当前位置:文档之家› DDR3_菊花链连接

DDR3_菊花链连接

DDR3_菊花链连接
DDR3_菊花链连接

锂电池管理系统(BMS)项目商业计划书(模板)

某锂电池管理系统(BMS)项目 商业计划书 项目名称:某锂电池管理系统(BMS)项目商业计划书

【引言】 《某锂电池管理系统(BMS)项目商业计划书》充分地展示了公司的基本情况、产品与技术、行业及市场分析、竞争对手分析、商业模式、运营策略、公司战略、公司管理、融资计划、财务预测与分析、风险分析及控制等内容。该商业计划书无论是用于寻找战略合作伙伴、寻求风险投资资金或其他任何投资信贷来源均能够做到内容完整、意愿真诚、基于事实、结构清晰、通俗易懂。该商业计划书准确把握行业市场现状和发展趋势、项目商业模式、项目运营策略、公司战略规划、财务预测等基本内容,深度分析了项目的竞争优势、盈利能力、生存能力、发展潜力等,充分体现项目的投资价值。 【项目简介】 某锂电池管理系统(BMS)项目,项目提供动力锂电池系统全面管理解决方案,目前已形成新能源汽车动力电池管理系统和传统燃油汽车启停电源管理系统两大系列产品。拥有绝缘检测技术、继电器控制及诊断技术、均衡技术、SOC算法技术、SOP算法技术、其他算法技术等核心技术,本项目本轮融资1000万元,项目预计于2015年6月开始实施。

【市场行业分析】 根据中国汽车工业协会、工信部机动车整车出厂合格证统计数据分析,新能源汽车的产销量从2014年开始便体现出快速增长的势头。据中国汽车工业协会统计,2014年我国新能源汽车产销量分别为7.85万辆和7.48万辆,分别同比增长3.5倍和3.2倍;2015年6月,我国新能源汽车生产2.50万辆,同比增长3倍。其中,纯电动乘用车生产1.05万辆,同比增长2倍,插电式混合动力乘用车生产6663辆,同比增长7倍;纯电动商用车生产6218辆,同比增长5倍,插电式混合动力商用车生产1645辆,同比增长148%。 2012年全球电池管理系统(BMS)市场产值成长逾10%,2013年至2015年成长幅度将大幅跃升至25-35%。现阶段不论是整车厂、电池厂、还是相关车电零组件厂均投入电池管理系统(BMS)研发,以求掌握新能源汽车产业的关键技术,由于车厂是电池管理系统的使用

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

智能型锂电池管理系统(BMS)

智能型锂电池管理系统(BMS) 产品简介 【系统功能与技术参数】 晖谱智能型电池管理系统(BMS),用于检测所有电池的电压、电池的环境温度、电池组总电流、电池的无损均衡控制、充电机的管理及各种告警信息的输出。特性功能如下: 1.自主研发的电池主动无损均衡专利技术 电池主动无损均衡模块与每个单体电芯之间均有连线,任何工作或静止状态均在对电池组进行主动均衡。均衡方式是通过一个均衡电源对单只电芯进行补充电,当某串联电池组中某一只单体电芯出现不平衡时对其进行单独充电,充电电流可达到5A,使其电压保持和其它电芯一致,从而弥补了电芯的不一致性缺陷,延长了电池组的使用时间和电芯的使用寿命,使电池组的能源利用率达到最优化。 2.模块化设计 整个系统采用了完全的模块化设计,每个模块管理16只电池和1路温度,且与主控制器间通过RS485进行连接。每个模块管理的电池数量可以从1~N(N≤16)只灵活设置,接线方式采用N+1根;温度可根据需要设置成有或无。 3.触摸屏显示终端 中央主控制器与显示终端模块共同构成了控制与人机交互系统。显示终端使了带触摸按键的超大真彩色LCD屏,包括中文和英文两种操作菜单。实时显示和查看电池总电压、电池总电流、储备能量、单体电池最高电压、单体电池最低电压、电池组最高温度,电池工作的环境温度,均衡状态等。 4.报警功能 具有单只电芯低电压和总电池组低电压报警延时功能,客户可以根据自己的需求,在显示界面中选择0S~20S间的任意时间报警或亮灯。 5.完善的告警处理机制 在任何界面下告警信息都能以弹出式进行滚动显示。同时,还可以进入告警信息查询界面进行详细查询处理。 6.管理系统的设置 电池电压上限、下限报警设置,温度上限报警设置,电流上限报警设置,电压互差最大上限报警设置,SOC初始值设置,额定容量,电池自放电系数、充电机控制等。 7.超大的历史数据信息保存空间 自动按时间保存系统中出现的各类告警信息,包括电池的均衡记录。 8.外接信息输出 系统对外提供工业的CANBUS和RS485接口,同时向外提供各类告警信息的开关信号输出。 9.软件应用 根据需要整个系统可以提供PC管理软件,可以将管理系统的各类数据信息上载到电脑,进行报表的生成、图表的打印等。 10.参数标准 电压检测精度:0.5% 电流检测精度:1% 能量估算精度:5%

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

我们对动力锂电池组的管理系统

第12届中国北京国际科技产业博览会节能、环保、新能源汽车技术及配套产品推介会报告稿 我们对动力锂电池组的管理系统(BMS) 的认识与看法 公司:深圳市安泰佳科技有限公司 作者:李金印 日期:2009年5月20日

我们对动力锂电池组的管理系统(BMS)认识与看法 (“科博会”报告稿) 一、概述 众所周知,锂电池作动力使用需十几节至几百节的大容量电池串联,其中一节电池若有问题,因安全原因整组电池则不能继续工作,故没有一个功能很强的管理系统是无法推广使用的。但因种种原因,目前国内外市场上尚未见到能达到使用要求满意的产品,故影响锂电池作为动力能源的推广应用。 2006年春我们与国外某知名厂家作该产品的实际演示测试对比,结果该公司的产品远无法达到原订的使用指标要求,在事后交谈中他们也坦诚其无耐。 锂电池虽在特殊条件下有燃烧、爆炸不安全特性存在,但循环使用寿命应是为优的,可是目前国内影响其使用推广的关键问题是使用寿命太短,有的说“低于普通铅酸电池”。如果真是这样,锂电池即危险又短命且价格贵,那还有什么推广价值。我们认为此状况绝非仅是锂电池质量原因,而管理系统功能不完善、不准确及充电技术和充电设备不适应、不配套是关键因素,这也说明管理系统的重要性。我们认为蓄电池中锂电池在目前是最有推广应用价值的,所以,自1999年至今我们投入了大量资金与人力,专门对动力锂电池的管理系统进行研究开发,先后用国内七家多批次电池做了大量的实验。现将我们对管理系统BMS的认识作为意见提供讨论与参考。 二、管理系统BMS应能对每节电池的特征参数进行测算 这项工作确实是困难和复杂的,但应该去做,不了解怎能“管理”。所以,国外对蓄电池机理研究的人至今还很多,他们也给出了一些非常复杂而又不完全相同的数学模型,但采用“类比原理”都可简化成大家熟知的相同“等效”电路

电动汽车动力电池及管理系统试卷A

广东文理职业学院刘鹏2018-2019学年度第一学期 期末考试试题(A卷) (考试时间: 90 分钟) 考试科目动力电池及管理适用班级:新能源汽车一班 一、单项选择题(每小题2分,共计30分) (题目正文:宋体,五号,行距20磅) 1. 燃料电池采用的燃料是()。 A.汽油; B.柴油; C.乙醇; D.氢气 2.燃料电池汽车的效率能达到以上()。 A.30%; B.40%; C.50%; D. 60% 3.在最适合汽车使用的燃料电池()。 A.质子交换膜燃料电池; B.磷酸燃料电池; C.熔融碳酸盐燃料电池对; D.固态氧化物燃料电池。 4.世界上第一家实现商品化销售的燃料电池汽车生产厂家是()。 A.丰田; B.通用; C.奔驰; D.本田。 5.蓄电池组中,标称电压为12V的单体电池端电压压差应小于()mV。 A.100; B.120; C.150; D.200 6.在25°C下,蓄电池组由32节单体蓄电池组成(单体标称电压为12V),则其浮充电电压应约为() A. 384V; B. 432V; C. 450V; D. 472V 7.在蓄电池管理系统中,由()把整流电压变成交流电压。 A.整流器; B.逆变器; C.充电器 8.在蓄电池管理系统中,,由()把直流电压变成交流电压。 A.整流器; B.逆变器; C.充电器; D.交流调压器 9. 15.2020年中国电池制造的能量密度要达到()。 A. 300wh/kg;A. 400wh/kg;A. 500wh/kg 10.用电流表测量电流,应将电流表和被测电流的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 11.用电压表测量电压,应将电压表和被测电压的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 12.万用表使用完毕后,应将选择开关放在()。 A.电阻档; B.交流电压最高档; C.直流电流档。 13.三相桥式整流电路,在交流电的一个周期内,每个整流元件的导通角为()。 A. 180度; B. 120度; C. 60度 14.单相整流电路中,二极承受的反向电压的最大值出现在二极管()。 A.截止时; B.由截止转导通时; C.导通时; D.由导通转截止时 15.燃料电池汽车的效率能达到以上()。 A. 30%; B. 40%; C. 50%; D. 60%。 系 别 : 专 业 班 别 : 姓 名 : 学 号 : … … … … … … ○ … … … 密 … … … ○ … … … … 封 … … ○ … … … … 线 … … ○ … … … … … … ○ … …

PCB布线拓扑结构以其应用场合

PCB布线拓扑结构以其应用场合 常见的拓扑结构及各种互连拓扑的特点和适用场合。网络连接究竟应该采用哪种拓扑形式,在很大程度上是由电路的要求决定的,然后才是布局、布线的方便性。 (1)点到点拓扑最简单的拓扑结构,单一驱动器、单一接收器。 点到点拓扑这种拓扑是最简单的,布局布线上都很容易实现,易于实现阻抗控制。普通低速网络是否能采用用点到点拓扑,完全看电路的需求;而高速和超高速的互连,很多情况下必需要求点到点的互连,如高速串行信号的互连,以最小化阻抗不连续带来的影响;精确定时的时钟信号也不允许有分叉存在,因为分叉带来的阻抗不连续会引起附加抖动。可在驱动端串小阻值电阻或并联一个阻值为Zo的电阻在终端。 (2)紧凑树形拓扑用最短的互连传输线将驱动器和接收器一个一个串起来,从主驱动器开始,首先用传输线连接到与该主驱动器最近的一个缓冲器上,然后在剩下的未连接缓冲器中寻找与己经连接的缓冲器最近的一个缓冲器,并将两者用传输线连接起来,依次类推,直至完成所有的缓冲器连接。 紧凑树形拓扑这种拓扑总的互连线长度是最短的,只适用于低速、不用阻抗控制的信号,比如在没有电源层的情况下,电源的布线就可以采用这种拓扑。 (3)菊花链拓扑用最短的互连传输线把所有的缓冲器连接起来,但是每个缓冲器最多只能通过两段传输线连接到另外的两个缓冲器,从主驱动器开始,然后通过传输线连接到与主驱动器最近的缓冲器上,然后查找与该缓冲器最近的未连接缓冲器,将两者用传输线连接起来,然后再以刚加入连接的缓冲器为基准,再次查找最近的未连接缓冲器进行连接,依此类推,直至完成所有的缓冲器连接,连接完成后,从主驱动器开始,所有的缓冲器连接成链状。

fly-by,不可不知的两大布线细节

FLY-BY,你不可不知的两大布线细节 原创:一博科技,转载请注明出处。 作者听过这样一种说法,DDR的历史,就是一个SI技术变革的过程,说白了就是拓扑与端接之争。DDR2使用的是T拓扑,发展到DDR3,引入了全新的菊花链—fly-by结构。使用fly-by并不完全因为现在的线路板越来越高密,布局空间越来越受限,主要原因还是DDR3信号传输速率变得更快了,T 型拓扑已经不能满足高速传输的要求。 一博科技前期的文章中提到了fly-by,并且早期的文章对fly-by结构也做过一些介绍, 例如:不是所有的DDR都可以使用fly-by;为提高负载的信号质量,fly-by结构可以进行容性负载补偿… Stub长度决定信号质量 我们经常见到的使用fly-by结构将内存颗粒串联起来的实例如图1和图2 图1 图2 图1中,stub长度约为200mil,图2stub约为20mil。这两种做法哪种信号质量更好些呢?一博科技为此专门做仿真验证了一下。建立如下图3拓扑结构。

图3 图3各段线阻抗都取50ohm。只改变stub长度,四个接收端波形如下图4所示: 图4 从波形可以看出,随着stub长度的增加,波形的过冲现象越来越严重。为更好的评估stub变长对信号带来的影响,我们将近端和远端接收端的眼图对比如下: 图5 由上图5可知,随着Stub变长,眼高逐渐变小,这再次验证了:stub越长信号质量越差。

阻抗补偿有利于改善信号质量 设计过DIMM条的小伙伴们都会注意这样一个细节,就是主网络走线要比到各个分支走线粗,如下图 图6 这么做真的可以改善信号质量?空口无凭,我们还是用仿真数据来说话。搭建如下拓扑结构,只是改变主线段阻抗(最初阻抗都是50ohm),其他变量不变。 主线段阻抗分别取40ohm与50ohm,近端和最远端负载眼图对比如下图7,图7中蓝色眼图代表的是主干线阻抗为40ohm情况,紫色眼图代表的是主干线阻抗是50ohm的情况。 图7 由上图可知,蓝色眼图比紫色眼图张的更开,也就意味着主线段阻抗偏低信号质量会更好。降低主线段阻抗或者提高后面分支的阻抗的确可以改善信号质量,这个方法业内把它叫做容性负载补偿。特别是那种负载很多的结构,一条链路上串了8片或者10片DDR颗粒的,做一下容性负载补偿对提升信号质量有很大的帮助。

智能锂电池充电管理方案

智能锂电池充电管理方案(1) 2012-07-30 21:59:37 来源:21ic 关键字:智能锂电池充电管理 1 引言 锂离子电池是上世纪九十年代发展起来的一种新型二次电池。由于锂离子电池具有能量密度高和循环寿命长等一系列的优点,因此很快在便携式电子设备中获得广泛应用,也获得了锂电池生产商的青睐。 锂离子电池主要由正极活性材料,易燃有机电解液和碳负极等构成。因此,锂离子电池的安全性主要是由这些组件间的化学反应引起。 在使用中,根据锂电池的结构特性,最高充电终止电压应低于4.2 V,绝对不能过充,否则会因正极锂离子拿走太多,产生危险。其充放电要求较高,一般应采用专门的恒流、恒压充电器进行充电。通常恒流充电至设定值后转入恒压充电,当恒压充电至0.1 A 以下时,应停止充电。 锂电池的放电由于内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命会缩短,因此在放电时需要严格控制放电终止电压。 因此,设计一套高精度锂离子充电管理系统对于锂离子电池应用是至关重要的。本文介绍的智能化锂电池充电系统是专门为锂电池设计的高端技术解决方案。该系统适用于锂离子/镍氢/铅酸蓄电池单体及整组进行实时监控、电池均衡、充放电电压、温度监测等,采用了电压均衡控制、超温保护等智能化技术,是功能强大、技术指标完善的动力电池充电管理系统。 2 系统构成与设计 充电系统主要由n 个(可扩充)充电模块和上位PC 机监控软件组成。支持充电过程编程,可按恒流充电、恒压充电等多种工况进行相应组合设置工作步骤,除了具有硬件过压过流保护,还允许用户定义每个通道的过电压、过电流等参数值,具备数据采集、存储、通讯及分析功能,具有掉电保护功能,不丢失数据。另外还配置锂电池管理系统,它主要由充电机、主控单元、数采单元和人机界面组成,硬件组成框图如图1 所示。

动力锂电池综合管理系统―机械科学研究总院.

国际石油价格一直在高位运行, (2008年5月16日每桶超过127美元; 美国高盛预计下半年油价将突破140美元)生态环境的日益恶化,推动了包括电动汽车在内的节能与新能源汽车的发展。 发展电动汽车的首要技术关键,仍是高性能新型动力电池系统。

新型动力锂电池的优良性能已经初步展现,并得到电动汽车产业界的高度关注。 在国家重点支持和市场双重推动下,动力锂电池关键技术和产业发展都取得了重大进展。 单体动力锂电池的性能,已经基本能够满足设计要求。 新型动力锂电池的 高功率密度、高能量密度,和长使用寿命等显著优势, 给纯电动汽车、Plug-IN HEV、发展注入了新的活力。 当前,动力锂电池成组应用技术和设备研究严重滞后的问题已经突显出来。 动力锂电池管理系统研究已经引起广泛关注。 清楚认识当前研究工作存在的主要问题、对正确把握研究方向,制定科学的研究目标致关重要。 当前,用户对新型动力锂电池

安全性、经济性、均衡性 的忧虑,是动力锂电池和电动汽车产业的发展急需解决的首要技术关键。 由此,提出了动力电池管理系统关键技术研究课题。 主要问题 对动力锂电池的安全性、经济性和均衡性的认识,是正确制定研究方向和目标的基础。 下面就普遍关注的动力锂电池系统的安全性、经济性、均衡性问题发表一点看法,供参考; 并简要介绍当前动力锂电池综合管理系统研究的最新进展。 要 点 一、动力锂电池组的安全性、经济性、和均衡性问题; 二、电动汽车动力锂电池综合管理系统研究的最新进展。

单体动力锂电池的 安全性和主要技术指标 已经基本能够满足设计要求。 动力锂电池成组后 安全性和使用寿命大幅下降主要是问题所致。 安全性问题 试验证明,当充电电压超过6V , 电池外壳已发生破裂。 400AH 锂电池组实际状态(均衡性良好)51%的电池单体有过充电的危险

JTAG菊花链连接的多器件仿真

广州致远电子股份有限公司 JTAG 菊花链连接的多器件仿真 仿真接口

修订历史

目录 1. 菊花链介绍 (1) 2. JATG菊花链结构简介 (2) 3. TKScope仿真器支持JTAG菊花链连接的多器件仿真 (3)

1. 菊花链介绍 “菊花链”一词最基本的概念指的是一种由许多菊花串接在一起形成的花环,这通常是作为小孩的游戏,菊花链一词还广泛的用来表示一些社会“链”和技术“链”。 图 1 由许多菊花串接在一起形成的花环 在电子电器工程中菊花链代表一种配线方案,例如设备A和设备B用电缆相连,设备B 再用电缆和设备C相连,设备C用电缆和设备D相连,在这种连接方法中不会形成网状的拓扑结构,只有相邻的设备之间才能直接通信。如USB总线就是这种“菊花链”方式连接各USB设备。 对于一个复杂的嵌入式系统,特别是目前多媒体处理、浮点运算、低功耗处理集一身的移动设备来说,单个ARM器件往往不能满足实际的要求,可能需要多个ARM器件的协调配合才能完成用户设定的任务。这时就需要用到这种技术,对多核处理器进行协调配合。

2. JATG菊花链结构简介 多个ARM器件的调试就需要将硬件连接成“菊花链”的形式,在JATG设计规范中是支持“菊花链”连接的,这样只需要一个JTAG接口,就能够对菊花链上的任意ARM器件进行仿真调试。 如图2,系统中菊花链上存在两个ARM器件,一个是ARM7TDMI内核,另一个是Cortex-M3内核。此时,连接JTAG接口TDO的器件为菊花链上的第一个器件,连接JTAG 接口TDI的器件为菊花链上的最后一个器件。前一个器件的TDI和后一个器件的TDO连接在一起,菊花链上所有ARM器件的TMS、TCK信号连接在一起,这样一个JTAG菊花链的物理连接就完成了。 图 2 菊花链硬件连接

基于智能化锂电池充电管理系统的研究

摘要 本文主要介绍的智能化锂电池充电系统是专门为锂电池设计的高端技术解决方案。该系统适用于锂离子、镍氢、铅酸蓄电池单体及整组进行实时监控、电池均衡、充放电电压、温度监测等,采用了电压均衡控制、超温保护等智能化技术,是功能强大、技术指标完善的动力电池充电管理系统[ 1]。 关键词:智能化锂电池恒流恒压充电系统SMBus1.1 引言 随着社会经济的迅速发展,移动电话、数码相机、笔记本电脑等便携式电子产品的普及,消费者对电池电能要求日渐提高;人们希望在获得大容量电能的同时, 能够尽量减轻重量, 提高整个电源系统的使用效率和寿命。锂电池作为上世纪九十年代发展起来的一种新型电池[ 2], 因具有能量密度高、性能稳定、安全可靠和循环寿命长等一系列的优点,很快在便携式电子设备中获得广泛应用,更获得了广大消费者的青睐。由此可见,设计一套高精度锂电池充电管理系统对于锂电池应用至关重要。 1 锂电池充放电原理 锂电池主要由正极活性材料、易燃有机电解液和碳负极等组件构成[ 3]。因此,锂电池的安全性能主要是由这些组件间的化学反应所决定的。 根据锂电池的结构特性,锂电池的最高充电电压应低于4.2 V[ 4],不能过充,否则会因正极锂离子拿走太多,发生危险。其充放电要求较高,一般采用专门的恒流恒压充电器进行充电。通常恒流充电至设定值后转入恒压充电状态,当恒压充电至0.1 A以下时[ 5],应立即停止充电。 锂电池的放电由于内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极[ 6],以保证下次充电时锂离子能够畅通地嵌入通道。否则电池寿命会缩短,因此在放电时需要严格控制放电终止电压。

动力锂离子电池智能管理系统数据采集单元设计_张华锋

Vol.33 No.4 2013.4 船电技术|应用研究 37 动力锂离子电池智能管理系统 数据采集单元设计 张华锋1,廖菲2,管道安1,彭元亭1 (1. 武汉船用电力推进装置研究所,武汉 430064 ;2. 武汉电信网络监控部, 武汉 430030) 摘 要:分析了锂电池各运行参数的特点,设计了一种用于锂电池智能管理系统的数据采集方法,通过改进的测量方法实时测量锂电池组的单体电池电压、温度及充放电电流,并通过CAN 总线传至上层节点,为锂电池的智能管理提供现场数据。着重介绍了该数采单元的设计原理以及软硬件设计。 关键词:锂离子电池 数据采集 CAN 总线 智能管理系统 中图分类号:TP302.1 文献标识码:A 文章编号:1003-4862(2013)04-0037-03 The Design of Data Acquisition System for SMBS Based on CAN Bus Zhang Huafeng 1 , Liao Fei 2 , Guan Dao’an 1,Peng Yuanting 1 (1.Wuhan Institute of Marine Electric Propulsion, CSIC , Wuhan 430064 , China; 2. Chinatelecom Wuhan Branch, Wuhan 430030, China ) Abstract: This paper analyzes the characteristics of working parameters for lithium ion batteries, and designs a kind of data acquisition method for SMBS. It provides field data acquisition for the intelligent management system of lithium ion batteries by measuring the voltage and temperature of single cell, charge current and discharge current in real time, and transmits data upward with CAN bus. It introduces the principles, hardware and software design of data acquisition in detail . Keywords: lithium ion battery; data acquisition; CAN Bus; intelligent management system 1 引言 锂离子电池由于具有电压高、能量密度高、无 “记忆效应”、放电曲线平缓,绿色环保等优点逐步 在动力电池方面获得应用。锂电池过充、过放电、短路、温度、单体电压不一致性等都会对使用效率、使用寿命及使用安全产生影响。因此,获得锂电池的运行参数从而对其进行实时监控是非常必要的。 在研制的锂电池智能管理系统中,通过实时测量锂电池组的单体电池电压、单体电池温度、及充放电电流,实现对锂电池组运行参数的实时监测,并通过总线将数据传至上层节点进行分析处理,据此对锂电池系统进行相关控制,实现锂电池系统的高效,高寿命运行。本文重点对锂电池智能管理系 收稿日期:2012-08-24 作者简介:张华锋(1979-),男,工程师。研究方向:化学电源测控技术及船舶电力推进系统监控技术。 统的数据采集方法进行研究,通过CAN(Controller Area Network)总线为锂电池智能管理系统实时提供电池各运行参数。 2 电池运行参数测量 2.1 单体电池电压测量 单节锂电池电压较低,很多场合需要串联使用,而电池组的性能取决于最差的那节电池。因此 测量串联电池组单节电池的电压成为必要而又关键的技术。 共模测量[1]和差模测量是测量串联电池组各节电池电压的两种方法。当串联电池数较多而且对测量精度要求较高时,只能采用差模测量。由于两个测量端存在较高的共模电压,所以不能采用模拟开 关选通,也不能直接测量。工业上广泛采用机械继 电器实现多路电压选通,通过隔离放大器隔离共模电压;这种方法在使用寿命,精度,抗干扰等方面

SPI菊花链原理和配置

摘要:在一个主机和多个从器件的典型SPI系统中,通常采用专门的片选信号来寻址从器件。随着从器件数量不断增加,片选线也随之增多。这种情况将给电路板布板带来很大的挑战。 一个布板方法就是采用菊链结构。本文详细讲述了SPI系统的菊链配置,并展示如何使用软件向串联从器件发送命令。 标准SPI?/QSPI?/MICROWIRE?兼容微控制器通过3线/4线串口与从器件通信。典型接口包括片选信号(/CS)、串行时钟(SCLK)和数据输入信号(DIN),有时还会有数据输出信号(DOUT)。如同I2C系统中一样,单独寻址的器件能轻易的和总线上的其它器件通信。 基本串行通信接口 很多SPI器件并不是单独寻址的。因此,这些器件和总线上其它单个器件通信时,就需要进行额外的硬件或者软件处理。图1所示是一个微控制器和多个从器件通信的系统。 图1. 带有多个从器件独立片选信号的微控制器。 在上述系统中,微控制器通过一个串行时钟输出(SCLK)和一个主机输出/从机输入(MOSI)信号线向各从器件发送命令。主机为每个器件分配了一个独立的片选信号(/SS_),从而实现各个从器件的独立寻址。由于所有从器件共享同一个时钟和数据线,只有/CS输入变低的从器件才会应答串行时钟和数据线。当从器件数目较少时,该系统较易实现。如果系统中从器件数较多,微控制器需要提供和从器件一样多的/SS_输出,这种结构就增加了硬件和布板的复杂程度。 菊链方法 硬件空间方面的限制往往会使图1所示的电路无法实现或难以实现。可采用菊链法替代实现串行接口。图2是一个有N个从器件的菊链系统结构。

图2. 微控制器连接多个从器件 采用一个/SS (或者/CS)信号控制所有从器件的/CS输入;所有从器件接收同一个时钟信号。只有链上的第一个从器件(SLAVE 1)从微控制器直接接收命令。其他所有从器件都从链上前一个器件的DOUT输出获得其DIN数据。 要保证菊链正常工作,每一个从器件就必须能在给定的命令周期内(定义为每一个命令所需的时钟数)从DIN引脚读入命令,而在下一个命令周期从DOUT引脚输出同样的命令。显然,从DIN到DOUT会有一个命令周期的延迟。另外,各个从器件只能在/CS的上升沿执行写入 的命令。这意味着只要/CS保持低电平,从器件将不会执行命令,并且会在下一个命令周期将命令通过DOUT引脚输出。如果在给定命令周期之后/CS变高,所有从器件将立即执行写 入DIN引脚的命令。如果/CS变高,数据将不会从DOUT输出,这就使得链上每个从器件可 以执行不同的命令。只要菊链的这些要求能够满足,微控制器只需三个信号(/SS、SCK和MOSI)就能控制网络上的所有从器件。 如何实现菊链 在菊链系统中(图2),SLAVE 1从微控制器直接接收数据。该数据在时钟驱动下进入SLAVE 1的内部移位寄存器。只要/CS (或/SS)仍然保持低电平,该数据将通过SLAVE 1的DOUT引脚输出。SLAVE 1的DOUT引脚接至SLAVE 2的DI引脚,因此当数据通过SLAVE 1的DOUT引 脚端输出时,同时也被同步移入SLAVE 2的内部移位寄存器。同理,当SLAVE 2接收来自SLAVE 1的数据的时候,微控制器可同时向SLAVE 1发送另一个命令。该新命令将覆盖SLAVE 1移位寄存器中原来的数据。只要/CS保持为低,数据会在整条菊链上传递,直到每一个从器件都接收了相应的命令。存储在每一个从器件移位寄存器中的命令将在/CS的上升沿执行。下面例子使用MAX5233和MAX5290构成菊链。 电路图范例#1 图3给出的菊链结构中连接了3个MAX5233。MAX5233为双路、10位DAC (包含两个DAC通道,通道A和B)。将RSTV接至VDD,模拟输出的上电状态被设置到中点。

动力蓄电池及管理系统

第二章 02 动力蓄电池及管理系统

一、动力电池主要性能指标 1.电压 (1)端电压。 (2)标称电压。 (3)开路电压。 (4)工作电压。 (5)充电终止电压。 (6)放电终止电压。

一、动力电池主要性能指标 2.容量 (1)额定容量。 (2)n小时率容量。 (3)理论容量。 (4)实际容量。 (5)荷电状态。 3.内阻 电池的内阻是指电流流过电池内部时所受到的阻力,一般是蓄电池中电解质、正负极群、隔板等电阻的总和。电池内阻越大,电池自身消耗掉的能量越多,电池的使用效率越低。

一、动力电池主要性能指标 4.能量 (1)总能量。 (2)理论能量。 (3)实际能量。 (4)比能量。 (5)能量密度。 (6)充电能量。 5.功率 (1)比功率 (2)功率密度

一、动力电池主要性能指标 6.输出效率 (1)容量效率。 (2)能量效率。 7.自放电率 自放电率是指电池在存放期间容量的下降率,即电池无负荷时自身放电使容量损失的速度,它表示蓄电池搁置后容量变化的特性。 8.放电倍率 电池放电电流的大小常用“放电倍率”表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电时间越短,即放电倍率越高,则放电电流越大。

9.使用寿命 一、动力电池主要性能指标 电池类型质量能量密度 (W·h/kg)质量功率密度 (W/kg) 能量效率 (%) 循环寿命 (次) 铅酸电池35~50150~40080500~1000镍镉电池30~50100~150751000~2000镍氢电池60~80200~400701000~1500锂离子电池100~200200~350>901500~3000

动力锂离子电池管理系统设计方案

动力锂离子电池管理系统设计方案 摘要:本文讨论了动力锂电池管理系统的设计方案,以实现对锂电池动力电池组的过充电保护、过放电保护、过流保护和均衡充电等功能。 关键词:锂离子动力电池组;管理系统;过流;过放电;过充电;均衡控制 引言 锂离子电池的广泛应用已有十多年,但早期主要用于手机、笔记本电脑、摄像机、DVD 等一系列小型移动式电子产品,这些场合往往都单串使用,负载电流较低,安全系数高。最近两年来,锂离子电池以其轻便、高能量密度、无污染等特点,已经开始在电动自行车、电动工具和动力玩具领域上得到快速应用,并逐步应用于混合动力车和电动车辆领域。但动力锂离子电池的安全性仍是人们目前最为关注的问题,所以对其的保护就非常重要。除了确保锂离子电池自身安全性的持续改进,必须同时研究电池的管理系统,使电池及其应用能均衡发展。锂离子电池的保护主要包括过充电保护、过放电保护、过电流及短路保护等。 1保护电路的功能 1.1过充电保护 对锂离子电池来说,其充电后单节电芯最高电压不得超过规定值,否则电池内的电解质会被分解,使得温度上升并产生气体,降低电芯的使用寿命,严重时甚至会引起爆炸,所以保护电路一定要保证绝对不可过度充电,必须对电池组中每一节电池的端电压进行监控,当电芯的电压超过设定值时,即激活过充电保护功能,由保护电路切断充电回路,中止充电。在电芯电压回归到允许的电压并解除过充锁定模式时,才能停止保护。不同材料的锂离子电池其保护电压和释放电压都有其不同的规定值。 另外,还必须注意因噪声所产生误动作,为了防止误判和误操作,还要设置过充保护延时,并且延迟时间不能短于噪声的持续时间。当电压持续超过过充检测电压一定时间以上才会触发过充保护。 1.2过放电保护 锂离子电池的过度放电,也会缩短其使用寿命,而且对电池造成的损害往往是不可逆的。为了防止锂离子电池的过放电状态,当锂离子电池电压低于其过放电电压检测点时,即激活过放电保护,中止放电,并将电池保持在低静态电流的待机模式,参数设置类似过充保护。 1.3过电流/短路保护 锂离子电池的最大放电电流有一定限制,过大的放电电流同样会引起锂电池的不可恢复的损坏,影响其使用寿命。 短路保护这个功能其实是过流保护的扩展,若由于外部短路等原因引起的大电流放电时要立刻停止放电,否则对锂电池本身和外部设备都可能会造成严重的损害。 过流保护的延时时间一般至少要几百微秒至毫秒,而短路保护的延时时间是微秒级的,几乎是短路的瞬间就切断了回路,可以避免短路对电池带来的巨大损伤。 就电动工具而言,保护电流值和延时时间的设置还必须和电动工具本身的参数结合起来,否则会影响工具的输出扭矩和电机的寿命。 相关关键字:锂离子动力电池组均衡控制过流管理系统 1.4电池均衡 动力锂离子电池一般都要几串、几十串甚至几百串以上,由于电池在生产过程中,从涂膜开始到成为成品要经过很多道工序,即使经过严格的检测程序,使每组电源的电压、电阻、容量一致,但使用一段时间以后,电池内阻、电压、容量等参数产生波动,形成不一致的状态,就会产生这样或那样的差异。这种差异体现为电池组充满或放完时串联电池芯之间的电压不相同。这种情况下导致电池组充电的过程中,电压过高的电池芯提早触发电池组过充电

菊花链

菊花链连接 (2008-11-29 02:00:15) 菊花链 菊花链一词最基本的概念指的是一种由许多菊花串接在一起形成的花环,这通常是作为小孩的游戏,菊花链一词还广泛的用来表示一些社会“链”和技术“链”,(下面会给出一些)。 这些名词很可能都起源于这项游戏。 花环游戏 用花来制作菊花链的方法有很多,下面给出了最常见的一种: 首先采摘一些菊花,然后用手指甲在菊花茎的基部弄个洞,然下一朵菊花能够从中穿过。重复这项动作,直到所有的菊花都穿成了一串。这样一个用菊花做成的手镯或项链就做好了。 电子和电器工程术语 在电子电器工程中菊花链代表一种配线方案,例如设备A和设备B用电缆相连,设备B在用电缆和设备C相连,设备C用电缆和设备D相连,在这种连接方法中不会形成网状的拓扑结构,只有相邻的设备之间才能直接通信,例如在上例中设备A是不能和设备C直接通信的,它们必须通过设备B来中转,这种方法同样不会形成环路。因为最后一个设备不会连向第一个设备。这种连线方法能够用来传输电力,数字信号和模拟信号。 例如交换机/集线器的堆叠方式就可以用菊花链来连接。 USB总线也是用菊花链方式来连接各个USB设备。 一种保存绳子的方法 在日常生活中经常要把一些暂时不用的绳子保存起来,如果直接卷在一块很容易就会打结,可以用这种称为菊花链的方法来把绳子或电缆穿在一起并存起来。这种方法的优点是可以有效的减少保存是绳子的长度,并且在需要用是可以很容易的恢复。 军事上的术语 菊花链这一术语在军事上用来表示一种将多个单个的爆炸单元连在一起形成一个大的爆炸单元。这些爆炸单元用菊花链的方式连在一起以形成一个更大的爆炸区域,以形成更大的杀伤力。这些小的爆炸单元在爆炸时几乎是同时爆炸。这个词还可以用来表示伞兵在跳伞时,先把这些伞兵连在一起,一个伞兵先跳下飞机,然后其他的伞兵一个个的被他连带下去,直到所有的伞兵都被拉下去。 社会学上的术语 在社会学上这个词可以用来表示一种复杂的人际关系,即在一个群体中每个人都有自己的不同的伙伴,而这些伙伴又有自己的不同的伙伴。 菊花链连接方式是指简化的级联模式,主要的优点是提供集中管理的扩展端口,对于多交换机之间的转发效率并没有提升,主要是因为菊花链模式是采用高速端

基于单片机的智能锂电池充电管理系统设计

题目:基于单片机的智能锂电池充电管理系统设计系部:电子信息系 专业:应用电子技术 学号: _ 学生姓名: ___ ____ 指导教师: _____ ___ 职称: ______ ___ 目录 1摘要 (2) 1.1 课题研究的背景 (3) 1.2镍氢电池、镍镉电池与锂离子电池之间的差异 (4) 1.3 课题研究的意义 (5) 2 电池的充电方法与充电控 (6) 2.1电池的充电方法和充电器 (5) 2.1.1 电池的充电方法 (5) 2.2 充电控制技术 (9) 2.2.1 快速充电器介绍 (9) 2.2.2 快速充电终止控制方法 (10) 3锂电池充电器硬件设计 (12) 3.1 AT89C51 (13) 3.2 电压转换及光耦隔离电路部分 (15)

3.3 充电控制电路部分 (17) 3.3.1 MAX1898充电芯片充电芯片充电芯片充电芯片 (17) 4 锂电池充电器软件设计 (22) 4.1程序功能 (22) 4.2 主要变量说明 (22) 4.3 程序流程图 (23) 致谢 (28) 参考文献 (29) 1摘要 本课题设计是一种基于单片机的锂离子电池充电器,在设计上,选择了简洁、高效的硬件,设计稳定可靠的软件,详细说明了系统的硬件组成,包括单片机电路、充电控制电路、电压转换及光耦隔离电路,并对本充电器的核心器件—MAX1898充电芯片、AT89C2051单片机进行了较详细的介绍。阐述了系统的软硬件设计。以C语言为开发工具,进行了详细设计和编码。实现了系统的可靠性、稳定性、安全性和经济性。 该智能充电器具有检测锂离子电池的状态;自动切换充电模式以满足充电电池的充电需要;充电器短路保护功能;充电状态显示的功能。在生活中更好的维护了充电电池,延长了它的使用寿命。 关键词:充电器;单片机;;锂电池;MAX1898 Abstract:This topic design is one kind lithium ion battery charger which is based on Single Chip, in the design, it has chosen succinctly, the highly effective hardware, the design stable reliable software, explained in detail system's hardware composition, including the monolithic integrated circuit electric circuit, the charge control electric circuit, the voltage transformation and the light pair isolating circuit, and to this battery charger's core component - MAX1898 charge chip, at89C2051 monolithic integrated circuit has carried on the detailed introduction. Elaborated system's software and hardware design. Take the C language as the development kit, has carried on the detailed design and the code. Has realized system's reliability, the stability, the security and the efficiency. The intelligence battery charger has the examination lithium ion battery's

相关主题
文本预览
相关文档 最新文档