当前位置:文档之家› 考点20 平面向量的数量积、平面向量应用举例

考点20 平面向量的数量积、平面向量应用举例

考点20 平面向量的数量积、平面向量应用举例
考点20 平面向量的数量积、平面向量应用举例

温馨提示:

此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。

考点20 平面向量的数量积、平面向量应用举例

一、选择题

1.(2012·江西高考理科·T7)在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则

2

2

2PA PB PC

+=( )

(A)2 (B)4 (C)5 (D)10 【解题指南】用向量法求解.

【解析】选D.

22

2

2

2

2

PA PB

PA PB PC

PC

++=

()()2

2

2

PC CA PC CB PC

+++=

2

2

2

2

222PC PC CA PC CB CA CB

PC

+?+?++=

()

2

2

2

22PC PC CA CB AB

PC

+?++=

222

64610AB PC

=

-=-=.

2.(2012·安徽高考理科·T8)在平面直角坐标系中,点(0,0),(6,8)O P ,将向量

OP

绕点O 按逆时针方向旋转

34π

后得向量OQ ,则点Q 的坐标是( ) ()

A (- ()B

(-

()C (2)-- ()D (-

【解题指南】先写出向量(6,8)OP =,在把向量OP 按逆时针旋转34

π,计算出向量

OQ ,即得点Q 的坐标.

【解析】选A .将向量(6,8)OP =按逆时针旋转32π

后得(8,6)OM =-,则

)(

OQ OP OM =+=-. 3.(2012·辽宁高考理科·T3)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下列结论正确的是( )

(A) a ∥b (B)a ⊥b (C)︱a ︱=︱b ︱ (D)a +b =a -b 【解题指南】将所给等式两边平方,找到两个向量的关系. 【解析】选B.

222222

22a b a b a b a b a a b b a a b b

+=-?+=-?+?+=-?+

0a b a b ??=?⊥.

4.(2012·辽宁高考文科·T1)已知向量(1,1),(2,)a b x =-=,若1a b ?=,则x =( ) 1

1()

1

()

()

()

1

2

2

A B C D --

【解题指南】按照数量积的坐标运算,展开即可解决问题. 【解析】选D.(1,1)(2,)211a b x x x ?=-?=-=?=.

5.(2012·福建高考文科·T3)已知向量(1,2)a x =-,(2,1)b =,则a b ⊥的充要条件是( ) (A)

12x =-

(B)1x =- (C)5x = (D)0x =

【解题指南】垂直表明数量积为0,结合平面向量的数量积的坐标运算公式进行求解 .

【解析】选D.(1)220a b x ?=-?+=,解得0x =.

6.(2012·广东高考理科·T8)对任意两个非零的平面向量α和β,定义

αβαβββ?=

?.若平面向量,a b 满足0a b ≥>,a 与b 的夹角(0,)4π

θ∈,且a b 和b a 都

在集合

2n n Z ??

∈????中,则a b =( ) (A)12 (B)1 (C)32 (D)5

2

【解题指南】解决本小题首先搞清αβ的定义,然后根据

再结合

(0,),

4πθ∈确定1

()()(,1)

2a b b a ?∈是解决

本题的关键.

【解析】选C.

7.(2012·广东高考文科·T10)对任意两个非零的平面向量,αβ,定义

=

αβαβββ. 若两个非零的平面向量a ,b 满足a 与b 的夹角,42ππθ??

∈ ?

??,且a b r r o 和

b a r r o 都在集合n {n Z}2

∈中,则a b r r

o =( ) (A)52 (B )32 (C )1 (D )12

【解析】选D.

1212n n

a b=

,b a=(n ,n Z),22

∈不妨设 12n n 1

(a b (b a =

(0,)42

∴?∈))

8.(2012·陕西高考文科·T7)设向量a =(1,cos θ)与b =(1-,2cos θ)垂直,则cos 2θ等于 ( )

(A) (B) 12 (C)0 (D)1-

【解析】选C. 已知a =(1,cos θ),b =(1-,2cos θ), ∵a b ⊥,∴0a b ?=,∴2

12cos

cos20

θθ-+==0即12cos cos20θθ+==,故选C.

9.(2012·天津高考理科·T7)已知△ABC 为等边三角形,AB=2,设点P,Q 满足,(1),R.==-∈AP AB AQ AC λλλ若3

=2

=-BQ CP λ,则( )

(A)1

2

110±-32

2

± 【解题指南】根据向量的线性运算及数量积进行运算. 【解析】选A.

∵=BQ AQ AB -=(1)AC AB λ--,=-CP AP AC -=AB AC λ-,

又∵3

=2

BQ CP ?-,且||=||=2AB AC ,<,>=60AB AC 60, ∴=||||cos60=2AB AC AB AC ??60=2,

∴3[(1)]()=2

AC AB AB AC λλ----,

2223||+(1)+(1)||=2

AB AB AC AC λλλλ--?-,

所以234+2(1)+4(1)=2λλλλ---,解得1=2

λ.

二、填空题

10.(2012·浙江高考文科·T15)与(2012·浙江高考理科·T15)相同在△ABC中,M是线段BC的中点,AM=3,BC=10,则AB AC

?=________. 【解析】不妨设△ABC为等腰三角形,则AM BC

⊥,

2

()()92516

AB AC AM MB AM MC AM MB MC

?=+?+=+?=-=-.

【答案】-16

11.(2012·安徽高考理科·T14)若平面向量,a b满足23

a b

-≤

,则a b的最小

值是【解析】

【答案】

9 8 -

12.(2012·北京高考文科·T13)与(2012·北京高考理科·T13)相同

已知正方形ABCD的边长为l,点E是AB边上的动点.则DE CB

?的值

为,DE DC

?的最大值为_________.

【解题指南】利用图形中的直角关系建系,用坐标计算,也可以适当选取基向量进行计算.

【解析】方法一:如图所示,以AB ,AD 所在直线分别为x,y 轴建立坐标系,设

(,0)E t ,01t ≤≤,则(0,1)D ,B (1,0),C (1,1),(1),(0,1)D

E t C B =-=-,(1,0)DC =,

1DE CB ∴?=. 1DE DC t ?=≤.

方法二:选取{,}AB AD 作为基向量,设AE t AB =,01t ≤≤,则

()()DE CB t AB AD AD ?=-?-

2

011t AB AD AD =-?+=+=.()1DE DC t AB AD AB t ?=-?=≤.

【答案】1 1

13.(2012·湖南高考文科·T15)如图,在平行四边形ABCD 中 ,AP⊥BD,垂

足为P ,且3AP =,则

= .

【解题指南】本题考查平面向量加法的几何运算、平面向量的数量积运算,考查数形结合思想、等价转化思想等数学思想方法.根据向量的三角形法则和平行四边形法则进行线性运算,向量垂直时数量积为零,向量的平方等于模的平方.

【答案】18

14.(2012·江苏高考·T9)如图,在矩形ABCD 中,

2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若2AB AF ?=,

则AE BF ?的值是 .

【解题指南】先建立坐标系,再恰当地表示向量,最后用数量积公式求解.

【解析】以A 点为原点,AB 所在直线为x 轴,AD 所在直线为 y 轴建立直角坐标系xOy,则AB (2,0),AE (2,1),==设

所以

15. (2012·安徽高考文科·T11)

设向量(1,2),(1,1),(2,).a m b m c m a c ==+=+若(),).a m b m c m a c ==+=+若()⊥b ,则|a |=____________.

【解题指南】根据向量的坐标运算,求出a c +,由

a c

b +⊥(),得0a

c b +?=(),从而求出m . 【解析】

16.(2012·江西高考文科·T12)设单位向量

m =(x ,y ),b

=(2,-1).若⊥m b ,则2x y +=_______________.

【解题指南】由已知条件联立方程组求得向量m 的坐标,然后求2x y +.

【解析】由已知可得20x y -=,又因为m 为单位向量,所以

22

1x y +=,联立解得

故2x y +

17.(2012·新课标全国高考文科·T15)与(2012·新课标全国高考理科·T13)相同

已知向量,a b 夹角为45 ,且1,210a a b =-=则b = .

【解题指南】将|2a -b|平方展开,将|a|,?a b 代入展开式,把展开式看作关于|b|的方程,解得|b|.

【解析】,a b 的夹角为45?,1a =,

2

22

24410a b b b -=-?+=,32

b ∴=

【答案】三、解答题

18. (2012·山东高考理科·T17)

已知向量())

0(2cos 2,cos 3,1,sin >???

??==A x A x A n x m ,函数()f x m n =?的最大值为6.

(1)求A .

(2)将函数()y f x =的图象向左平移12π

个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]

24π

上的值

域.

【解题指南】(1)先利用数量积的坐标运算,再利用和差倍角公式化为

sin(?+=wx A y (

)x ω+?

的形式.(2)先利用图象变换法求出()g x 的解析式,再利用整体

代入法求值域.

【解析】(1) ())

0(2cos 2,cos 3,1,sin >???

??==A x A x A n x m ,

()f x m n

=?x A

x A x 2cos 21cos 3sin ?

+?=

所以()x f 的最大值为A ,函数()f x m n =?的最大值为6, 所以A=6.

(2) 将函数()y f x =的图象向左平移12π

个单位得到

?

?? ??

+=??

????+??? ??+=32sin 66122sin 6πππx x y 的图象,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数

()?

?? ??+=34sin 6πx x g 的图象. ∈

x 5[0,

]24π

ππ

π

67343

≤+

≤∴

x ,

1

34sin 21≤??? ??

+≤-∴πx ,

所以()g x 在

5[0,

]

24π上的值域为[]6,3-.

关闭Word 文档返回原板块。

最新25平面向量数量积的坐标表示汇总

25平面向量数量积的 坐标表示

平面向量数量积的坐标表示(1) 教学目的: ⑴要求学生掌握平面向量数量积的坐标表示 ⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式。 ⑶能用所学知识解决有关综合问题。 教学重点:平面向量数量积的坐标表示 教学难点:平面向量数量积的坐标表示的综合运用 教学过程: 一、复习引入: 1.两个非零向量夹角的概念 已知非零向量a与b,作?Skip Record If...?=a,?Skip Record If...?=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角. 2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a?b,即有a?b = |a||b|cosθ, (0≤θ≤π).并规定0与任何向量的数量积为0。 C 3.向量的数量积的几何意义: 数量积a?b等于a的长度与b在a方向上投影|b|cosθ的乘积。 4.两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位向量。 1)e?a = a?e =|a|cosθ;2)a⊥b?a?b = 0 3)当a与b同向时,a?b = |a||b|;当a与b反向时,a?b = -|a||b|。 特别的a?a = |a|2或?Skip Record If...? 4)cosθ =?Skip Record If...?;5)|a?b| ≤ |a||b|

5. 平面向量数量积的运算律 交换律:a ? b = b ? a 数乘结合律:(?Skip Record If...?a )?b =?Skip Record If...?(a ?b ) = a ?(?Skip Record If...?b ) 分配律:(a + b )?c = a ?c + b ?c 二、讲解新课: ⒈平面两向量数量积的坐标表示 已知两个非零向量?Skip Record If...?,?Skip Record If...?,试用 ?Skip Record If...?和?Skip Record If...?的坐标表示?Skip Record If...?。 设?Skip Record If...?是?Skip Record If...?轴上的单位向量,?Skip Record If...?是?Skip Record If...?轴上的单位向量,那么 ?Skip Record If...?,?Skip Record If...? 所以?Skip Record If...??Skip Record If...? 又?Skip Record If...?,?Skip Record If...?,?Skip Record If...? 所以?Skip Record If...??Skip Record If...? 这就是说:两个向量的数量积等于它们对应坐标的乘积的和。 即?Skip Record If...??Skip Record If...? 2.平面内两点间的距离公式 (1)设?Skip Record If...?,则?Skip Record If...?或?Skip Record If...?。 (2)如果表示向量?Skip Record If...?的有向线段的起点和终点的坐标分别为?Skip Record If...?、?Skip Record If...?,那么?Skip Record If...?(平面内两点间的距离公式) 3.向量垂直的判定 1)

平面向量的数量积与应用举例专题训练

平面向量的数量积与应用举例专题训练 A组基础题组 1.已知向量a=(2,1),b=(1,m),c=(2,4),且(2a-5b)⊥c,则实数m=( ) A.- B.- C. D. 2.已知向量a=(1,0),|b|=,a与b的夹角为45°,若c=a+b,d=a-b,则c在d方向上的投影为( ) A. B.- C.1 D.-1 3.向量a,b满足|a+b|=2|a|,且(a-b)·a=0,则a,b的夹角的余弦值为( ) A.0 B. C. D. 4.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记 I1=·,I2=·,I3=·,则( ) A.I1

10.已知向量a=(cos x,sin x),b=(3,-∈[0,π]. (1)若a∥b,求x的值; (2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值. B组提升题组 1.已知a、b均为单位向量,且a·b=0.若|c-4a|+|c-3b|=5,则|c+a|的取值范围是( ) A.[3,] B.[3,5] C.[3,4] D.[,5] 2.非零向量m,n的夹角为,且满足|n|=λ|m|(λ>0),向量组x1,x2,x3由一个m和两个n排列而成,向量组 y1,y2,y3由两个m和一个n排列而成,若x1·y1+x2·y2+x3·y3的所有可能值中的最小值为4|m|2,则λ = . 3.在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1). (1)求以线段AB,AC为邻边的平行四边形的两条对角线的长; (2)设实数t满足(-t)·=0,求t的值.

平面向量数量积练习题

平 面 向 量 数 量 积 练 习 题 一.选择题 1.下列各式中正确的是 ( ) (1)(λ·a ) ·b =λ·(a b )=a · (λb ), (2)|a ·b |= | a |·| b |, (3)(a ·b )· c = a · (b ·c ), (4)(a +b ) · c = a ·c +b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2.在ΔABC 中,若(CA CB)(CA CB)0+?-= ,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3. 已知|a |=6,|b |=3,a·b =-12,则向量a 在向量b 方向上的投影是( ) A .-4 B .4 C .-2 D .2 4.已知||=1,||=2,且(-)与垂直,则与的夹角为 ( ) A .60° B .30° C .135° D .45° 5.设||= 4,||= 3,夹角为60°,则|+|等于 ( ) A .37 B .13 C .37 D .13 6.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( ) A. 5 B.10 C .2 5 D .10 7. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.????79,73 B.????-73,-79 C.????73,79 D.????-79,-73 二.填空题 8.已知e 是单位向量,∥e 且18-=?e a ,则向量a =__________. 9.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 10. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是__________. 三.解答题 11. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°. (1)求b ; (2)若c 与b 同向,且a 与c -a 垂直,求c .

平面向量数量积运算专题附答案

. 平面向量数量积运算平面向量数量积的基本运算题型一DCBCEFABCDBAD,,=120°,点的边长为2,∠1 例(1)(2014·天津)已知菱形分别在边→→AFDFAEBCBEDC________. .若λ·上,的值为=3=,1=λ,则→→PBPAPAOPBAB) · (2)已知圆为切点,的半径为1,, 那么为该圆的两条切线,的最小值为,( 2 -43+2 +B.A.-2 3+2C.-4+D.22 -→→→→→OBOAOAABOA________. ·=|=1 变式训练(2015·湖北)已知向量3⊥,则,| 利用平面向量数量积求两向量夹角题型二 22babaababab与+(|,且2-(1)(2015·重庆例2 )若非零向量,则,)⊥(3满足||)=|3的夹 角为( ) ππ3πA. B. C. D.π424πabababab的夹角2-+与=|2,|,则|=32(2)若平面向量与平面向量,的夹角等于|3的余弦值等于( ) 1111A. B.- C. D.-262612121→→→→ABCOAOABACAB与)=(+,则上的三点,若2 变式训练(2014·课标全国Ⅰ)已知,,为圆2→AC的夹角为________. 教育资料. . 利用数量积求向量的模题型三 baababab等于+的夹角为|120°,则|=2,且例3 (1)已知平面向量|2和与,|||=1,) ( B.4 A.2 D.6 5 C.2ABCDADBCADCADBCPDC上的动点,则是腰=,∠1=90°,,=(2)已知直角梯形2中,,∥→→PAPB|的最小值为________. +3|1eeeebbe·.是平面单位向量,且若平面向量·满足变式训练3 (2015·浙江)已知,=beb|=,则=|·________. 112212 =12

平面向量数量积

第三节平面向量数量积及应用重点: 1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系. 2.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 难点: 1.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 2 .会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 教学过程: 1.平面向量的数量积 (1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a =0. (2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积. 2.平面向量数量积的性质及其坐标表示 设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角. (1)数量积:a·b=|a||b|cos θ=x1x2+y1y2. (2)模:|a|=a·a=x21+y21.学-科网 (3)夹角:cos θ=a·b |a||b|= x1x2+y1y2 x21+y21·x22+y22 . (4)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0. (5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)?|x1x2+y1y2|≤ x21+y21·x22+y22. 3.平面向量数量积的运算律 (1)a·b=b·a(交换律). (2)λa·b=λ(a·b)=a·(λb)(结合律). (3)(a+b)·c=a·c+b·c(分配律).

6290平面向量的数量积的坐标表示

第十三教时 教材:平面向量的数量积的坐标表示 目的:要求学生掌握平面向量数量积的坐标表示,掌握向量垂直的坐标表示的充要条件。 过程: 一、复习: 1.平面向量的坐标表示及加、减、实数与向量的乘积的坐标表示 2.平面向量数量积的运算 3.两平面向量垂直的充要条件 4.两向量共线的坐标表示: 二、 课题:平面两向量数量积的坐标表示 1.设a = (x 1, y 1),b = (x 2, y 2),x 轴上单位向量i ,y 轴上单位向量j , 则:i ?i = 1,j ?j = 1,i ?j = j ?i = 0 2.推导坐标公式: ∵a = x 1i + y 1j , b = x 2i + y 2j ∴a ?b = (x 1i + y 1j )(x 2i + y 2j ) = x 1x 2i 2 + x 1y 1i ?j + x 2y 1i ?j + y 1y 2j 2 = x 1x 2 + y 1y 2 从而获得公式:a ?b = x 1x 2 + y 1y 2 例一、设a = (5, -7),b = (-6, -4),求a ?b 解:a ?b = 5×(-6) + (-7)×(-4) = -30 + 28 = -2 3.长度、角度、垂直的坐标表示 1?a = (x , y ) ? |a|2 = x 2 + y 2 ? |a | =22y x + 2?若A = (x 1, y 1),B = (x 2, y 2),则=221221)()(y y x x -+- 3? co s θ = | |||b a b a ??2 2 2 22 1 2 12121y x y x y y x x +++= 4?∵a ⊥b ? a ?b = 0 即x 1x 2 + y 1y 2 = 0(注意与向量共线的坐标表示原则) 4.例二、已知A (1, 2),B (2, 3),C (-2, 5),求证:△ABC 是直角三角形。 证:∵=(2-1, 3-2) = (1, 1), = (-2-1, 5-2) = (-3, 3) ∴?=1×(-3) + 1×3 = 0 ∴⊥ ∴△ABC 是直角三角形 三、补充例题:处理《教学与测试》P153 第73课 例三、已知a = (3, -1),b = (1, 2),求满足x ?a = 9与x ?b = -4的向量x 。 解:设x = (t , s ), 由x ?a = 9 ? 3t - s = 9 t = 2 由x ?a = 9 ? 3t - s = 9 s = -3 ∴x = (2, -3) 例四、如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使∠B = 90?, 求点B 和向量AB 的坐标。 解:设B 点坐标(x , y ),则= (x , y ),= (x -5, y -2) ∵⊥ ∴x (x -5) + y (y -2) = 0即:x 2 + y 2 -5x - 2y = 0 又∵|| = || ∴x 2 + y 2 = (x -5)2 + (y -2)2即:10x + 4y = 29 由??? ?????????= =-==????=+=--+272323272941002522112 2 y x y x y x y x y x 或 ∴B 点坐标)23,27(-或)2 7 ,23(;=)27,23(--或)23,27(- 例五、在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角, 求k 值。 解:当A = 90?时,?= 0,∴2×1 +3×k = 0 ∴k =2 3 - 当B = 90?时,AB ?BC = 0,BC =AC -AB = (1-2, k -3) = (-1, k -3) ∴2×(-1) +3×(k -3) = 0 ∴k = 3 11 当C = 90?时,AC ?BC = 0,∴-1 + k (k -3) = 0 ∴k =2 13 3± 四、小结:两向量数量积的坐标表示 长度、夹角、垂直的坐标表示 五、作业: P121 练习及习题5.7 《教学与测试》P154 5、6、7、8,思考题 ? A O B

向量数量积专题(总)

平面向量的数量积 【知识点精讲】 一、平面向量的数量积 (1)已知两个非零向量a r 和b r ,记为OA a OB b ==u u u r r u u u r r ,,则)0(πθθ≤≤=∠AOB 叫做向量a r 与b r 的夹角,记作,a b <>r r ,并规定[],0,a b π<>∈r r 。如果a 与b 的夹角是2 π,就称a r 与b r 垂直,记为.a b ⊥r r (2)cos ,a b a b <>r r r r 叫做向量a r 与b r 的数量积(或内积),记作a b ?r r ,即b a ? cos ,a b a b <>r r r r . 规定:零向量与任一向量的数量积为0. 两个非零向量a r 与b r 垂直的充要条件是0.a b ?=r r 两个非零向量a r 与b r 平行的充要条件是.a b a b ?=±r r r r 二、平面向量数量积的几何意义 数量积a b ?r r 等于a r 的长度a r 与b r 在a r 方向上的投影cos b θr 的乘积,即cos a b a b θ ?=r r r r (b r 在a r 方向上的投影为cos a b b a θ?=r r r r );a r 在b r 方向上的投影为 cos .a b a b θ?=r r r r 三、平面向量数量积的重要性质 性质1 cos .e a a e a θ?=?=r r r r r 性质2 0.a b a b ⊥??=r r r r 性质3 当a r 与b r 同向时,a b a b ?=r r r r ;当a r 与b r 反向时,a b a b ?=-r r r r ;22a a a a ?==r r r r 或 a =r 性质4 cos (00)a b a b a b θ?=≠≠r r r r r r r r 且 性质5 a b a b ?≤r r r r 注:利用向量数量积的性质2可以解决有关垂直问题;利用性质3可以求向量长度;利用性质4可以求两向量夹角;利用性质5可解决不等式问题。 四、平面向量数量积满足的运算律 (1)a b b a ?=?r r r r (交换律);

(完整版)平面向量的数量积练习题.doc

平面向量的数量积 一.选择题 1. 已知 a ( 2,3), b ( 1, 1),则 a ?b 等于 ( ) A.1 B.-1 C.5 D.-5 r r r r r r r r 2.向量 a , b 满足 a 1, b 4, 且 a b 2 ,则 a 与 b 的夹角为( ) A . B . 4 C . D . 2 6 3 r r 60 0 r r ) 3.已知 a, b 均为单位向量,它们的夹角为 ,那么 a 3b ( A . 7 B . 10 C . 13 D . 4 4 .若平面向量 与向量 的夹角是 ,且 ,则 ( ) A . B . C . D . 5. 下面 4 个有关向量的数量积的关系式① 0 ?0 =0 ②( a ?b ) ?c = a ?( b ? c ) ③ a ?b = b ?a ④ | a ?b | ≦ a ?b ⑤ | a ?b | | a | ?| b | 其中正确的是( ) A . ① ② B 。 ① ③ C 。③ ④ D 。③ ⑤ 6. 已知 | a |=8 , e 为单位向量,当它们的夹角为 时, a 在 e 方向上的投影为( ) 3 A . 4 3B.4 C.4 2 3 D.8+ 2 7. 设 a 、 b 是夹角为 的单位向量,则 2a b 和 3a 2b 的夹角为( ) A . B . C . D . 8. 已知 a =(2,3) , b =( 4 ,7) , 则 a 在 b 上的投影值为( ) A 、 13 B 、 13 C 、 65 D 、 65 5 5 9. 已知 a (1,2), b ( 3,2), ka b 与 a 3b 垂直时 k 值为 ( ) A 、 17 B 、 18 C 、 19 D 、 20

专题二 培优点9 平面向量数量积的最值问题

培优点9 平面向量数量积的最值问题 平面向量部分,数量积是最重要的概念,求解平面向量数量积的最值、范围问题要深刻理解数量积的意义,从不同角度对数量积进行转化. 例 (1)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC → |AC →|,则PB →·PC → 的最大值等于( ) A .13 B .15 C .19 D .21 答案 A 解析 建立如图所示的平面直角坐标系,则B ????1t ,0,C (0,t ),AB →=????1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →| AC →|=t ????1t ,0+4t (0,t )=(1,4),∴P (1,4), PB →·PC →=????1t -1,-4· (-1,t -4) =17-????1t +4t ≤17-21t ·4t =13, 当且仅当t =12 时等号成立. ∴PB →·PC →的最大值等于13. (2)如图,已知P 是半径为2,圆心角为π3 的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为________. 答案 5-213 解析 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),

设P (2cos θ,2sin θ)????π3≤θ≤2π3, 则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ), 其中0

平面向量数量积及运算基础练习题

精品 平面向量的数量积及运算练习题 一、选择题: 1、下列各式中正确的是 ( ) (1)(λ·a) ·b=λ·(a b)=a · (λb), (2)|a ·b|= | a |·| b |, (3)(a ·b)· c= a · (b ·c), (4)(a+b) · c = a ·c+b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2、在ΔABC 中,若(CA CB)(CA CB)0+?-=,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3、若| a |=| b |=| a -b |, 则b 与a+b 的夹角为 ( ) A .30° B .60° C .150° D .120° 4、已知| a |=1,| b |=2 ,且(a -b)和a 垂直,则a 与b 的夹角为 ( ) A .60° B .30° C .135° D .45° 5、若2AB BC AB 0?+=,则ΔABC 为 ( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰直角三角形 6、设| a |= 4, | b |= 3, 夹角为60°, 则| a+b |等于 ( ) A .37 B .13 C .37 D .13 7、己知 | a |= 1,| b |= 2, a 与的夹角为60, c =3a+b, d =λa -b ,若c ⊥d,则实数λ的值为( ) A . 74 B .75 C .47 D .5 7 8、设 a,b,c 是平面内任意的非零向量且相互不共线,则其中真命题是 ( ) ① (a ·b)·c -(c ·a)·b=0 ② | a | -| b |< | a -b | ③ (b ·c)·a -(c ·a)·b 不与c 垂直 ④ (3a+2b) ·(3a -2b)= 9| a | 2-4| b | 2 A .①② B .②③ C .③④ D .②④ 9.(陕西)已知非零向量AB 与AC 满足0AB AC BC AB AC ?? ?+?= ???且12AB AC AB AC ?=, 则ABC △为 .A 等边三角形 .B 直角三角形 .C 等腰非等边三角形 .D 三边均不相等的三角形 10(全国Ⅰ文)点O 是ABC △所在平面内的一点,满足OA OB OB OC OC OA ?=?=?,则点O 是ABC △的 .A 三个内角的角平分线的交点 .B 三条边的垂直平分线的交点 .C 三条中线的交点 .D 三条高的交点 11.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b ,若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为( ). A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3]

专题03 “三法”解决平面向量数量积问题(第二篇)-2019年高考数学压轴题命题区间探究与突破(解析

一.方法综述 平面向量的数量积是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.由于命题方式灵活多样,试题内容活泼、新颖,因此,在高考试卷中备受青睐,是一个稳定的高频考点.解决这类问题有三种基本方法:投影法、基底法和坐标法.“三法”的准确定位应是并举!即不应人为地、凭主观划分它们的优劣,而应具体问题具体分析. 本专题举例说明解答解决平面向量数量积问题的方法、技巧. 二.解题策略 类型一投影定义法 【例1】【2018届河南省中原名校高三上第一次考评】已知P是边长为2的正△ABC边BC上的动点,则·(+)=_________. 【答案】6 【解析】设BC的中点为D,则AD⊥BC, 【指点迷津】

1、数量积与投影的关系(数量积的几何定义): 向量,a b 数量积公式为cos a b a b θ?=,可变形为()cos a b a b θ?=?或() cos a b b a θ?=?,进而与向量投影找到联系 (1)数量积的投影定义:向量,a b 的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即a b a b b λ→?=?(记a b λ→为a 在b 上的投影) (2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解: a b a b b λ→?= 即数量积除以被投影向量的模长 2、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题 (1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点)学科&网 (2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题 【举一反三】 已知圆M 为直角三角形ABC 的外接圆,OB 是斜边AC 上的高,且6,22AC OB ==,AO OC <,点P 为线段OA 的中点,若DE 是 M 中绕圆心M 运动的一条直径,则PD PE ?=_________ M C A O B P D E Q 【答案】-5 【解析】思路:本题的难点在于DE 是一条运动的直径,所以很难直接用定义求解.考虑到DE 为直径,所以延长EP 交圆M 于Q ,即可得DQ QE ⊥,则PD 在PE 上的投影向量为PQ .所求 PD PE PE PQ ?=-?,而由PE PQ ?联想到相交弦定理,从而PE PQ AP PC ?=?.考虑与已知条 件联系求出直径AC 上的各段线段长度.由射影定理可得:2 8AO CO OB ?==,且

(完整版)平面向量的数量积练习题(含答案)

平面向量的数量积 A 组 专项基础训练 一、选择题(每小题5分,共20分) 1. (2012·辽宁)已知向量a =(1,-1),b =(2,x ),若a ·b =1,则x 等于 ( ) A .-1 B .-12 C.12 D .1 2. (2012·重庆)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( ) A. 5 B.10 C .2 5 D .10 3. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( ) A.? ????79,73 B.? ????-73,-79 C.? ????73,79 D.? ?? ??-79,-73 4. 在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →等于 ( ) A .-32 B .-23 C.23 D.32 二、填空题(每小题5分,共15分) 5.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 6.在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 7. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是__________. 三、解答题(共22分) 8. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°. (1)求b ; (2)若c 与b 同向,且a 与c -a 垂直,求c . 9. (12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与 向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2平面向量数量积的运算 1.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE =23BC ,DF =16 DC ,则AE ·AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题 意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =? ????-12,1,所以a ·b =-1×? ?? ??-12+2×1=52. (2)取BA ,BC 为一组基底,则AE =BE -BA =23 BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =? ????23 BC -BA ·? ????-712 BA +BC =712 |BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 的关系 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 [解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2 =4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,- 6).

6.3.5 平面向量数量积的坐标表示

6.3.5 平面向量数量积的坐标表示 【学习目标】 1.掌握平面向量数量积的坐标表示及其运算.(重点) 2.会运用向量的坐标运算求解向量垂直、夹角等相关问题.(难点) 3.分清向量平行与垂直的坐标表示.(易混点) 4.能用向量方法证明两角差的余弦公式.(重点) 【核心素养】 1.通过平面向量数量积的坐标表示,培养数学运算和数据分析的核心素养. 2.借助向量的坐标运算求向量的夹角、长度以及论证垂直问题,提升逻辑推理和数学运算的核心素养. 【自主学习】 一、设计问题,创设情境 问题1:在平面直角坐标系中,设i,j分别是x轴和y轴方向上的单位向量,a=(3,2),b=(2,1),则a·b的值为多少?a·b的值与a,b的坐标有怎样的关系?若a=(x1,y1),b =(x2,y2),则a·b为多少? 二、学生探索、尝试解决 问题2; 若a=(x, y),则|a|2=x2+y2,或|a|=√x2+y2, 如果表示向量a的有向线段的起点和终点的坐标分别为(x1,y1) ,(x2,y2) ,那你能用坐标表示出|a|吗? 问题3; 设a=(x1,y1),b=(x2, y2),若a⊥b,你能得到什么? 问题4; 设a,b都是非零向量,a=(x1,y1),b=(x2, y2),θ是a与b的夹角,根据向量数量积的定义及坐标表示你能得到什么

三、运用规律,解决问题 例1.若点 A(1, 2) , B(2, 3) , C(-2, 5),则△ABC是什么形状?证明你的猜想。例2 设a=(3, -1) ,b=(1, -2) ,.求a·b及a,b的夹角θ 例3用向量方法证明两角差的余弦公式 cos(α?β)=cosαcosβ+sinαsinβ

平面向量数量积运算专题(附标准答案)

平面向量数量积运算 题型一 平面向量数量积的基本运算 例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________. (2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2 D.-3+2 2 变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=22 3 |b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4 D.π (2)若平面向量a 与平面向量b 的夹角等于π 3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦 值等于( )

A.126 B.-126 C.112 D.-1 12 变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB → 与 AC → 的夹角为________. 题型三 利用数量积求向量的模 例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5 D.6 (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB → |的最小值为________. 变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=1 2.若平面向量b 满足b ·e 1=b ·e 2 =1,则|b |=________.

6.3.5 平面向量数量积的坐标表示

6.3.5 平面向量数量积的坐标表示 学习目标 1.掌握平面向量数量积的坐标表示.2.能够用两个向量的坐标来解决与向量的模、夹角、垂直有关的问题 . 知识点 平面向量数量积的坐标表示 设非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 则a ·b =x 1x 2+y 1y 2 . (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2. 若表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1),(x 2,y 2),则a =(x 2-x 1,y 2-y 1),|a |=(x 2-x 1)2+(y 2-y 1)2. (2)a ⊥b ?x 1x 2+y 1y 2=0. (3)cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21 x 22+y 22 . 思考 若两个非零向量的夹角满足cos θ<0,则两向量的夹角θ一定是钝角吗? 答案 不一定,当cos θ<0时,两向量的夹角θ可能是钝角,也可能是180°. 1.若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?x 1y 2-x 2y 1=0.( × ) 2.若两个非零向量的夹角θ满足cos θ>0,则两向量的夹角θ一定是锐角.( × ) 提示 当两向量同向共线时,cos θ=1>0,但夹角θ=0°,不是锐角. 3.两个非零向量a =(x 1,y 1),b =(x 2,y 2),满足x 1y 2-x 2y 1=0,则向量a 与b 的夹角为0°.( × ) 4.若向量a =(1,0),b =???? 12,12,则|a |=|b |.( × ) 提示 |a |=1,|b |= ????122+????122=22 ,显然|a |≠|b |. 一、数量积的坐标运算 例1 已知a =(2,-1),b =(1,-1),则(a +2b )·(a -3b )等于( ) A.10 B.-10 C.3 D.-3 答案 B 解析 a +2b =(4,-3),a -3b =(-1,2),所以(a +2b )·(a -3b )=4×(-1)+(-3)×2=-10.

平面向量数量积练习题

平面向量数量积练习题 .选择题 1?下列各式中正确的是 ( ) (1)(入a) b=X a ()=a - b), (2) |a b |= | a | | -b |, (3) (a b) c= a (b c), (4) (a+b) c = a c+b c A ? (1) (3) B ? (2) (4) C . (1) (4) D ?以上都不对? LUU/ UUV LUU/ UUU 2. 在 A ABC 中若(CA CB)?(CA CB) 0,则 A ABC 为 ( ) A ?正三角形 B ?直角三角形 C ?等腰三角形 D ?无法确定 3. 已知|a|= 6, |b|= 3, a b =- 12,则向量a 在向量b 方向上的投影是( ) A . - 4 B . 4 C .- 2 D . 2 4. 已知|a |=1,|b |= 2, 且(a — b )与a 垂直,则a 与b 的夹角为 ( ) A . 60° B . 30° C . 135° D . 45° 5. 设 4, |b |= 3,夹角为 60°,则 |a + b | 等于( ) A . 37 B . 13 C . .37 D . .13 6 .设 x , y € R ,向量 a = (x,1), b = (1, y), c = (2, — 4),且 a 丄c , b // c ,则 |a + b|等于( ) A. .5 B. .10 C . 2 , 5 D . 10 7. 已知向量 a = (1,2), b = (2, — 3).若向量 c 满足(c + a) / b , c ± (a + b),贝U c 等于( ) 7 二.填空题 8.已知e 是单位向量,a // e 且a e 18,则向量a = _____________ 9 .已知向量 a , b 夹角为 45 °,且 |a|= 1, |2a — ,贝U |b|= _____ . 10. ____________________________________________________________________________ 已知a = (2, — 1), b =(入3),若a 与b 的夹角为钝角,贝U 入的取值范围是 ______________________ 三.解答题 11. (10 分)已知 a = (1,2), b = (— 2, n) (n>1), a 与 b 的夹角是 45 ° (1) 求 b ; 7 一 9 - D 7 一 9 7 一 3 G 7 一 9 - 7 一 3? - B

相关主题
文本预览
相关文档 最新文档