当前位置:文档之家› 2016届高考物理(人教版)第一轮复习课时作业 2-5-3机械能守恒定律及其应用 Word版含答案

2016届高考物理(人教版)第一轮复习课时作业 2-5-3机械能守恒定律及其应用 Word版含答案

2016届高考物理(人教版)第一轮复习课时作业 2-5-3机械能守恒定律及其应用 Word版含答案
2016届高考物理(人教版)第一轮复习课时作业 2-5-3机械能守恒定律及其应用 Word版含答案

第3课时机械能守恒定律及其应用

基本技能练

1. (2015·辽宁本溪联考)(如图1)蹦床是青少年喜欢的一种体育活动,蹦床边框用弹

簧固定有弹性网角,运动员从最高点落下直至最低点的过程中,空气阻力大小恒定,则运动员

()

图1

A.刚接触网面时,动能最大

B.机械能一直减少

C.重力势能的减少量等于弹性势能的增加量

D.重力做功等于克服空气阻力做功

解析当运动员受到的弹力、阻力、重力三力的合力为零时加速度为零,动能最大,A错误;在此过程中除重力外,运动员受到的弹力和阻力一起做负功,

+所以运动员的机械能减小,B正确;全过程由功能关系知mgh=W

E p弹,所以C、D错误。

答案 B

2. (多选)如图2所示,一根轻弹簧下端固定,竖立在水平面上,其正上方A位置处

有一个小球,小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D位置小球速度减小到零。关于小球下落阶段,下列说法中正确的是

()

图2

A.在B位置小球动能最大

B.在C位置小球动能最大

C.从A→C位置小球重力势能的减少量大于小球动能的增加量

D.从A→D位置小球重力势能的减少量等于弹簧弹性势能的增加量

解析小球动能的增加量用合外力做功来量度,A→C过程中小球受到的合力一直向下,对小球做正功,使其动能增加;C→D过程中小球受到的合力一直向上,对小球做负功,使其动能减少;从A→C位置小球重力势能的减少量等于小球动能的增加量和弹性势能增加量之和;小球在A、D两位置动能均为零,而重力做的正功等于弹力做的负功即小球重力势能的减少量等于弹簧弹性势能的增加量。

答案BCD

3.如图3所示,将一个内、外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一竖直墙壁。现让一小球自左端槽口A点的正上方由静止开始下落,从A 点与半圆形槽相切进入槽内,则下列说法正确的是

()

图3

A.小球在半圆形槽内运动的全过程中,只有重力对它做功

B.小球从A点向半圆形槽的最低点运动的过程中,小球处于失重状态

C.小球从A点经最低点向右侧最高点运动的过程中,小球与槽组成的系统机械能守恒

D.小球从下落到从右侧离开槽的过程中机械能守恒

解析小球从A点向半圆形槽的最低点运动的过程中,半圆形槽有向左运动的趋势,但是实际上没有动,整个系统只有重力做功,所以小球与槽组成的系统机械能守恒;而小球过了半圆形槽的最低点以后,半圆形槽向右运动,由于系统没有其他形式的能量产生,满足机械能守恒的条件,所以系统的机械能守恒;

小球从开始下落至到达槽最低点前,小球先失重,后超重;当小球向右上方滑动时,半圆形槽也向右移动,半圆形槽对小球做负功,小球的机械能不守恒。

答案 C

4.(2014·上海卷,11)静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力。不计空气阻力,在整个上升过程中,物体机械能随时间变化关系是

()

解析设在恒力作用下的加速度为a,则机械能增量E=Fh=F·at2/2,知机械能随时间不是线性增加,撤去拉力后,机械能守恒,则机械能随时间不变。故C正确,A、B、D错误。

答案 C

5.一质点沿竖直向上方向做直线运动,运动过程中质点的机械能E与高度h的关系

的图象如图4所示,其中0~h1过程的图线为水平线,h1~h2过程的图线为倾斜直线,根据该图象,下列判断正确的是

()

图4

A.质点在0~h1过程中除重力外不受其他力的作用

B.质点在0~h1过程中动能始终不变

C.质点在h1~h2过程中合外力与速度的方向一定相反

D.质点在h1~h2过程中可能做匀速直线运动

解析由图象可知质点在0~h1过程中机械能不变,动能和势能将会相互转化,但并不能说明不受其他力的作用,可能是其他外力不做功;质点在h1~h2过程中,机械能减小,合外力做负功,合外力与速度的方向一定相反。

答案 C

6. [2014·沈阳高三质量监测(二)]将一质量为m的小球套在一光滑的、与水平面夹角

为α(α<45°)的固定杆上,小球与一原长为L的轻质弹性绳相连接,弹性绳的一端固定在水平面上,将小球从离地面L高处由静止释放,刚释放时,弹性绳长为L,如图5所示。小球滑到底端时速度恰好为零,则小球运动过程中,下列说法中正确的是

()

图5

A.小球的机械能守恒

B.弹性绳的弹性势能将一直增大

C.小球到达底端时,弹性绳的弹性势能为mgL(cot α-1)

D.小球和弹性绳组成的系统机械能守恒

解析在小球下滑过程中,小球和弹性绳的机械能守恒,则A错误,D正确;

弹性绳的弹性势能先不变后增大,选项B错误;由机械能守恒定律知,弹性绳的弹性势能增加了mgL,选项C错误。

答案 D

7. (多选)如图6所示轨道是由一直轨道和一半圆轨道组成的,一个小滑块从距轨道

最低点B为h高度的A处由静止开始运动,滑块质量为m,不计一切摩擦。则

()

图6

A .若滑块能通过圆轨道最高点D ,h 的最小值为2.5R

B .若h =2R ,当滑块到达与圆心等高的

C 点时,对轨道的压力为3mg

C .若h =2R ,滑块会从C 、

D 之间的某个位置离开圆轨道做斜抛运动

D .若要使滑块能返回到A 点,则h ≤R

解析 要使滑块能通过最高点D ,则应满足mg =m v 2R ,可得v =gR ,即若在最高点D 时滑块的速度小于gR ,滑块无法达到最高点;若滑块速度大于等于

gR ,则可以通过最高点做平抛运动。由机械能守恒定律可知,mg (h -2R )=12

m v 2,解得h =2.5R ,A 正确;若h =2R ,由A 至C 过程由机械能守恒可得mg (2R

-R )=12m v 2C ,在C 点,由牛顿第二定律有F N =m v 2C R ,解得F N =2mg ,由牛顿

第三定律可知B 错误;h =2R 时小滑块不能通过D 点,将在C 、D 中间某一位置离开圆轨道做斜上抛运动,故C 正确;由机械能守恒可知D 正确。

答案 ACD

8. (多选)(2014·苏北四市高三第一次调研测试)如图7所示,固定在地面的斜面体上

开有凹槽,槽内紧挨放置六个半径均为r 的相同小球,各球编号如图。斜面与水平轨道OA 平滑连接,OA 长度为6r 。现将六个小球由静止同时释放,小球离开A 点后均做平抛运动,不计一切摩擦。则在各小球运动过程中,下列说法正确的是

( )

图7

A .球1的机械能守恒

B .球6在OA 段机械能增大

C .球6的水平射程最小

D .六个球落地点各不相同

解析 当所有球都在斜面上运动时机械能守恒,当有球在水平面上运动时,后面球要对前面的球做功,前面的小球机械能不守恒,选项A 错误;球6在OA 段由于球5的推力对其做正功,其机械能增大,选项B 正确;由于球6离开A 点的速度最小,所以其水平射程最小,选项C 正确;当1、2、3小球均在OA 段时,三球的速度相同,故从A 点抛出后,三球落地点也相同,选项D 错误。 答案 BC

能力提高练

9.(多选)某娱乐项目中,参与者抛出一小球去撞击触发器,从而进入下一关。现

在将这个娱乐项目进行简化,假设参与者从触发器的正下方以速率v 竖直上抛一小球,小球恰好击中触发器。若参与者仍在刚才的抛出点,沿A 、B 、C 、D 四个不同的光滑轨道分别以速率v 抛出小球,如图8所示。则小球能够击中触发器的可能是

( )

图8 解析 竖直上抛时小球恰好击中触发器,则由-mgh =0-12m v 2得v =2gh 。沿

图A 中轨道以速率v 抛出小球,小球沿光滑圆弧内表面做圆周运动,到达最高点的速率应大于或等于gR ,所以不能到达圆弧最高点,即不能击中触发器。沿图B 中轨道以速率v 抛出小球,小球沿光滑斜面上滑一段后做斜抛运动,最高点具有水平方向的速度,所以也不能击中触发器。图C 及图D 中小球在轨道最高点速度均可以为零,由机械能守恒定律可知小球能够击中触发器。

答案 CD

10. (多选)(2014·苏北四市调研)倾角为37°的光滑斜面上固定一个槽,劲度系数k =

20 N/m 、原长l 0=0.6 m 的轻弹簧下端与轻杆相连,开始时杆在槽外的长度l =

0.3 m,且杆可在槽内移动,杆与槽间的滑动摩擦力大小F f=6 N,杆与槽之间的最大静摩擦力等于滑动摩擦力。质量m=1 kg的小车从距弹簧上端L=0.6 m

处由静止释放沿斜面向下运动。已知弹簧的弹性势能E p=1

2kx

2,式中x为弹簧

的形变量。g=10 m/s2,sin 37°=0.6。关于小车和杆的运动情况,下列说法正确的是

()

图9

A.小车先做匀加速运动,然后做加速度逐渐减小的变加速运动

B.小车先做匀加速运动,然后做加速度逐渐减小的变加速运动,最后做匀速直线运动

C.杆刚要滑动时小车已通过的位移为0.9 m

D.杆从开始运动到完全进入槽内所用时间为0.1 s

解析小车从开始下滑至位移为L的过程中,小车只受重力和支持力作用,支持力不做功,只有重力做功,加速度a=g sin 37°=6 m/s2不变,所以小车先做匀加速运动,从刚接触弹簧,直至将弹簧压缩至弹力等于杆与槽的摩擦力,即弹力由0逐渐增大至6 N,小车受到的合力逐渐减小到零,所以小车接着做加速度逐渐减小的加速运动,最后匀速运动,B正确,A错误;当弹力为6 N时,

弹簧的形变量为Δx=F f

k=0.3 m,所以小车通过的位移为x=L+Δx=0.9 m,C

正确;杆开始运动时,根据机械能守恒定律可知mgx sin 37°=1

2k(Δx)

2+

1

2m v

2,

解得杆和小车的速度v=3 m/s,杆从开始运动到完全进入槽内的时间为t=l

v=

0.1 s,D正确。

答案BCD

11.如图10所示,在同一竖直平面内,一轻质弹簧一端固定,另一自由端恰好与

水平线AB平齐,静止放于倾角为53°的光滑斜面上。一长为L=9 cm的轻质细绳一端固定在O点,另一端系一质量为m=1 kg的小球,将细绳拉至水平,使小球从位置C由静止释放,小球到达最低点D时,细绳刚好被拉断。之后小球在运动过程中恰好沿斜面方向将弹簧压缩,最大压缩量为x=5 cm。(取g=10 m/s2,sin 53°=0.8,cos 53°=0.6)求:

图10

(1)细绳受到的拉力的最大值;

(2)D点到水平线AB的高度h;

(3)弹簧所获得的最大弹性势能E p。

解析(1)小球由C到D,由机械能守恒定律得:

mgL=1

2m v

2

1

,解得v1=2gL

在D点,由牛顿第二定律得F-mg=m v21

L

由①②解得F=30 N

由牛顿第三定律知细绳所能承受的最大拉力为30 N。

(2)由D到A,小球做平抛运动v2y=2gh

tan 53°=v y

v1

联立解得h=16 cm

(3)小球从C点到将弹簧压缩至最短的过程中,小球与弹簧系统的机械能守恒,

即E p =mg (L +h +x sin 53°),代入数据解得:E p =2.9 J 。

答案 (1)30 N (2)16 cm (3)2.9 J

12.(2015·领航高考冲刺试卷)如图11所示,右边传送带长L =15 m 、逆时针转动

速度为v 0=16 m/s ,左边是光滑竖直半圆轨道(半径R =0.8 m),中间是光滑的水平面AB (足够长)。用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴连。甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上。现固定甲物体,烧断细线,乙物体离开弹簧后在传送带上滑行的最远距离为s m =12 m 。传送带与乙物体间动摩擦因数为0.6,重力加速度g 取10 m/s 2,甲、乙两物体可看作质点。

图11

(1)固定乙物体,烧断细线,甲物体离开弹簧后进入半圆轨道,求甲物体通过D 点时对轨道的压力大小;

(2)甲、乙两物体均不固定,烧断细线以后(甲、乙两物体离开弹簧时的速度大小之比为v 1′v 2′=13

),问甲物体和乙物体能否再次在AB 面上发生水平碰撞?若碰撞,求再次碰撞前瞬间甲、乙两物体的速度;若不会碰撞,说明原因。

解析 (1)乙物体滑上传送带做匀减速运动:

μm 2g =m 2a

由运动学公式:v 22=2as m

由机械能守恒定律得弹簧压缩时的弹性势能

E p =12m 2v 22

固定乙物体,烧断细线,甲物体离开弹簧的速度满足:

E p =12m 1v 21

甲物体从B 运动到D 过程中机械能守恒:

2m 1gR =12m 1v 21-12

m 1v 2D ⑤

甲物体在D 点:m 1g +F N =m 1v 2D R

联立①~⑥得F N =30 N

由牛顿第三定律知F N ′=F N =30 N

(2)甲、乙两物体均不固定,烧断细线以后:

E p =12m 1v 1′2+12m 2v 2′2

由题意:v 1′v 2′=13

解得:v 1′=2 3 m/s ,v 2′=6 3 m/s

之后甲物体沿轨道上滑,设上滑的最高点高度为h ,则12m 1v 1′2=m 1gh ,得h

=0.6 m <0.8 m

滑不到与圆心等高位置就会返回,返回AB 面上时速度大小仍然是v 1′=2 3 m/s

乙物体滑上传送带,因v ′=6 3 m/s <16 m/s ,则乙物体先向右做匀减速运动,后向左做匀加速运动。

由对称性可知乙物体返回AB 面上时速度大小仍然为v ′=6 3 m/s

甲物体和乙物体能再次在AB 面上发生水平碰撞。

答案 (1)30 N (2)会碰撞 2 3 m/s 6 3 m/s

第七章_机械能守恒定律知识点总结

机械能知识点总结 一、功 1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对 物体做了功。 2条件:. 力和力的方向上位移的乘积 3公式:W=F S cos θ W ——某力功,单位为焦耳(J ) F ——某力(要为恒力) ,单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m ) θ——力与位移的夹角 4功是标量,但它有正功、负功。某力对物体做负功,也可说成“物体克服某力做功”。 功的正负表示能量传递的方向,即功是能量转化的量度。 当)2 ,0[π θ∈时,即力与位移成锐角,力做正功,功为正; 当2 π θ= 时,即力与位移垂直,力不做功,功为零; 当],2 ( ππ θ∈时,即力与位移成钝角,力做负功,功为负; 5功是一个过程所对应的量,因此功是过程量。 6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。 7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。 即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ 没有做功的情况一般有以下几种: (1)劳而无功。如人用100N 的力推石头没动。 (2)不劳无功。如在光滑水平面上的物体靠惯性做匀速直线运动。 (3)垂直无功。当物体受力的方向与该物体的运动方向垂直时,如手提水桶在水平面上匀速前进。 例1、下列情况中,有力对物体做功的是( ) A 、用力推车,车不动 B 、小车在光滑的水平面上匀速运动 C 、举重运动员举着杠铃沿着水平方向走了1m. D 、苹果从树上落下 例2、在100m 深的矿井里,每分钟积水9m 3 ,要想不让水留在矿井里,应该用至少多大功率的水泵抽水? 解:每分钟泵抽起水的重力G=gV 水ρ,水泵克服重力做功gVh W 水ρ=,完成这些功所需时间秒60=t ∴t gVh t W p 水ρ= = =60 100 98.91013???? =147000W=147(kW ) 二、功率 1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。 2公式:t W P = (平均功率) θυcos F P =(平均功率或瞬时功率) 3单位:瓦特W 4分类: 额定功率:指发动机正常工作时最大输出功率 实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。 5应用: (1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F = 时,速度不再增大达到最大值m ax υ,则f P /max =υ。 (2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m a x υ,则 f P /m a x =υ。 【例1】下列关于功率的说法正确的是( ) A.物体做功越多,功率越大 B.物体做功时间越短,功率越大 C.物体做功越快,功率越大 D.物体做功时间越长,功率越大 功率大,做功一定快,但做功不一定多(需控制时间)。 三、动能 1概念:物体由于运动而具有的能量,称为动能。 2动能表达式:22 1 υm E K = 3动能定理(即合外力做功与动能关系):12K K E E W -= 4理解:①合F 在一个过程中对物体做的功,等于物体在这个过程中动能的变化。 ②合F 做正功时,物体动能增加;合F 做负功时,物体动能减少。 ③动能定理揭示了合外力的功与动能变化的关系。 4适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。 5应用动能定理解题步骤: a 确定研究对象及其运动过程 b 分析研究对象在研究过程中受力情况,弄清各力做功 c 确定研究对象在运动过程中初末状态,找出初、末动能 d 列方程、求解。 四、势能:相互作用的物体凭借其位置而具有的能量叫势能,势能是系统所共有的。 一)重力势能 1定义:物体由于被举高而具有的能,叫做重力势能。 2公式:mgh E P = h ——物体具参考面的竖直高度 3参考面 a 重力势能为零的平面称为参考面; b 选取:原则是任意选取,但通常以地面为参考面 若参考面未定,重力势能无意义,不能说重力势能大小如何 选取不同的参考面,物体具有的重力势能不同,但重力势能改变与参考面的选取无关。 4标量,但有正负。 重力势能为正,表示物体在参考面的上方; 重力势能为负,表示物体在参考面的下方; 重力势能为零,表示物体在参考面的上。 5单位:焦耳(J ) 6重力做功特点:物体运动时,重力对它做的功之跟它的初、末位置有关,而跟物体运动的路径无关。 7重力做功与重力势能的关系:21P P G E E W -=

高中物理必修二机械能守恒经典试题

1.下面说法中正确的是() A.地面上的物体重力势能一定为零 B.质量大的物体重力势能一定大 C.不同的物体中离地面最高的物体其重力势能最大 D.离地面有一定高度的物体其重力势能可能为零 2.下列关于功率的说法,错误的是( ) A.功率是反映做功快慢的物理量 B.据公式P=W/t,求出的是力F在t时间内做功的平均功率 C.据公式P=Fv可知,汽车的运动速率增大,牵引力一定减小 D.据公P=Fv cosα,若知道运动物体在某一时刻的速度大小,该时刻作用力F的大小以及二者之间的夹角.便可求出该时间内力F做功的功率 3、由一重2 N的石块静止在水平面上,一个小孩用10 N的水平力踢石块,使石块滑行了1 m的距离,则小孩对石块做的功 A、等于12 J B、等于10 J C、等于2 J D、因条件不足,无法确定 4、一起重机吊着物体以加速度a(a < g)竖直加速下落一段距离的过程中,下列说法正确的是 A、重力对物体做的功等于物体重力势能的增加量 B、物体重力势能的减少量等于物体动能的增加量 C、重力做的功大于物体克服缆绳的拉力所做的功 D、物体重力势能的减少量大于物体动能的增加量 5、某汽车的额定功率为P,在很长的水平直路上从静止开始行驶,下列结论正确的是 A、汽车在很长时间内都可以维持足够的加速度做匀加速直线运动 B、汽车可以保持一段时间内做匀加速直线运动 C、汽车在任何一段时间内都不可能做匀加速直线运动 D、若汽车开始做匀加速直线运动,则汽车刚达到额定功率P时,速度亦达最大值 6、.如图所示,木块A放在木块B的左上端,两木块间的动摩擦因数为μ。用水平恒力F将木块A拉至B的右端,第一次将B固定在地面上,F做的功为W1;第二次让B可以在光滑地面上自由滑动,F做的功为W2,比较两次做功,判断正确的是() A.W1<W2B.W1=W2 C.W1>W2 D.无法比较 7、跳伞运动员在刚跳离飞机、其降落伞尚未打开的一段时间内,下列说法中正确的() A.空气阻力做正功B.重力势能增加 C.动能增加 D.空气阻力做负功 8、一个人站在阳台上,以相同的速率v分别把三个球竖直向上抛出、竖直向下抛出、水平抛出,不计空气阻力,则三球落地时的速度() A.上抛球最大B.下抛球最大C.平抛球最大D.三球一样大 9、质量为m的滑块沿着高为h,长为L的粗糙斜面恰能匀速下滑,在滑块从斜面顶端下滑到低

系统机械能守恒作业

系统机械能守恒作业 1.如图所示,一轻质弹簧固定于O点,另一端系一小球,将小球从与O点在同一水平面且 弹簧保持原长的A点无初速地释放,让它自由摆下,不计空气阻力,在小球由A点摆向最低点B的过程中() A. 小球的动能减少 B. 小球的重力势能增大 C. 小球的机械能不变 D. 小球的机械能减小 2.(多选)如图所示,轻绳跨过定滑轮悬挂两物体M和m,且M>m。不计摩擦,系统由 静止开始运动过程中() A. M、m各自的机械能均守恒 B. M减少的机械能等于m增加的机械能 C. M和m组成的系统机械能守恒 D. M减少的重力势能等于m增加的重力势能 3.(多选)如图所示,质量均为m的a、b两球固定在轻杆的 两端,杆可绕水平轴O在竖直面内无摩擦转动,已知两物体 距轴O的距离L1>L2,现在由水平位置静止释放,在a下降过 程中() A. a、b两球角速度大小相等 B. a、b两球向心加速度大小相等 C. 杆对a、b两球都不做功 D. a、b两球机械能之和保持不变 4.如图所示,是一个横截面为半圆,半径为R的光滑柱面,一根不可伸长的细线,两端分别 系着物体A、B,且m A=2m B,由图示位置从静止开始释放A物体,当物体B达到圆柱顶点时,求B的速度v。

5.如图所示,两小球A、B系在跨过定滑轮的细绳两端,小球A 的质量m A=2 kg,小球B 的质量m B=1 kg,最初用手将A、B托住处于静止,绳上恰没有张力,此时A比B高h= 1.2 m。将A、B同时释放,g取10 m/s2,求: (1)释放前,以B所在位置的平面为参考平面,A的重力势能。 (2)释放后,当A、B到达同一高度时,A、B的速度大小。 6.如图所示,天花板上固定一个质量不计的滑轮,物块A和B通过一根不可伸长的足够长 轻绳相连,跨放在定滑轮两侧,物块B的质量是A质量的两倍。初始时A悬在空中,距地高度为h,B静止于水平地面上,绳处于紧绷状态。现给物块A一竖直向下的速度,物块A向下运动恰好不接触地面,随后A竖直向上运动,求物块A能达到的最大离地高度。

(完整版)高中物理机械能守恒经典习题30道带答案

一.选择题(共30小题) 1.(2015?金山区一模)一物体静止在粗糙水平地面上,现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前两次克服摩擦力所做的功,则()A.W F2>4W F1,W f2>2W f1B.W F2>4W F1,W f2=2W f1 C.W F2<4W F1,W f2=2W f1D.W F2<4W F1,W f2<2W f1 2.(2008?山东)质量为1500kg的汽车在平直的公路上运动,v﹣t图象如图所示,由此可求() A.前25s内汽车的平均速度 B.前10s内汽车的加速度 C.前10s内汽车所受的阻力 D.15﹣25s内合外力对汽车所做的功 3.(2007?上海)物体沿直线运动的v﹣t图如图所示,已知在第1秒内合外力对物体做的功为W,则下列结论正确的是() A.从第1秒末到第3秒末合外力做功为W B.从第3秒末到第5秒末合外力做功为﹣2W C.从第5秒末到第7秒末合外力做功为W D.从第3秒末到第4秒末合外力做功为﹣0.75W 4.(2015?武清区校级学业考试)如图所示,物体在力F的作用下沿水平面移动了一段位移L,甲、乙、丙、丁四种情况下,力F和位移L的大小以及θ角均相同,则力F做功相同的是() A.甲图与乙图B.乙图与丙图C.丙图与丁图D.乙图与丁图5.(2015?赫山区校级一模)如图所示,A、B两物体质量分别是m A和m B,用劲度系数为k的弹簧相连,A、B 处于静止状态.现对A施竖直向上的力F提起A,使B对地面恰无压力.当撤去F,A由静止向下运动至最大速度时,重力做功为()

系统机械能守恒

1:如图所示,某人身系弹性绳自高空p 点自由下落,图中a 点是弹性绳的原长位置,c 点是人所到达的最低点,b 点是人静止时悬吊着的平衡位置.不计空气 阻力,下列说法中正确的是 A.从p 至b 的过程中动能越来越大 B.从p 至b 的过程中重力做的功与弹性绳弹力做的功相等 C.从p 至c 的过程中重力做的功大于弹性绳弹力做的功 D.从p 至c 的过程中重力做的功等于人克服弹性绳弹力做的功 2: 某消防队员质量60kg 从一平台上跳下,下落2m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5m .在着地过程中,对他双脚的平均作用力(即双脚受到的作用力视为恒力)估计为多大? 4:某兴趣小组对一辆自制遥控小车的性能进行研究。他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v —t 图象,如图所示(除2s —10s 时间段图象为曲线外,其余时间段图象均为直线)。已知在小车运动的过程中,2s —14s 时间段内小车的功率保持不变,在14s 末停止遥控而让小车自由滑行,小车的质量为1.0kg ,可认为在整个运动过程中小车所受到的阻力大小不变。求: (1):小车所受到的阻力大小; (2):小车匀速行驶阶段的功率; (3):小车在加速运动过程中位移的大小. 5:如图,物块在拉力F 的作用下从静止开始运动,F=60N ,θ=370,物块的质量为10kg ,摩 擦系数为0.1,当物体向前运动6米时,立即撤去F ,物体继续向前运动4 米后做平抛 v /ms -t /s

运动,高H=1米,求物体落地时的速度大小? 6:如图所示,小滑块从斜面顶点A由静止滑至水平部分C点而停止.已知斜面高为h,滑块运动的整个水平距离为s.求小滑块与接触面间的动摩擦因数(设滑块与各部分的动摩擦因数相同). 7:如图示,在质量不计、长度为L的直杆一端和中点分别固定一个质量都是m的小球A和B (1):当杆从水平位置无摩擦地转到竖直位置时(初速度为0),A的速度为多大? (2):当杆从水平位置无摩擦地转到竖直位置的过程中,杆对A、B球做功的正负。 8:如图17,长为L 的轻质硬棒的底端和中点各固定一个质量为m的小球,为使轻质硬棒能绕转轴O转到最高点,则底端小球在如图示位置应具有的最小速度。 6:如图,A和B在光滑水平面上做简谐振动,它们始终保持相对静止,当它们运动到最左端 时,瞬间把B取出,此后A仍然做简谐振动,下列正确的是 A:A的振幅将减小

机械能守恒定律高考专题复习

第八章机械能守恒定律专题 考纲要求: 1.弹性势能、动能和势能的相互转化——一Ⅰ级 2.重力势能、重力做做功与重力势能改变的关系、机械能守恒定律——一Ⅱ级 3.实验 验证机械能守恒定律 知识达标: 1.重力做功的特点 与 无关.只取决于 2 重力势能;表达式 (l )具有相对性.与 的选取有关.但重力势能的改变与此 (2)重力势能的改变与重力做功的关系.表达式 .重力做正功时. 重力势能 .重力做负功时.重力势能 . 3.弹性势能;发生形变的物体,在恢复原状时能对 ,因而具有 . 这种能量叫弹性势能。弹性势能的大小跟 有关 4.机械能.包括 、 、 . 5.机械能守恒的条件;系统只 或 做功 6 机械能守恒定律应用的一般步骤; (1)根据题意.选取 确定研究过程 (2)明确运动过程中的 或 情况.判定是否满足守恒条件 (3)选取 根据机械能守恒定律列方程求解 经典题型: 1.物体在平衡力作用下的运动中,物体的机械能、动能、重力势能有可能发生的是 A 、机械能不变.动能不变 B 动能不变.重力势能可变化 C 、动能不变.重力势能一定变化 D 若重力势能变化.则机械能变化 2.质量为m 的小球.从桌面上竖直抛出,桌面离地高为h .小球能到达的离地面高度为H , 若以桌面为零势能参考平面,不计空气气阻力 则小球落地时的机械能为 A 、mgH B .mgh C mg (H +h ) D mg (H-h ) 3.如图,一小球自A 点由静止自由下落 到B 点时与弹簧接触.到C 点时弹簧被压缩到最 短.若不计弹簧质量和空气阻力 在小球由A -B —C 的运动过程中 A 、小球和弹簧总机械能守恒 B 、小球的重力势能随时间均匀减少 C 、小球在B 点时动能最大 D 、到C 点时小球重力势能的减少量等于弹簧弹性势能的增加量 4、如图,固定于小车上的支架上用细线悬挂一小球.线长为L .小车以速度V 0做匀 速直线运动,当小车突然碰到障障碍物而停止运动时.小球上升的高度的可能值是. A. 等于g v 202 B. 小于g v 202 C. 大于g v 202 D 等于2L A B C

高三物理机械能守恒定律测试题及答案

高三物理机械能守恒定律测试题及答案 1.下列说法正确的是 ( ) A .如果物体(或系统)所受到的合外力为零,则机械能一定守恒 B .如果合外力对物体(或系统)做功为零,则机械能一定守恒 C .物体沿光滑曲面自由下滑过程中,机械能一定守恒 D .做匀加速运动的物体,其机械能可能守恒 2.如图所示,木板OA 水平放置,长为L ,在A 处放置一个质量为m 的物体,现绕O 点缓 慢抬高到A '端,直到当木板转到与水平面成α角时停止转动.这时物体受到一个微小的干 扰便开始缓慢匀速下滑,物体又回到O 点,在整个过程中( ) A .支持力对物体做的总功为αsin mgL B .摩擦力对物体做的总功为零 C .木板对物体做的总功为零 D .木板对物体做的总功为正功 3.静止在粗糙水平面上的物块A 受方向始终水平向右、大小先后为F 1、F 2、F 3的拉力作用做直线运动,t =4s 时停下,其速度—时间图象如图所示,已知物块A 与水平面间的动摩擦因数处处相同,下列判断正确的是( ) A .全过程中拉力做的功等于物块克服摩擦力做的功 B .全过程拉力做的功等于零 C .一定有F 1+F 3=2F 2 D .可能有F 1+F 3>2F 2 4.质量为m 的物体,由静止开始下落,由于空气阻力,下落的加速度为 g 5 4,在物体下落 h 的过程中,下列说法正确的是 ( ) A .物体动能增加了 mgh 54 B .物体的机械能减少了 mgh 54 C .物体克服阻力所做的功为mgh 51 D .物体的重力势能减少了mgh 5.如图所示,木板质量为M ,长度为L ,小木块的质量为m ,水平地面光滑,一根不计质量的轻绳通过定滑轮分别与M 和m 连接,小木块与木板间的动摩擦因数为μ.开始时木块静止在木板左端,现用水平向右的力将m 拉至右端,拉力至少做功为 ( )

机械能附其守恒定律知识点总结与题型归纳

功和能、机械能守恒定律 第1课时功功率 考点1.功 1.功的公式:W=Fscosθ 0≤θ< 90°力F对物体做正功, θ= 90°力F对物体不做功, 90°<θ≤180°力F对物体做负功。 特别注意:①公式只适用于恒力做功②F和S是对应同一个物体的; ③某力做的功仅由F、S决定, 与其它力是否存在以及物体的运动情况都无关。 2.重力的功:W =mgh ——只跟物体的重力及物体移动的始终位置的高度差有关,跟移动的路径无关。G 3.摩擦力的功(包括静摩擦力和滑动摩擦力) 摩擦力可以做负功,摩擦力可以做正功,摩擦力可以不做功, 一对静摩擦力的总功一定等于0,一对滑动摩擦力的总功等于 - fΔS 4.弹力的功 (1)弹力对物体可以做正功可以不做功,也可以做负功。 、 1/2 kx(xx(2)弹簧的弹力的功——W = 1/2 kx –2211合力的功——有22为弹簧的形变量) 两种方法:5. )先求出合力,然后求总功,表达式为(1 θS ×cosΣΣW=F×)合力的功等于各分力所做功的代数和,即(2 +WW+W+……ΣW=312变力做功: 基本原则——过程分割与代数累积6. E求之;合1)一般用动能定理W=Δ(K , 过程无限分小后,可认为每小段是恒力做功(2)也可用(微元法)无限分小法来求. 图线下的“面积”计算F-S(3)还可用FSFW?SF对 , 的平均作用力4)(或先寻求做,做功意味着能量的转移与转化,7.做功意义的理解问题:解决功能问题时,把握“功是能量转化的量度”这一要点 ,相应就有多少能量发生转移或转化多少功图象如图所示。下列表述正确的是物体在合外力作用下做直线运动的v一t1.例内,合外力做正功0—1s.在A B.在0—2s内,合外力总是做负功C.在1—2s内,合外力不做功内,合外力总是做正功3s —0.在D. 考点2.功率 W?P,所求出的功率是时间定义式:t内的平均功率。 1.t2.计算式:P=Fvcos θ , 其中θ是力F与速度v间的夹角。用该公式时,要求F为恒力。 (1)当v为即时速度时,对应的P为即时功率;

高中物理机械能守恒定律经典例题及技巧

一、单个物体的机械能守恒 判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。 物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。 所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。 (1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。 例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小 分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能 守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等 】 2202 121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类 在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。 例,以初速度v 0 冲上倾角为光滑斜面,求物体在斜面上运动的距离是多少 分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等 θsin 2120?==mgs mgh mv 得:θ sin 220g v s = (3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。 例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动 分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等 — 2202 1221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为: Rg v t = 所以 gR v 50= (4)悬点固定的摆动类 和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至

系统机械能守恒

机械能守恒定律2 教师寄语:题中寻感,感中悟理 要点深化: 对机械能守恒定律的理解: ① 机械能守恒定律的研究对象一定是系统,至少包括地球在内。 通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。另外小球的动能中所用的v ,也是相对于地面的速度。 ②当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。 ③“只有重力做功”不等于“只受重力作用”。在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。 典型例题 例1.长为L 、粗细均匀的铁链,对称地悬挂在轻小且光滑的定滑轮上,如图所示.轻轻拉动一下铁链的一端,使铁链由静止开始运动.当铁链刚脱离小滑轮的一瞬间,其速度多大? 例2.如图所示,一轻质弹簧固定于O 点,另一端系一重物,将重物从与悬挂点等高的地方无初速度释放,让其自由摆下,不及空气阻力,重物在摆向最低点的位置的过程中( ) A .重物重力势能减小 B .重物重力势能与动能之和增大 C .重物的机械能不变 D. 重物的机械能减少 例3. 质量均为m 的物体A 和B 分别系在一根不计质量的细绳两端,绳子跨过固定在倾角为300的斜面顶端的定滑轮上,斜面固定在水平地面上,开始时把物体B 拉到斜面底端,这

时物体A离地面的高度为0.8m,如图所示.若摩擦力均不计,从静止开始放手让它们运动.求:(g=10m/s2) (1)物体A着地时的速度; (2)物体A着地后物体B沿斜面上滑的最大距离. 巩固练习 1.如图所示,A、B两球质量相等,A球用不能伸长的轻绳系于O点,B球用轻弹簧系于O′点,O与O′点在同一水平面上,分别将A、B球拉到与悬点等高处,使绳和轻弹簧均处于水平,弹簧处于自然状态,将两球分别由静止开始释放,当两球达到各自悬点的正下方时,两球仍处在同一水平面上,则() A.两球到达各自悬点的正下方时,两球机械能相等 B.两球到达各自悬点的正下方时,A球动能较大 C.两球到达各自悬点的正下方时,B球动能较大 D.两球到达各自悬点的正下方时,A球损失的重力势能较多 2.一辆小车静止在光滑的水平面上, 小车立柱上系一根长为L拴有小球的细绳, 小球由和悬点在同一水平面处释放, 如图所示, 小球在摆动时, 不计一切阻力, 下面说法中正确的是 A. 小球的机械能守恒 B. 小球的机械能不守恒 C. 小球和小车的总机械能不守恒 D. 小球和小车的总机械能守恒 3.如图所示,两光滑斜面的倾角分别为30O和45O,质量分别为2m和m的两个滑块用不可 伸长的轻绳通过滑轮连接(不计滑轮的质量和摩擦),分别置于两个斜面上并由静止释放;

省优质课机械能守恒定律教案

机械能守恒定律 一、教学目标 1、知识与技能 (1) 知道什么是机械能,理解物体的动能和势能可以相互转化。 (2) 理解机械能守恒定律的容和适用条件。 (3) 会判定具体问题中机械能是否守恒,能运用机械能守恒定律分析实际问题。 2、过程与方法 (1) 学习从物理现象分析、推导机械能守恒定律及适用条件的研究方法。 (2) 初步掌握运用能量转化和守恒来解释物理现象及分析问题的方法。 3、情感、态度与价值观 体会科学探究中的守恒思想,养成探究自然规律的科学态度,领悟机械能守恒规律解决问题的优点,形成科学价值观。 二、教学重点和难点 1、教学重点 (1) 机械能守恒定律的探究、推导与建立,以及机械能守恒定律含义的理解。

(2) 机械能守恒定律的条件和机械能守恒定律的实际应用。 2、教学难点 (1) 机械能守恒的条件及对机械能守恒定律的理解。 (2) 能正确分析物体系统所具有的机械能,判断研 究对象在所经历的过程中机械能是否守恒。 三、教学方法和教具 1、教学方法: 实验探究、启发诱导、归纳总结、应用拓展、多媒体辅助教学 2、教具: 铁架台、铁夹、玻璃棒、细线、小钢球、摩擦计、弹簧振子 四、教学过程 (引入新课) 碰鼻实验:如图所示,把悬挂重球拉至 鼻尖由静止释放,实验者立于原位不动, 小球来回摆动,学生观察者怕重球碰坏了鼻子,可事实重球碰不到鼻尖。提出疑问,引入新课。 (新课讲授) 引导学生回忆本章学习过哪些形式的能量,重力势

能、弹性势能、动能。 一、机械能 1、机械能:动能和势能(重力势能和弹性势能)统 称为机械能。 2、表达式:E=E K+E P 3、机械能是标量,具有相对性。 先选取参考平面才能确定机械能(一般选地面)。 4、动能与势能的相互转化 例子:多媒体播放图片 ①自由落体运动,平抛运动、小球在光滑斜面向下运动、瀑布、高山滑雪 --------重力势能向动能转化 ②竖直上抛运动的上升过程 小球沿光滑斜面向上运动、背越式跳高 ---------动能向重力势能转化 ③明投出的篮球、掷出的铅球、单摆、过山车: ---------重力势能和动能互相转化 思考:上述例子发生的都是动能和重力势能的相互转化 为什么会发生这样的转化?----答:受重力 在光滑水平面上匀速直线是否受重力? 看来动能和重力势能相互转化的原因,不是受重力,而是得有重力做功。

高中物理机械能守恒定律知识点总结

高中物理机械能守恒定律知识点总结

高中物理机械能守恒定律知识点总结(一) 一、功 1.公式和单位:,其中是F和l的夹角.功的单位是焦耳,符号是J. 2.功是标量,但有正负.由,可以看出: (1)当0°≤<90°时,0<≤1,则力对物体做正功,即外界给物体输送能量,力是动力; (2)当=90°时,=0,W=0,则力对物体不做功,即外界和物体间无能量交换. (3)当90°<≤180°时,-1≤<0,则力对物体做负功,即物体向外界输送能量,力是阻力.3、判断一个力是否做功的几种方法 (1)根据力和位移的方向的夹角判断,此法常用于恒力功的判断,由于恒力功W=Flcosα,当α=90°,即力和作用点位移方向垂直时,力做的功为零. (2)根据力和瞬时速度方向的夹角判断,此法常用于判断质点做曲线运动时变力的功.当力的方向和瞬时速度方向垂直时,作用点在力的方向上位移是零,力做的功为零. (3)根据质点或系统能量是否变化,彼此是否有能量的转移或转化进行判断.若有能量的变化,或系统内各质点间彼此有能量的转移或转化,则必定有力做功. 4、各种力做功的特点 (1)重力做功的特点:只跟初末位置的高度差有关,而跟运动的路径无关. (2)弹力做功的特点:对接触面间的弹力,由于弹力的方向与运动方向垂直,弹力对物体不做功;对弹簧的弹力做的功,高中阶段没有给出相关的公式,对它的求解要借助其他途径如动能定理、机械能守恒、功能关系等. (3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关,它可以做负功,也可以做正功,做正功时起动力作用.如用传送带把货物由低处运送到高处,摩擦力就充当动力.摩擦力

高中物理机械能守恒定律知识点总结

高中物理机械能守恒定律知识点总结(一) 一、功 1.公式和单位:,其中是F和l的夹角.功的单位是焦耳,符号是J. 2.功是标量,但有正负.由,可以看出: (1)当0°≤<90°时,0<≤1,则力对物体做正功,即外界给物体输送能量,力是动力; (2)当=90°时,=0,W=0,则力对物体不做功,即外界和物体间无能量交换. (3)当90°<≤180°时,-1≤<0,则力对物体做负功,即物体向外界输送能量,力是阻力.3、判断一个力是否做功的几种方法 (1)根据力和位移的方向的夹角判断,此法常用于恒力功的判断,由于恒力功W=Flcosα,当α=90°,即力和作用点位移方向垂直时,力做的功为零. (2)根据力和瞬时速度方向的夹角判断,此法常用于判断质点做曲线运动时变力的功.当力的方向和瞬时速度方向垂直时,作用点在力的方向上位移是零,力做的功为零. (3)根据质点或系统能量是否变化,彼此是否有能量的转移或转化进行判断.若有能量的变化,或系统内各质点间彼此有能量的转移或转化,则必定有力做功. 4、各种力做功的特点 (1)重力做功的特点:只跟初末位置的高度差有关,而跟运动的路径无关. (2)弹力做功的特点:对接触面间的弹力,由于弹力的方向与运动方向垂直,弹力对物体不做功;对弹簧的弹力做的功,高中阶段没有给出相关的公式,对它的求解要借助其他途径如动能定理、机械能守恒、功能关系等. (3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关,它可以做负功,也可以做正功,做正功时起动力作用.如用传送带把货物由低处运送到高处,摩擦力就充当动力.摩擦力

的大小不变、方向变化(摩擦力的方向始终和速度方向相反)时,摩擦力做功可以用摩擦力乘以路程来计算,即W=F·l. (1)W总=F合lcosα,α是F合与位移l的夹角; (2)W总=W1+W2+W3+?为各个分力功的代数和; (3)根据动能定理由物体动能变化量求解:W总=ΔEk. 5、变力做功的求解方法 (1)用动能定理或功能关系求解. (2)将变力的功转化为恒力的功. ①当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程的乘积,如滑动摩擦力、空气阻力做功等; ②当力的方向不变,大小随位移做线性变化时,可先求出力对位移的平均值=2F1+F2,再由W=lcosα计算,如弹簧弹力做功; ③作出变力F随位移变化的图象,图线与横轴所夹的?°面积?±即为变力所做的功; ④当变力的功率P一定时,可用W=Pt求功,如机车牵引力做的功. 二、功率 1.计算式 (1)P=tW,P为时间t内的平均功率. (2)P=Fvcosα 5.额定功率:机械正常工作时输出的最大功率.一般在机械的铭牌上标明. 6.实际功率:机械实际工作时输出的功率.要小于等于额定功率. 方恒定功率启动恒定加速度启动

两个或多个物体组成系统机械能守恒的分析方法

专题:两个物体机械能守恒的分析方法 总概括:系统的机械能守恒问题有以下四个题型: (1)轻绳连体类 (2)轻杆连体类 (3)在水平面上可以自由移动的光滑圆弧类。 (4)悬点在水平面上可以自由移动的摆动类。 (5)弹簧与物体组成的系统 一:轻绳连体类 例:如图,倾角为θ的光滑斜面上有一质量为M的物体,通过一根跨过定滑轮的细绳与质量为m的物体相连,开始时两物体均处于静止状态,且m离地面的高度为h,求它们开始运动后m着地时的速度? 例:如图,光滑斜面的倾角为θ,竖直的光滑细杆到定滑轮的距离为a,斜面上的物体M与穿过细杆的m通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m的轻绳处于水平状态,放手后两物

体从静止开始运动,求m下降b时两物体的速度大小? 例:将质量为M与3M的两小球A与B分别拴在一根细绳的两端,绳长为L,开始时B球静置于光滑的水平桌面上,A球刚好跨过桌边且线已张紧,如图所示.当A球下落时拉着B球沿桌面滑动,桌面的高为h,且h<L.若A球着地后停止不动,求: (1)B球刚滑出桌面时的速度大小. (2)B球与A球着地点之间的距离. 例:如图所示,两物体的质量分别为M与m(M>m),用细绳连接后跨在半径为R的固定光滑半圆柱体上,两物体刚好位于其水平直径的两端,释放后它们由静止开始运动,求: (1)m到达半圆柱体顶端时的速度;此时对圆柱体的压力就是多大?(2)m到达半圆柱体顶端时,M的机械能就是增加还就是减少,改变了多少? 例:如图所示,质量分别为3m、2m、m的三个小球A、B、C用两根长为L的轻绳相连,置于倾角为30°、高为L的固定光滑斜面上,A球恰能从斜面顶端外竖直落下,弧形挡板使小球只能竖直向下运动,小球落地后均不再反弹、由静止开始释放它们,不计所有摩擦,求:(1)A球刚要落地时的速度大小; (2)C球刚要落地时的速度大小、 二:轻杆连体类 (需要强调的就是,这一类的题目要根据同轴转动,角速度相等来确定两球之间的速度关系) 例:如图,质量均为m的两个小球固定在轻杆的端,轻杆可绕水平转轴在竖直平面内自由转动,两小球到轴的距离分别为L、2L,开始杆处于水平静止状态,放手后两球开始运动,求杆转动到竖直状态时,两球的速度大小。

判断系统机械能守恒的方法

判断系统机械能守恒的方法 河南省南阳市社旗一高牟长华 摘要:从系统的受力情况、系统受力的做功情况,对系统机械能守恒条件进行了总结,介绍了判断系统机械能守恒的方法,应用判断守恒方法解析具体的例题;对系统所受内力的做功情况进行了分析。 关键词:系统机械能守恒内力 在高中物理教材中机械能守恒定律的内容是“在只有重力、弹力做功的情形下,物体的动能和势能发生相互转化,但机械能的总量保持不变。”此表述不够全面,容易误导学生认为如果有除了重力、弹力的其他力做功的话,则机械能不守恒。在教学过程中应加以扩展,通过设计的专题使学生对机械能守恒定律有更深入的认识。 物理学中把势能和动能统称机械能,势能存在于具有相互作用的物体之间,也就是说势能应该是相互作用的两个物体共同所有,比如重力势能是物体和地球共有,弹性势能是弹簧和使之发生形变的物体共有。 在讨论势能时必须是多个物体组成的系统,所以在讨论机械能时也应该选一个系统作为研究对象。如在讨论重力势能时就要选物体和地球为系统,在讨论弹性势能时就要选发生弹性形变的物体和使之发生形变的物体为系统。对一个系统的受力情况,可以根据施力物体和受力物体是否在所选的系统内,把系统受的力分为外力和内力。施力物体在所选系统外,而受力物体在系统内,相对系统来说此力就可叫外力,如果施力物体和受力物体都在所选系统内,则此力叫内力。在讨论重力势能和弹性势能的时候,重力和弹力就是系统所受的内力。在判断系统机械能是否守恒时可以通过系统内能量的转化来判断,也可以分析内力、外力的做功情况来判断系统的机械能是否守恒。现把分析内力、外力的做功情况来判断系统的机械能是否守恒的方法介绍如下: 一、系统机械能守恒条件 如果系统所受的外力满足其中一条,则系统机械能有可能守恒,判断机械能是否守恒不光分析系统所受外力情况,还要看所受内力情况。如果系统所受外力满足以上条件之一,而系统所受内力又满足以下其中一条,则系统机械能就守恒。 用系统所受内力、外力的做功情况来判断系统的机械能守恒时,外力和内力要同时满足以上条件,机械能才守恒。 二、应用举例

《机械能守恒定律》优质课教学设计

课堂教学设计表 课程名称物理设计者单位(学校)授课班级 章节名称七.8机械能守恒定律学时 1 学习目标知识与技能: 1.知道什么是机械能,知道系统动能和势能可以相互转化。 2.理解机械能守恒定律的内容,知道它的含义和适用条件。 3.在具体问题中,判定机械能是否守恒,并能列出机械能守恒的方程式。 过程与方法: 1.通过科学探究机械能的过程,对物理现象(动能和势能的转化)的分析提出 假设,再进行理论推导的物理研究方法。 2.经历归纳概括“机械能守恒条件”的过程,体会归纳的思想方法。 情感态度价值观: 1.通过有趣的演示实验,激发学生的学习热情,体会科学的魅力。 2.通过机械能守恒定律,感悟自然界的守恒思想,体会自然的对称美、自然美。 学生特征学生已经学习 1、重力势能、弹性势能、动能的概念; 2、动能定理,重力、弹力的功能关系; 3、有能量守恒的前概念。 学生面临困难 1、对“功是能量转化的量度”理解不深; 2、机械能守恒原因的深层理解。 学习目标描述知识点 编号 学习 目标 具体描述语句 7.8-1 7.8-2 7.8-3 7.8-4 知识和能力 过程和方法 情感态度和 价值观 1、知道机械能包括重力势能、弹性势能和动能,把握课文内容。 2、知道系统的动能和势能可以相互转化。 3、理解机械能守恒定律的内容,知道它的含义和适用条件。 4、会判定机械能守恒,并会准确的列出方程。 1、会根据物理实验现象进行猜想,首先得出猜想结论。 2、会通过理论推导验证猜想。 3、体会物理学家发现规律的思维过程。 1、通过有趣的演示实验,激发学生的学习热情,体会科学的魅力。 2、通过机械能守恒定律,感悟自然界的守恒思想,体会自然的对 称美、自然美。

高中物理机械能守恒经典例题

习题 图5-3-15 如图5-3-15所示,质量相等的甲、乙两小球从一光滑直角斜面的顶端同时由静止释放,甲小球沿斜面下滑经过a点,乙小球竖直下落经过b点,a、b两点在同一水平面上,不计空气阻力,下列说法中正确的是() A.甲小球在a点的速率等于乙小球在b点的速率 B.甲小球到达a点的时间等于乙小球到达b点的时间 C.甲小球在a点的机械能等于乙小球在b点的机械能(相对同一个零势能参考面) D.甲小球在a点时重力的功率等于乙小球在b点时重力的功率 解析:由机械能守恒得两小球到达a、b两处的速度大小相等,A、C正确;设斜面的倾角为α,甲小球在斜面上运动的加 可知t甲>t乙,B错误;甲小球在a点时重力的功率P甲=mg v sin α,速度为a=g sin α,乙小球下落的加速度为a=g,由t=v a 乙小球在b点时重力的功率P乙=mg v,D错误.答案:AC 2. 图5-3-16 一根质量为M的链条一半放在光滑的水平桌面上,另一半挂在桌边,如图5-3-16(a)所示.将链条由静止释放,链条刚离开桌面时的速度为v1.若在链条两端各系一个质量均为m的小球,把链条一半和一个小球放在光滑的水平桌面上,另一半和另一个小球挂在桌边,如图5-3-16(b)所示.再次将链条由静止释放,链条刚离开桌面时的速度为v2,下列判断中正确的是() A.若M=2m,则v1=v2B.若M>2m,则v1<v2 C.若M<2m,则v1>v2D.不论M和m大小关系如何,均有v1>v2 答案:D 3. 图5-3-17 在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,那么在他减速下降高度为h的过程中,下列说法正确的是(g为当地的重力加速度)() A.他的动能减少了Fh B.他的重力势能增加了mgh C.他的机械能减少了(F-mg)h D.他的机械能减少了Fh 解析:由动能定理,ΔE k=mgh-Fh,动能减少了Fh-mgh,A选项不正确;他的重力势能减少了mgh,B选项错误;他的机械能减少了ΔE=Fh,C选项错误,D选项正确.答案:D 4.

(完整版)机械能守恒(系统)精讲精练(吐血整理)

系统的机械能守恒 由两个或两个以上的物体所构成的系统,其机械能是否守恒,就看除了重力、弹力之外,系统内的各个物体所受到的各个力做功之和是否为零,为零,则系统的机械能守恒;做正功,系统的机械能就增加,做做多少正功,系统的机械能就增加多少;做负功,系统的机械能就减少,做多少负功,系统的机械能就减少多少。 系统间的相互作用力分为三类: 1) 刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等 2) 弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。 3) 其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。 在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。但在第三种情况下,由于其它形式的能参与了机械能的转换,系统的机械能就不再守恒了。 归纳起来,系统的机械能守恒问题有以下四个题型: (1)轻绳连体类 (2)轻杆连体类 (3)在水平面上可以自由移动的光滑圆弧类。 (4)悬点在水平面上可以自由移动的摆动类。 (1)轻绳连体类 这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。 例:如图,倾角为θ的光滑斜面上有一质量为M 的物体,通过一根 跨过定滑轮的细绳与质量为m 的物体相连,开始时两物体均处于静 止状态,且m 离地面的高度为h ,求它们开始运动后m 着地时的速 度? 分析:对M 、m 和细绳所构成的系统,受到外界四个力的作用。它 们分别是:M 所受的重力Mg ,m 所受的重力mg ,斜面对M 的支持力N ,滑轮对细绳的作用力F 。 M 、m 的重力做功不会改变系统的机械能,支持力N 垂直于M 的运动方向对系统不做功,滑轮对细绳的作用力由于作用点没有位移也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是细绳的拉力,拉力做功只能使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。 在能量转化中,m 的重力势能减小,动能增加,M 的重力势能和动能都增加,用机械能的减少量等于增加量是解决为一类题的关键 222121sin mv Mv Mgh mgh ++=θ 可得m M M m gh v +-=)sin (2θ 需要提醒的是,这一类的题目往往需要利用绳连物体的速度关系来确定两个物体的

相关主题
文本预览
相关文档 最新文档