳处理是最早和用途最广的表面化学热处理工艺,它是将碳元素渗入钢的表面,使零件表面含碳量增加,随后通过淬火使表层得到高的硬度(HRC60以上)的高碳马氏体,而心部得到硬度较低但具有良好强韧性的低碳马氏体组织。20Cr钢是典型的渗碳用钢,用于制造要求较高强度和韧性的零件。其退火组织为铁素体与珠光体,经表面渗碳后其组织见图3-26,心部铁素体+珠光体,中间为珠光体,表层为珠光体+网状渗碳体。

心部次心部

次表面表面

图3-26心部铁素体+珠光体中间为珠光体,表层为珠光体+网状渗碳体450×

b. 调质钢所谓的调质就是先将钢淬火,然后高温回火,以获得均匀的索氏体组织的一种热处理工艺。目的是使钢获得一定的强度、塑性和韧性。具有良好的综合机械性能。故一般受到负荷的机械零件都必须经过调质处理后才能使用。40Cr是一种应用很广泛的调质钢种。经调质处理后具有良好的综合机械性能,用于制造曲轴、汽车后桥半轴等。退火状态为铁素体和珠光体(图3-27),调质后其组织为回火索氏体,如图3-28所示。

图3-27铁素体+珠光体450×图3-28 回火索氏体500×

c. 弹簧钢弹簧是一种常用的机械零件,它由于结构特点和材料本身的弹性,在受到允许范围内的作用时产生弹性形变,而外力消除则能恢复原形。因此弹簧材料应具有高的抗拉强度极限、屈服极限、弹性极限和疲劳极限,同时要求具有高的冲击韧性和塑性。65Mn是常用的锰弹簧钢,其淬透性比碳素弹簧钢高,脱碳倾向较小。经淬火+中温回火处理后其组织为回火屈氏体(见图3-29),有很好的弹性、强度和硬度。多用于制造小尺寸圆、扁弹簧,离合器弹片等。

图3-29 回火屈氏体1000× 图3-30回火马氏体和未溶解的碳化物颗粒500×

d. 轴承钢常用钢号为GCrl5。经淬油后低温回火为回火马氏体和未溶解的碳化物颗粒

及少量的残留奥氏体。如图3-30所示。

② 高速钢高速钢是一种常用的高合金工具钢,例如W18Cr4V。因为它含有大量合金元素,使铁碳相图中的E点大大左移,虽然只含有0.7%~0.8%的碳,仍可获得莱氏体组织,所以又称为莱氏体钢。

图3-31 莱氏体+屈氏体+马氏体和残余奥氏体图3-32索氏体+碳化物

图3-33 隐晶马氏体+未溶碳化物+残余奥氏体图3-34 回火马氏体+碳化物+少

量残余奥氏体

高速钢在铸造状态下与亚共晶白口铸铁的组织相似。其中莱氏体由合金碳化物、马氏体屈氏体以及残余奥氏体组成。如图3-31所示。显然高速钢在铸态下的组织存在严重的成分和组织不均匀性,从而影响其性能,为此随后必须经过锻造和轧制,破碎莱氏体网络,促使其碳化物均匀分布。

高速钢锻造退火组织,在金相显微镜下观察其组织为索氏体+碳化物。其中粗大的亮色晶粒为初生共晶碳化物,较细小的为次生碳化物以及索氏体基体中的极细共析碳化物,退火后的硬度为HB207~255,见图3-32所示。

高速钢淬火加热温度一般为1060~1080℃,高温加热的目的是使较多的碳化物溶解于奥氏体中,淬火后马氏体中合金元素含量高,回火后钢的红硬性高且耐磨性好。淬火采用油冷或空冷,其显微组织为马氏体+未溶碳化物十残余奥氏体(尚有20%~30%)。马氏体呈隐针状,其针形很难显示出来,但可看出明显的奥氏体晶界及分布于晶粒内的未溶碳化物,淬火后的硬度约为HRC61~62,见图3-33所示。

高速钢淬火后需经三次回火,其组织为回火马氏体+碳化物和少量残余奥氏体(约2%~3%)。回火后硬度为HRC63~65,见图3-34所示。

③不锈钢不锈钢是在大气、海水及其它浸蚀性介质条件下能稳定工作的钢种,大都属于高合金钢。例如应用较广的1Crl8Ni9,其含碳量较低,因为碳不利于耐蚀性;高的含铬量是保证耐蚀性的主要元素;镍除了进一步提高耐蚀能力以外,主要是为了获得奥氏体组织。这种钢在室温下的平衡组织是奥氏体+铁素体十铬的碳化物(Cr23C6)。这种组织是产生晶间腐蚀的原因。为了提高耐蚀性以及其它性能,必须进行固溶处理。将钢加热到1050~350℃,使碳化物等全部溶解,然后水冷,室温下即可获得单一的奥氏体组织.如图3-35所示。

图3-35 奥氏体(晶内有孪晶

) 500X

TOP

三、实验内容

1. 观察、分析下列碳钢非平衡组织、铸铁、有色金属、合金钢的显微组织,(见表3-2)。

TOP

四、实验方法

1. 每个同学轮流对每个试样进行观察;

2. 比较珠光体型(珠光体、屈氏体、索氏体)、贝氏体(上贝氏体、下贝氏体)、马氏体(低碳马氏体、高碳马氏体)组织的特征;

3. 比较碳钢回火组织特征;

4. 比较观察几种铸铁中石墨的形状、基本特征;

5. 比较单相与两相黄铜的显微组织特征;

6. 比较变质与未变质的硅铝明的显微组织;

7. 观察渗碳钢、调质钢、轴承钢、弹簧钢使用状态的组织特征;

8. 观察不锈钢固溶处理组织特征;

9. 观察高速钢不同热处理状态的组织特征;

10.绘制指定试样的金相组织示意图。

TOP

五、实验报告

1. 实验目的;

2. 画出铸铁及有色合金显微组织示意图;

3. 实验结果讨论。

① 比较直接冷却得到的M、S、T和淬火得到的M回火、S回火、T回火组织形态和性能差异;

② 将灰口铸铁的组织与性能同碳钢进行比较;

③ 分析变质处理对硅铝明合金的作用;

④ 简述巴氏合金组织与性能的特点。

TOP

六、思考题

1. 何为热处理?其主要环节是什么?

2. 试在C曲线上绘制T8钢欲得到下列组织时的连续冷却曲线。①珠光体、②索氏体、③马氏体+屈氏体+残余奥氏体、④马氏体+残余奥氏体。连续冷却能否得到上贝氏体、下贝氏体?

3. 为什么马氏体具有高硬度和强度?其数值上是否与含碳量有关?为什么?

4. 影响奥氏体晶粒度的因素有哪些?如何在加热时获得细小的奥氏体晶粒度?

铜合金中金相组织特征参数的测量

铜合金中金相组织特征参数的测量 wbf_512(2010-09-27 11:49:29) 帅歌旺,张萌 (南昌大学材料科学与工程学院,江西南昌330047) 摘要:根据体视学和定量金相分析的基本原理,利用Image-ProPlus(IPP)图像分析软件测定了铜合金金相组织的相体积分数、晶粒度大小、粒子间距等特征参数,并提出了一种测量粒子间距的近似算法。 关键词:定量金相分析;铜合金;特征参数 铜及铜合金由于具有优异的性能,一直是现代工业中用途广泛的重要的有色金属材料。通过金相检验可以了解材料的组织结构,认识显微组织对材料物理、化学、机械等性能的影响。因此,金相分析是一种控制产品质量的重要措施。但迄今有关铜合金的定量金相分析工作远远落后于钢铁材料,既无大量的数据积累,也没有针对性的分析方法。 为此,本文利用IPP(Image-ProPlus图象分析软件)强大的图像处理功能,初步研究开发了针对铜合金组织中诸如相体积分数、晶粒度大小、粒子间距等特征参数的分析测试方法,效果良好。 1体视学基本符号和公式 为叙述方便,下面给出本文涉及到的常用体视学符号和基本公式: 符号:AA--面积分数,单位面积测量体上被测对象的面积 PV--被测对象的点数/测量体的总体积 Vv--体积分数,单位测量体上被测对象的体积 Ww--重量分数,单位重量测量体上被测对象的重量 ρα--被测量相(组织)的比重 ρT--整个合金的比重

基本公式:VV=AA=LL=PP(1) Ww=Vvρα/ρT(2) 2测量方法 定量金相分析工作包括金相试样制备、图像摄取、图像处理、定量分析等几个步骤。整个系统如图1所示: 图1定量金相分析系统 计算机通过控制数码相机摄取图像数据,经处理后结果在打印机上输出。 2.1图像摄取 磨制好的金相试样在MeF3型金相显微镜下进行观察,选定待测视场后,通过SVMICROTM型全自动数码相机将图像传送到计算机,金相观察可在计算机监视屏和显微镜上同步动态显示。选取欲分析区域后进行拍摄,图像直接输入计算机进行处理,整个过程方便、快捷。 2.2图像处理 定量金相分析需要图像轮廓清晰,不同特征物间“,灰度”相差大,即反差大。而相同物间“,灰度”又应尽量接近,如此测试的结果才准确、可靠。因此原始图像必须经过预处理,IPP软件提供了亮度、对比度及多达几十种滤镜工具,可以得到利于计算的理想图像。 1.3定量金相分析 IPP软件提供了Count、Measurement等基本计算工具,同时还提供了强大的宏编辑器,软件有了再开发的空间。本文观察了一系列铜合金的金相组织,利用IPP软件提出了相体积分数、粒子间距、晶粒尺寸等基本特征参数的测量方法。 3特征参数测量 铜合金组织较为复杂,不同合金系其组织特征大为不同。合金组织中相的存在形式可以是粗大连续的组成相,也可以细小、弥散分布的第二相形式析出,甚至仅以单相固溶体构成。

金相取样要求

金相取样及试样制作要点 第二章钢管和棒材金相(高低倍)试样截取和制备 一、试样选择和截取: 试样截取的方向、部位、数量应根据金属制造的方法,检验的目的进行。检验面的选取根据检验目的内容确定检验面。横向截面主要用以检验表面缺陷、检验组织从表面到中心的金相组织变化情况、脱碳、晶粒度显微组织等,而纵向截面主要用以检验非金属夹杂物数量、α-相等。试样尺寸以磨面面积大约为2002mm,高度15~20 mm为宜。详细取样部位和试样检验面详见有关标准规定。 二、非金属夹杂物取样 根据GB/T10561-2005钢中非金属夹杂物含量测定,用于检测夹杂物的试样面积约为200mm(20mm×10mm) 平行于钢材纵轴,位于钢材外表面到中心的中间位置。当产品的厚度或壁厚较保证检验面面积为200mm,当取样数量达到10个长10mm的试样作为一支试样时,检验面仍不足200mm2是允许的。 直径或边长大于40mm的钢棒或钢坯,检验面为钢材外表面到中心的中间位置的部分径向截面 直径或边长大于25mm、小于或等于40mm的钢棒或钢坯;检验面为通过直径的截面的一半

直径或边长小于25mm的钢棒;检验面为通过直径的整个截面,其长度应保证得到约200mm2的检验面积。 三、钢的脱碳层深度测定取样示意图

据国家标准GB/T224-2008钢的脱碳层深度测定的规定,选取试样的检验面应垂直于产品的纵轴。保留钢材的表皮。试样总的检测周长应不小于35mm。对于外径小于或等于25mm的钢管或边长不大于20mm的方钢要检验整个周边。对于直径大于25mm的圆钢或边长大于20mm的方钢,为保证取样的代表性,可截取试样同一截面的几个部分,以保证总检测周长不小于35mm。 三、α-相面积取样示意图 根据GB/T13305-2008不锈钢中α相面积金相测定法;试样的检验面为平行于钢 材,截取纵截面,试样应在冷状态下用机械方法切取,如果采用气割或热切时, 必须将金属的熔化区,塑性变形区和热影响区完全去除。 四、钢管和棒材低倍组织检验取样示意图

钢铁中常见的金相组织

钢铁中常见的金相组织区别简析 钢铁中常见的金相组织 1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,

金相组织观察报告

实验二金相常识简介和铁碳合金平衡组织观察 一、目地要求 1 、了解试样制备过程、金相显微镜基本构造和原理等金相常识。 2 、研究和了解铁碳合金在平衡状态下的显微组织。 3 、分析成分对铁碳合金显微组织的影响,从而加深理解成分、组织和性能之间的相互关系。 二、实验内容:将制好的样品放在显微镜上观察,注意显微镜的正确使用,并分析样品制备的质量好坏,初步认识显微镜下的组织特征并分析成分对铁碳合金显微组织的影响。 三、实验设备:金相显微镜,抛光机易耗品:吹风器、样品、不同号数的砂纸、玻璃板,抛光粉悬浮液、4%的硝酸酒精溶液、酒精、棉花等 四、实验步骤: 1.金相样品的制备方法。 2、样品硝酸酒精溶液腐蚀(即浸蚀)。

实验结论: 1画组织示意图 (1)画出下列试样的组织示意图 1)亚共析纲 2)过共析钢 3)亚共晶白口铸铁 4)过共晶白口铸铁 (2)画图方法要求如下 1)应画岩石记录表中的30—50直径的圆内,注明:材料名称、含碳量、 腐蚀剂和放大倍数。并将组织组成物用细线引出标明。如下图: 2.回答以下问题 (1)分析所画组织的形成原因。

(2)分析碳钢(任选一种成分)或白口铸铁(任选一种成分)凝固过程。

教学及实验方法: 1 、教师讲述和演示阶段: 用 1 5 分钟时间讲解试样制备、显微镜结构、反射原理和黑白成像等金相常识,用 2 0 分钟时间联系铁碳平衡图讲解、分析本次实验的 7 种铁碳合金在平衡状态下的显微组织,用电视显微镜向全体学生展示所有显微组织,用 5 分钟时间讲解绘制显微 组织的有关技巧。 2 、学生动手实验阶段: 学生用 5 0 分钟时间对 7 种铁碳合金平衡组织进行观察和分析,进一步建立成分和组织之间相互关系的概念,绘出所观察到的显微组织图,用箭头标明各显微组织,并在相应图下标出成分,确立组织和成分之间的关系。

金相显微分析技术

金相显微分析技术 作业指导书 一、前言 金属材料的性能与其组织形态之间存在着密切的联系。除化学成份(材料配比)、晶体结构(固有特性)外,材料在不同加工条件下可获得不同的组织,并对其在加工过程和使用过程中所表现的理化、机械性能,均可产生明显的影响。显微分析是研究金属内部组织的最重要方法之一,而金相显微镜是用于观察金属内部组织结构的重要光学仪器;因此,有必要通过金相显微分析手段来揭示材料的组织状态,并据此为材料的开发和加工提供参照。 二、适用范围 本制度适用于本公司金相室的管理。 三、职责 1.工程技术中心负责金相室的管理; 2.工程技术中心负责金相室内设备、仪器的使用、维护和保养。 四、操作要求 1.操作人员必须经过专业教育或经过培训后达到规定技能的专业人才。 2.初次操作前心须熟悉、了解各仪器的结构、性能;认真仔细阅读说明书,掌握其正确的使用、维护和保养方法。 五、操作规范 (一)试样的制备及观察、成像 用光学显微镜观察和研究金属内部组织,包括四个步骤:1)制备试样;2)采用适当的腐蚀手段显示试样表面的组织;3)用显微镜观察和研究试样表面的组织;4)截取有代表性的区域成像、保存。 1.试样的制备 1.1试样的截取:金相试样截取部位取决于检验的目的与要求,本公司所涉及到的试样有横向和纵向截取两种;横向试样垂直丝线轴线方向,主要研究表层

缺陷及夹杂(偏析);纵向试样平行于丝线轴线方向截取,主要研究夹杂的类型 以及晶粒拉长的长度; 1.2试样的镶嵌:尺寸过于细薄和软的试样需进行镶嵌; 1.3磨光与抛光:试样须经磨光、抛光呈镜面才能进行腐蚀; 2.试样的腐蚀 2.1腐蚀剂:抛光好的金相试样,要得到有关显微组织的信息,必须经过组织的显示,即腐蚀;不同材料采用的腐蚀剂不尽相同,本公司目前材料所用腐蚀 剂如表一; 表一金相腐蚀剂 代号配比浸蚀条件适用范围 TL-01 蒸馏水 100ml 盐酸 2~5ml 几秒~几分钟Sn Sn-Cd Sn-Fe Sn-Pb Sn-Sb-Cu TL-02 蒸馏水 100ml 盐酸 2~5ml 三氯化铁 10g 10s~30s 富锡轴承合金 Sn-Cu Sn-Bi TL-03 氢氟酸 5ml 硝酸 25ml 盐酸 75ml 3~15min 纯铝晶粒 TL-04 蒸馏水 100ml 氧化铬 20g 硫酸钠 1.5g 2~3min 大多数锌合金 TL-05 蒸馏水 78ml 氧化铬 18g 硫酸 4g ~60s 铸造Zn-Al-Cu合金 TL-06 蒸馏水 100ml 氢氧化钠 10g 1~5s 纯Zn Zn-Co Zn-Cu 低合金Zn TL-07 蒸馏水 80ml 硝酸 20ml 冰醋酸 15ml 40℃,13~14min(新配制) 铅焊料 Pb-Sn合金 2.2腐蚀方法:浸入法、擦拭法; 2.3腐蚀时间:腐蚀的合适时间是以试样的抛光面颜色的变化来判断,腐蚀 时光亮的表面失去光泽变成银灰色或灰黑色即可; 3.观察和分析:选择适当的放大倍数对试样进行观察和分析; 4.成像:选择有代表性的区域成像保存。 (二)仪器的使用、维护、保养

金相分析计算

计算题(初级) 计量技术知识 1.计算1.1× 2.233×0.3344的结果?(3分) 1.1× 2.233×0.3344 = 1.1×2.23×0.334 = 0.819 ≈ 0.82 2.计算104.29 6.15315.041 4.10 5.2???的结果? 104.29 6.15315.0414.105.2???=104.06.1515.0 4.10 5.2???= 640 154=0.240≈0.24 3.计算3.142+0.0059+25.18+13.2579的结果。(5分) 解:3.142+0.0059+25.18+13.2579 =3.142+0.006+25.18+13.258 =41.586 ≈41.59 金属学基础 1.体心立方晶胞和面心立方晶胞中原子数各是多少?(5分) 解:体心立方晶胞:N =1+8×81 =2 面心立方晶胞:N =6×21 +8×81 =4 答:体心立方晶胞原子数为2个,面心立方晶胞原子数为4个。 2.金相分析在生产、材料科学发展与材料研制中的作用有哪些?7分 答:(1)常规检测。常规的金相检测主要是控制材料和产品质量,包括原材料检验、生产过程中中间产品的抽查或在线检测以及最终产品的检测,以保证产品符合质量标准。 (2)失效分析。通过综合理化分析、找出失效原因,掌握失效机理,达到有效控制和解决非正常失效。 (3)组织与性能关系研究。金相检测对材料科学及新材料研制的重要作用,就是揭示材料内部组织和宏观性能之间的定性联系,揭示一些规律性,克服材料研制中的盲目性。 3.含碳量质量分数为0.40%的亚共析钢,试利用铁碳相图及杠杆原理计算先共析铁素体及珠光体含量。

金相分析软件介绍

金相分析软件介绍 检验类别模块名称功能说明 1、金属平均晶粒度【001】金属平均晶粒度测定… GB 6394-2002 自动评级【010】铸造铝铜合金晶粒度测定…GB 10852-89 【019】珠光体平均晶粒度测定…GB 6394-2002 【062】金属的平均晶粒度评级…ASTM E112 【074】黑白相面积及晶粒度评级…BW 2003-01 【149】彩色试样图像平均晶粒度测定…GB 6394-2002 辅助评级【304】钨、钼及其合金的烧结坯条、棒材晶粒度测试方法(面积法)自动评级【305】钨、钼及其合金的烧结坯条、棒材晶粒度测试方法(切割线法)自动评级【322】铜及铜合金_平均晶粒度测定方法…YS/T 347-2004 自动评级【328】彩色试样图像平均晶粒度测定方法2 2、非金属夹杂物显微评定【002】非金属夹杂物显微评定…GB 10561-89 自动评级【252】钢中非金属夹杂物含量的测定标准评级图显微检验法…GB/T 10561-2005/ISO 4967:1998 3、贵金属氧化亚铜金相检验【003】贵金属氧化亚铜金相检验…GB 3490-83 自动评级 4、脱碳层深度测定【004】脱碳层深度测定…GB 224-87 辅助评级 5、铁素体晶粒延伸度测定【005】铁素体晶粒延伸度测定…GB 4335-84 自动评级 6、工具钢大块碳化物评级【006】工具钢大块碳化物评级…GB 4462-84 自动评级 7、不锈钢相面积含量测定【007】不锈钢相面积含量测定…GB 6401-86 自动评级 8、灰铸铁金相【008】铸铁共晶团数量测定…GB 7216-87 自动评级【056】贝氏体含量测定…GB 7216-87 【058】石墨分布形状…GB 7216-87 比较评级 【059】石墨长度…GB 7216-87 辅助评级【065】珠光体片间距…GB 7216_87 【066】珠光体数量…GB 7216_87 自动评级【067】灰铸铁过冷石墨含量…SS 2002-01 【185】碳化物分布形状…GB 7216-87 比较评级 【186】碳化物数量…GB 7216-87 自动评级 【187】磷共晶类型…GB 7216-87 比较评级【188】磷共晶分布形状…GB 7216-87 【189】磷共晶数量…GB 7216-87 自动评级

金相实验报告(成分组织观察分析)

金相综合实验报告 实验名称: 碳钢成分-工艺-组织-性能综合分析实验专业: 材料科学与工程 班级: 材料11(1) 指导老师:席生岐高圆 小组组长: 仇程希 小组成员:齐慧媛李敏朱婧王艳姿闫士琪陈长龙黄忠鹤郭晓波丁江蒋经国庞小通林乐 二〇一四年四月三日

一、实验目的 1.了解碳钢热处理工艺操作; 2.学会使用洛氏硬度计测量材料的硬度性能值; 3.利用数码显微镜获取金相组织图像,掌握热处理后钢的金相组织分析方法; 4.探讨淬火温度、淬火冷却速度、回火温度对45和T12钢的组织和性能(硬度)的影响; 5.巩固课堂教学所学相关专业知识,体会材料的成分—工艺—组织—性能之间关系。 二、实验内容 1.进行45和T12钢试样退火、正火、淬火、回火热处理,工艺规范参考相关资料; 2.用洛氏硬度计测定试样热处理试样前后的硬度; 3.制备所给表中样品的金相试样,观察并获取其显微组织图像; 4.对照金相图谱,分析探讨本次实验可能得到的典型组织:片状珠光体、片状马氏体、板条状马氏体、回火马氏体、回火托氏体、回火索氏体等的金相特征。三、实验原理 热处理是一种很重要的金属加工工艺方法。热处理的主要目的是改变钢的性能,热处理工艺的特点是将钢加热到一定温度,经一定时间保温,然后以某种速度冷却下来,从而达到改变钢的性能的目的。研究非平衡热处理组织,主要是根据过冷奥氏体等温转变曲线来确定。 热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织结构发生了的一系列的变化。采用不同的热处理工艺,将会使钢得到不同的组织结构,从而获得所需要的性能。 钢的热处理基本工艺方法可分为退火、正火、淬火和回火等。 (一)碳钢热处理工艺 1.加热温度 亚共析钢加热温度一般为Ac3+30-50℃,过共析钢加热温度一般为Ac 1+30-50℃(淬火)或Acm+50-100℃(正火)。 淬火后回火温度有三种,即:低温回火(150-250℃)、中温回火(350-500℃)、

铜及铜合金的金相组织分析.

铜及铜合金的金相组织分析一)结晶过程的分析 结晶是以树枝状的方式生长,树枝状的结晶容易造成夹渣外,通常形成显微疏松。 取决于模壁的冷却速度外,还取决于合金成分、熔化与浇注温度等。 (二)宏观分析中常见缺陷 在浇注过程中往往产生缩孔、疏松、气孔、偏析等缺陷。 浇注温度和浇注方式的影响,铸锭、紫铜中容易出现气孔和皮下气孔。 由于合金元素的熔点、比重不一,熔炼工艺不当造成铸锭的成分偏析。 铸造时热应力可产生裂纹。 浇注工艺不当(浇注温度过低),浇注时金属液的中断会造成冷隔。 (三)微观分析 与铜相互作用的性质,杂质可分三类: 1. 溶解在固态铜中的元素(铝、铁、镍、锡、锌、银、金、呻、锑)。 2. 与铜形成脆性化合物的元素(硫、氧、磷等)。 3. 实际上不溶于固态铜中与铜形成易熔共晶的元素(铅、铋等)。 铋与铜形成共晶呈网状分布于铜的基体上,淡灰色。 铅含量很少时和铋一样呈网状分布于晶界,其颜色为黑色; 铅含量大时在铜的晶粒间界上呈单独的黑点。 暗场观察:铅点呈黑色,孔洞为亮点。 硫与氧的观察:均与铜形成化合物(Cu2S、Cu2O),又以共晶形式(Cu2S+ Cu、 Cu2O+ Cu)分布在铜的晶界上。 氯化高铁盐酸水溶液浸蚀:Cu2O变暗,Cu2S不浸蚀。 偏振光观察:Cu2O呈暗红色。 QJ 2337-92 铍青铜的金相试验方法 金相分析晶粒度检测金属显微组织分析,晶粒度分析,GB/T 6394-02 金属平均晶粒度测定方法 ASTM E 112-96(2004) 金属平均晶粒度测定方法

YS/T 347-2004 铜及铜合金平均晶粒度测定方法 GB/T13298-91 金属显微组织检验方法 GB/T 13299-91 钢的显微组织评定方法 GB/T 10561-2005 钢中非金属夹杂物含量的测定标准评级图显微检验法 ASTM E45-05 钢中非金属夹杂物含量测定方法 GB/T 224-87 钢的脱碳层深度测定方法 ASTM E407-07 金属及其合金的显微腐蚀标准方法 GB/T 226-91 钢的低倍组织及缺陷酸蚀检验方法 GB/T 1979-2001 结构钢低倍组织缺陷评级图 GB/T 5168-85 两相钛合金高低倍组织 GB/T 9441-1988 球墨铸铁金相检验 ASTM A 247-06 铸件中石墨微结构评定试验方法 GB/T 7216-87 灰铸铁金相 EN ISO 945:1994 石墨显微结构 GB/T 13320-07 钢质模锻件金相组织评级图及评定方法 CB 1196-88 船舶螺旋桨用铜合金相含量金相测定方法 JB/T 7946.1-1999 铸造铝合金金相 铸造铝硅合金变质 JB/T 7946.2-1999 铸造铝合金金相 铸造铝硅合金过烧 JB/T 7946.3-1999 铸造铝合金金相铸造铝 氧是铜中最常见的杂质,可产生氢脆。所以含氧量应严格规定。 1、金属平均晶粒度【001】金属平均晶粒度测定… GB 6394-2002 自动评级【010】铸造铝铜合金晶粒度测定…GB 10852-89

金相组织分析 可下载 可修改 优质文档

实验三碳钢的非平衡组织及常用金属材料 显微组织观察 实验目的概述实验内容实验方法实验报告思 考题 一、实验目的 1. 观察碳钢经不同热处理后的显微组织。 2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。 3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。 4. 了解上述材料的组织特征、性能特点及其主要应用。 TOP 二、概述 1. 碳钢热处理后的显微组织 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。在缓慢冷时(相当于炉冷,见图2-3中的V1)应得到100%的珠光体;当冷却速度增大到V2。时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至V4、V5,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体。其中与C曲线鼻尖相切的冷却速度(V4)称为淬火的临界冷却速度。 转变类型组织名称形成温度范围/℃显微组织特征硬度(HRC) 珠光体型相 变珠光体 (P) >650 在400~500X金相显微镜下可以观察到 铁索体和渗碳体的片层状组织 ~20 (HBl80~200)索氏体 (S) 600~650 在800一]000X以上的显微镜下才能分 清片层状特征,在低倍下片层模糊不清 25~35 屈氏体 (T) 550~600 用光学显微镜观察时呈黑色团状组织, 只有在电子显徽镜(5000~15000X)下 才能看出片层状 35—40 贝氏体型相 变上贝氏体 (B上) 350~550 在金相显微镜下呈暗灰色的羽毛状特 征 40—48 下贝氏体 (BT) 230~350在金相显微镜下呈黑色针叶状特征48~58

金相组织分析

实验三碳钢的非平衡组织及常用金属材料显微组织观察 实验目的概述实验内容实验方法实验报告思考题 一、实验目的 1. 观察碳钢经不同热处理后的显微组织。 2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。 3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。 4. 了解上述材料的组织特征、性能特点及其主要应用。 TOP 二、概述 1. 碳钢热处理后的显微组织 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。 在缓慢冷时(相当于炉冷,见图2-3中的V 1)应得到100%的珠光体;当冷却速度增大到V 2 。时(相当于空冷), 得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马 氏体;当冷却速度增大至V 4、V 5 ,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后, 瞬时转变成马氏体。其中与C曲线鼻尖相切的冷却速度(V 4 )称为淬火的临界冷却速度。

亚共析钢的C 曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,当奥氏体缓慢冷却时(相当于炉冷,如图2-3中V 1:),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即V 3>V 2>V ,时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。因此,V 1的组织为铁素体+珠光体;V 2的组织为铁素体+索氏体; V 3,的组织为铁素体+屈氏体。当冷却速度为V 4,时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3-3);当冷却速度V 5,超过临界冷却速度时,钢全部 转变为马氏体组织(如图3-6,3-7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 ① 珠光体(P ) 珠光体的组织形态主要有两种:片状珠光体和颗粒状珠光体。片状珠光体由一片片相互交错排列的铁素体和渗碳体所组成形成珠光体的先行条件是事先形成均匀的奥氏体,而后缓慢冷却在A1以下附近温度形成。片状珠光体似手指纹的层状结构,它是一层铁素体和一层渗碳体的机械混合物(见图3-1)。颗粒状珠光体是在铁素体的基体上分布着细小颗粒状的渗碳体的球化组织(见图3-2)。 图3-1片状珠光体500×4%硝酸酒精 图3-2 颗粒状珠光体500×4%硝酸酒精 ② 索氏体(s) 是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨(见图3-3)。 ③ 屈氏体(T) 也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3-4)。 图3-3 索氏体500×4%硝酸酒精 图3-4 屈氏体+马氏体500×4%硝酸酒精

金相检测国家标准总结

金相检测国家标准总结

————————————————————————————————作者:————————————————————————————————日期:

检验类别 1、金属平均晶粒度【001】金属平均晶粒度测定…GB 6394-2002 【010】铸造铝铜合金晶粒度测定…GB 10852-89 【019】珠光体平均晶粒度测定…GB 6394-2002 【062】金属的平均晶粒度评级…ASTM E112 【074】黑白相面积及晶粒度评级…BW 2003-01 【149】彩色试样图像平均晶粒度测定…GB 6394-2002 【304】钨、钼及其合金的烧结坯条、棒材晶粒度测试方法(面积法) 【305】钨、钼及其合金的烧结坯条、棒材晶粒度测试方法(切割线法) 【322】铜及铜合金_平均晶粒度测定方法…YS/T 347-2004 【328】彩色试样图像平均晶粒度测定方法2 2、非金属夹杂物显微评定【002】非金属夹杂物显微评定…GB 10561-89 【252】钢中非金属夹杂物含量的测定标准评级图显微检验法…GB/T 10561-2005/ISO 4967:1998 3、贵金属氧化亚铜金相检验【003】贵金属氧化亚铜金相检验…GB 3490-83 4、脱碳层深度测定【004】钢的脱碳层深度测定法…GB/T 224-2008 【130】脱、渗碳层深度测定…GB 224-87 5、铁素体晶粒延伸度测定【005】铁素体晶粒延伸度测定…GB 4335-84 6、工具钢大块碳化物评级【006】工具钢大块碳化物评级…GB 4462-84 7、不锈钢相面积含量测定【007】不锈钢相面积含量测定…GB 6401-86 8、灰铸铁金相【008】铸铁共晶团数量测定…GB 7216-87 【056】贝氏体含量测定…GB 7216-87 【058】石墨分布形状…GB 7216-87 【059】石墨长度…GB 7216-87 【065】珠光体片间距…GB 7216_87 【066】珠光体数量…GB 7216_87 【067】灰铸铁过冷石墨含量…SS 2002-01 【185】碳化物分布形状…GB 7216-87 【186】碳化物数量…GB 7216-87 【187】磷共晶类型…GB 7216-87 【188】磷共晶分布形状…GB 7216-87 【189】磷共晶数量…GB 7216-87 【190】基本组织特征…GB 7216-87 【235】石墨长度(自动分析)…GB 7216-87 【251】灰铸铁多图多模块评级:石墨分布&石墨长度&基体组织&共晶团 【255】灰铸铁金相_基本组织特征(灰度法) 【256】石墨分布&石墨长度&基体组织&共晶团(灰度法)…GB 7216-87 【316】灰铁金相等级图_石墨类型…SS 2007-6 【317】灰铁金相等级图_石墨尺寸…SS 2007-7 【318】灰铁金相等级图_铁素体的大约百分含量…SS 2007-8 【319】灰铁金相等级图_珠光体的大概间隔…SS 2007-9 【320】灰铁金相等级图_碳化物及磷化物共晶体大致含量…SS 2007-10 9、定量金相测定方法【009】定量金相测定方法…GB/T 15749-95 10、钢的显微组织评定方法

常见金相组织名词解释

常见金相组织名词解释——全面的特征描述,想不明白都难。 奥氏体 定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格 特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。 铁素体

定义:碳与合金元素溶解在a-Fe中的固溶体 特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 渗碳体

定义:碳与铁形成的一种化合物 特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。 ?在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状 ?过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状 ?铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 珠光体

定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物 特征:珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。 ?在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。 ?在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。 ?在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体 上贝氏体

金相检测国家标准汇总

金相检测国家标准汇总文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

检验类别 1、金属平均晶粒度【001】金属平均晶粒度测定… GB 6394-2002 【010】铸造铝铜合金晶粒度测定…GB 10852-89 【019】珠光体平均晶粒度测定…GB 6394-2002 【062】金属的平均晶粒度评级…ASTM E112 【074】黑白相面积及晶粒度评级…BW 2003-01 【149】彩色试样图像平均晶粒度测定…GB 6394-2002 【304】钨、钼及其合金的烧结坯条、棒材晶粒度测试方法(面积法) 【305】钨、钼及其合金的烧结坯条、棒材晶粒度测试方法(切割线法) 【322】铜及铜合金_平均晶粒度测定方法…YS/T 347-2004 【328】彩色试样图像平均晶粒度测定方法2 2、非金属夹杂物显微评定【002】非金属夹杂物显微评定…GB 10561-89 【252】钢中非金属夹杂物含量的测定标准评级图显微检验法…GB/T 10561-2005/ISO 4967:1998 3、贵金属氧化亚铜金相检验【003】贵金属氧化亚铜金相检验…GB 3490-83 4、脱碳层深度测定【004】钢的脱碳层深度测定法…GB/T 224-2008 【130】脱、渗碳层深度测定…GB 224-87

5、铁素体晶粒延伸度测定【005】铁素体晶粒延伸度测定…GB 4335-84 6、工具钢大块碳化物评级【006】工具钢大块碳化物评级…GB 4462-84 7、不锈钢相面积含量测定【007】不锈钢相面积含量测定…GB 6401-86 8、灰铸铁金相【008】铸铁共晶团数量测定…GB 7216-87 【056】贝氏体含量测定…GB 7216-87 【058】石墨分布形状…GB 7216-87 【059】石墨长度…GB 7216-87 【065】珠光体片间距…GB 7216_87 【066】珠光体数量…GB 7216_87 【067】灰铸铁过冷石墨含量…SS 2002-01 【185】碳化物分布形状…GB 7216-87 【186】碳化物数量…GB 7216-87 【187】磷共晶类型…GB 7216-87 【188】磷共晶分布形状…GB 7216-87 【189】磷共晶数量…GB 7216-87 【190】基本组织特征…GB 7216-87 【235】石墨长度(自动分析)…GB 7216-87 【251】灰铸铁多图多模块评级:石墨分布&石墨长度&基体组织&共晶团【255】灰铸铁金相_基本组织特征(灰度法)

常见金相组织要点

1 工业纯铁退火铁素体白色等轴多边形晶粒为铁素体,深色线为晶界。 2 20钢退火低碳钢平衡组织白色晶粒为铁素体,深色块状为珠光体,高倍可 见珠光体中的层状结构。 3 45钢退火中碳钢平衡组织同上,但珠光体增多。 4 65钢退火高碳钢平衡组织占大部分的深色组织为珠光体,白色为铁素体。 5 T8钢退火共析钢平衡组织组织全部为层状珠光体,它是铁素体和渗碳体的 共析组织。 6 T12钢退火过共析钢平衡组织基体为层状珠光体,晶界上的白色为二次渗碳 体。 7 亚共晶白口铁铸态变态莱氏体+珠光体基体为黑白相间分布的变态莱氏 体,黑色树枝状为初晶奥氏体转变成的珠光体。 8 共晶白口铁铸态变态莱氏体白色为渗碳体(包括共晶渗碳体和二次渗碳 体),黑色圆粒及条状为珠光体。 9 过共晶白口铁铸态变态莱氏体+渗碳体基体为黑白相间分布的变态莱氏 体,白色板条状为一渗碳体 10 T8钢正火索氏体索氏体是细珠光体,片层间距小 11 T8钢快冷正火屈氏体屈氏体为极细珠光体,光学显微镜下难以分辨其层状 结构,灰白色块状、针状为淬火马氏体。 12 65Mn 等温淬火上贝氏体羽毛球为上贝氏体,基体为索氏体或淬火马氏体 和残余奥氏体。 13 65Mn 等温淬火下贝氏体黑色针状为下贝氏体,白色基体为淬火马氏体和 残余奥氏体。 14 20钢淬火低碳马氏体成束的板条状为低碳马氏体 15 T12 淬火高碳马氏体深色针片状组织为马氏体,白色为残余奥氏体 16 45钢淬火中碳马氏体黑色针叶状互成120度夹角的针状马氏体,其余为板 条状马氏体 17 T10钢球化退火球化体基体为铁素体,白色颗粒状为渗碳体。 18 T12 正火正火组织白色呈针状、细网络状分布的为渗碳体,其余为片层状 珠光体。 19 15钢渗碳后退火渗碳组织表层为过共析组织(网状渗碳体+珠光体),由表 向内含碳量逐渐减少,铁素体增多。 20 45钢渗硼渗硼组织表层为硼化物层(呈锯齿状)和过渡层,心部为45钢基 体组织。 21 40Cr 软氮化软氮化组织表层为白亮色的氮化合物和含氮的扩散层,心部为 40Cr基体组织 22 高速钢铸态共晶莱氏体+屈氏体+马氏体骨骼状组织为共晶莱氏体,基体

铝合金金相组织观察

铝合金金相组织观察 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

北京工业大学 实验报告 模块(课程)名称:材料工程基础综合实验 实验名称:铝合金金相组织观察 学号:08090206 姓名:左迎雪

一、实验目的 ⒈了解铸造、固溶处理、轧制及时效处理4种加工条件对铝合金的组织特征的影响; ⒉分析不同材料加工工艺对铝合金力学性能的影响; 3. 深入了解材料四要素之间的内在联系。 二、实验内容 1. 铝合金铸造、固溶处理、轧制及时效处理后金相组织的观察; 2. 不同工艺处理后铝合金静态拉伸实验; 3. 实验报告撰写。 三、实验过程 1. 制样 每一位同学根据名单选取相应工艺的样品,根据《光学技术实验平台》中对于金相样品制备的学习,按照金相样品制备的一般要求进行。磨光过程经历200、400、600、800等四种牌号的水砂纸,然后抛光、腐蚀。 制样的要点: A 缩短在砂纸上停留的时间(包括全过程及每次接触) B 挡水盘距离盘面1cm,请节约用水 C 样品抛光前必须在粗砂纸上修出倒角 D 抛光膏的使用原则是微量、多次;注水少量、恰当 E 抛光时,用力避免过大,应当适中,可以任意方向抛光 2. 组织观察

3. 结果分析 (1)请同学写出自己制备样品(铸造、固溶、轧制或轧制时效处理)的简要生产工艺过程; (2)观察图片,分析铸造、固溶处理、轧制、轧制时效工艺处理后,形成的组织的特点、原因(注意放大倍数的影响); (3)分析自己制备样品的质量。 图中所示为铝合金铸态组织,主要由α-Al固溶体 与晶界上和枝晶间的低熔点共晶组成。晶粒基本 呈等轴状,在晶界处和晶内均分布有大量的第二 相颗粒,并且在晶界上还能看到存在一些显微疏松组织,可能是由于铸造过程中的收缩或气体含量过高造成的。此外, 由于铸造过程中的过冷度很大,成分偏析十分严重,这种偏析在会在晶 界处富铸造组织50× 集,越靠近晶界附近合金元素含量越高区域偏析越严重。晶粒细小。 图中所示为铝合金固溶处理组织,可以明显看出合 金晶粒粗化,再结晶组织增多,粗大的第二相组织 基本溶解。同时成分偏析得到一定消除,组织趋于 均匀。

常用金相组织图片总结

一汽车钢板弹簧金相组织分级图(×500) 图1 回火屈氏体 (1级) 图 2 回火屈氏体+少量贝氏体(2级) 图3 回火屈氏体+少量铁素体 (3级) 图4 回火屈氏体+少量贝氏体+少量铁素体(4级) 图5 回火屈氏体+铁素体+屈氏体(5级) 二马氏体组织 a板条状马氏体 B针状马氏体 c片状马氏体加残余奥氏体

三莱氏体 四粒状贝氏体 五索氏体

汽车钢板弹簧金相组织及缺陷组织——黎方英 1、原材料金相组织及缺陷组织分析 材料:60Si2Mn 钢.处理情况:热轧状原材料. 组织分析:图1 a) ,金相组织为铁素体和片层珠光体.正常原材料组织. 图1 b) ,弹簧扁钢表面的脱碳. 图1 c) ,d) ,金相组织为带状铁素体和珠光体. 严重带状组织一般热处理工艺难以消除. 图1 e) ,弹簧扁钢表面的划痕,原材料表面缺陷. 图1 f) ,弹簧扁钢表面的碎裂,原材料表面缺陷的废品. a)500× b)100× c)100× d)100× e)100× f)100× 图1 原材料金相组织及缺陷组织分析

2、60Si2Mn 钢板弹簧正常淬火和回火组织分析: 处理情况:图2 a) ,860 ℃加热保温后油冷淬火. 图2b) ,860 ℃加热保温后油冷淬 火,460 ℃回火. 组织分析:图2 a) ,金相组织为中等针状淬火马氏体.淬火获得马氏体,是达到强韧化的重要基础. 图2 b) ,金相组织为中等回火屈氏体. a)500× b)500× 图2 汽车钢板弹簧正常淬火组织和回火组织分析 3、淬火加热温度低形成的缺陷组织如图3 材料:50CrVA 钢. 侵蚀剂:4 %硝酸酒精溶液. 处理情况:加热保温后油冷淬火,460 ℃回火. 组织分析:图3 a) ,金相组织为回火屈氏体,未溶解的铁素体和未溶解的碳化物. 图3 b) ,金相组织为回火屈氏体,未溶解的铁素体和片状珠光体. a)500× b)500× 图3 淬火加热温度低形成的缺陷组织 4、淬火加热温度高形成的缺陷组织如图4. 材料:图4 a) 、图4 c) ,60Si2Mn 钢;图4 b) ,50CrVA 钢. 处理情况:图4 b) ,加热保温后油冷淬火;图4 a) 、图4c) ,加热保温后油冷淬火,460 ℃回火. 组织分析:图4 a) ,金相组织为回火屈氏体和上贝氏体,最大晶粒度超过1 级. 图4 b) ,金相组织为淬火马氏体和残余奥氏体. 图4 c) ,金相组织为回火屈氏体,表层有一层全脱碳铁素

金相组织分析原理

金相组织分析原理 金相组织分析原理: 采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。 通俗的说就是热处理后会得到不同的组织,每种组织有自己的形貌特征。每种组织的耐腐蚀性也有差异,因此通过制样,腐蚀,微观组织会出现不同的衬度或者说灰度,也就是说腐蚀后的金相试样微观表面是坑坑洼洼的,很多沟壑。这样我们就能在金相显微镜下区分和识别各种组织了。 金相组织分析方式: 1.原材料检验:对原材料的冶金质量情况如偏析、非金属夹杂物分布类型与级别检查;对铸造材料的铸造疏松、气孔、夹渣组织均匀性检查;对锻造件的表面脱碳、过热、过烧、裂纹、变形等情况检查。 2.生产过程中的质量控制:金相分析可以提供调整工序及修改工艺参数的根据,指导生产,如热处理淬火加热温度、保温时问、冷却速度等是否合适(正确);化学表面热处理工艺参数的控制;锻造的起始和终锻温度是否合适等。 3.产品质量检验:有些机械零件或产品除要求机械性能、物理性能指标外,有的还要求显微组织参数,作为质量评定的技术指标之一。 4.失效分析:金相组织分析方法在机械失效分析方面广泛应用,对一些常见的弊病鉴定很方便。如机件表面脱碳、显微裂纹的形貌及分布特征、化学热处理缺陷、热处理后的不正常组织、晶界脆性相析出等,这些金相分析的结果常作为故障分析的根据。 金相组织分析的意义: 金相分析是金属材料试验研究的重要手段之一,采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。将计算机应用于图像处理,具有精度高、速度快等优点,可以大大提高工作效率。 计算机定量金相分析正逐渐成为人们分析研究各种材料,建立材料的显微组织与各种性能间定量关系,研究材料组织转变动力学等的有力工具。中国船舶重工集团公司第七二五研究所采用计算机图像分析系统可以很方便地测出特征物的面积百分数、平均尺寸、平均间距、长宽比等各种参数,然后根据这些参数来确定特征物的三维空间形态、数量、大小及分布,并与材料的机械性能建立内在联系,为更科学地评价材料、合理地使用材料提供可靠的数据。

相关主题
文本预览
相关文档 最新文档