当前位置:文档之家› ABAQUS子程序USDFLD

ABAQUS子程序USDFLD

ABAQUS子程序USDFLD
ABAQUS子程序USDFLD

Abaqus/CAE User's Manual

12.8.5 Defining field variables at a material point

(在一个材料点定义场变量)

In Abaqus/Standard you can introduce dependence on solution variables with user subroutine USDFLD. This subroutine allows you to define field variables at a material point as functions of time, of any of the available material point quantities listed in “Abaqus/Standard output variable identifiers,” Section 4.2.1 of the Abaqus Analysis User's Manual, and of material directions. Material properties defined as functions of these field variables may, thus, be dependent on the solution.

User subroutine USDFLD is called at each point for which the material definition includes a reference to the user subroutine.

(在ABAQUS里面,你能够用子程序USDFLD来求解变量。USDFLD允许你将一个材料点上的场变量定义为时间函数,能够使用到的材料点在用户使用手册4.2.1节中“abaqus输出变量的标识码”中被提及到。材料的特性被定义作为场变量的函数,因此依赖于求解方法。)

(在每个被定义材料性能的点USDFLD能够被调用)

To include a reference to user subroutine USDFLD in a material definition:

1.From the menu bar in the Edit Material dialog box, select General

User Defined Field.

(For information on displaying the Edit Material dialog box, see “Creating or editing a material,” Section 12.7.1.)

2.Click OK to close the Edit Material dialog box. Alternatively, you

can select another material behavior to define from the menus in the Edit Material dialog box (see “Browsing and modifying material behaviors,” Section 12.7.2, for more information).

Abaqus/CAE User's Manual

(子程序USDFLD在材料中的定义过程可参考下面:

1.在编辑材料的对话框中,选择General-User Defined Field

2.点击OK关闭编辑材料的对话框,或者在编辑对话框中选择另外的一个材料

特性。)

===================================================================== ===================================================================== ===================================================================== ===================================================================== ==

Abaqus User Subroutines Reference Manual

1.1.49 USDFLD

User subroutine to redefine field variables at a material point.

(在一个材料点上使用USDFLD重新定义场变量)

Product: Abaqus/Standard

References(参考)

?“Obtaining material point information in an Abaqus/Standard analysis,” Section 2.1.6

?“Material data definition,” Section 20.1.2 of the Abaqus Analysis User's Manual

?*USER DEFINED FIELD

?“Damage and failure of a laminated composite plate,” Section 1.1.14 of the Abaqus Example Problems Manual

?“USDFLD,” Section 4.1.24 of the Abaqus Verification Manual Overview(概述)

User subroutine USDFLD:

?allows you to define field variables at a material point as functions of time or of any of the available material point

quantities listed in the Output Variable Identifiers table

(“Abaqus/Standard output variable identifiers,” Section 4.2.1 of the Abaqus Analysis User's Manual) except the user-defined output variables UVARM and UVARM n;

?can be used to introduce solution-dependent material properties since such properties can easily be defined as functions of field variables;

?will be called at all material points of elements for which the material definition includes user-defined field variables;

?must call utility routine GETVRM to access material point data;

?can use and update state variables; and

?can be used in conjunction with user subroutine UFIELD to prescribe predefined field variables.

(子程序USDFLD:

1.允许你在一个材料点定义场变量作为时间函数,在输出变量的标

示符中列出了所有材料点的变量,除了用户定义的输出变量

和uvarm uvarm。

2.能够用来介绍材料的性能,并且这种性能能够被定义为场变量的

函数。

3.在各元素的材料点中,用户定义的场变量能够被调用。

4.必须调用使用程序GETVRM来接入材料点数据

5.可以和UFIELD一起使用来描述预定义的场变量)

Explicit solution dependence(明确解的关系)

Since this routine provides access to material point quantities only at the start of the increment, the solution dependence introduced in this way is explicit: the material properties for a given increment are not influenced by the results obtained during the increment. Hence, the accuracy of the results depends on the size of the time increment. Therefore, you can control the time increment in this routine by means of the variable PNEWDT.

(由于程序提供的接入点只是在增量的开始,解之间的相互关系应该被明确:在增量的过程中,材料的性能不应该被得到的结果所影响。因此,结果的准确性依赖于时间增量的大小。因此,你能通过PENWDT来控制程序中的时间增量。)

Defining field variables(定义场变量)

Before user subroutine USDFLD is called, the values of the field variables at the material point are calculated by interpolation from the values defined at the nodes. Any changes to the field variables in the user subroutine are local to the material point: the nodal field variables retain the values defined as initial conditions, predefined field variables, or in user subroutine UFIELD. The values of the field variables defined in this routine are used to calculate values of material properties that are defined to depend on field variables and are passed into other user subroutines that are called at the material point, such as the following:

(在子程序USDFLD被调用之前,通过节点中定义的数值采用差值法计算出材料点的场变量。子程序中场变量的任意改动都是在材料点上的改动:节点场变量保持着数值被定义为初始状态(预定义场变量),或者使用子程序UFIELD,程序中场变量的值被用来计算材料的性能,材料的特性被定义依赖于场变量,并且在其他子程序中被调用。例如下面的程序:)

?CREEP

?HETVAL

?UEXPAN

?UHARD

?UHYPEL

?UMAT

?UMATHT

?UTRS

Output of the user-defined field variables at the material points can be obtained with the element integration point output variable FV (see “Abaqus/Standard output variable identifiers,” Section 4.2.1 of the Abaqus Analysis User's Manual).

Accessing material point data(材料存储点数据)

You are provided with access to the values of the material point quantities at the start of the increment (or in the base state in a linear perturbation step) through the utility routine GETVRM described in “Obtaining material

point information in an Abaqus/Standard analysis,” Section 2.1.6. The values of the material point quantities are obtained by calling GETVRM with the appropriate output variable keys. The values of the material point data are recovered in the arrays ARRAY, JARRAY, and FLGRAY for floating point, integer, and character data, respectively. You may not get values of some material point quantities that have not been defined at the start of the increment; e.g., ER.

(你可以通过子程序GETVRM在增量的开始或者在一个线性的摄动步中设置材料点的数值。通过子程序GETVRM,采用输出变量的减能够获得材料点的数值。材料点数据的值呈现在矩阵中,ARRAY, JARRAY, and FLGRAY分别对应浮点型、整形、字符型。对于在增量开始时没有定义的材料点得不到数值。)

State variables(状态变量)

Since the redefinition of field variables in USDFLD is local to the current increment (field variables are restored to the values interpolated from the nodal values at the start of each increment), any history dependence required to update material properties by using this subroutine must be introduced with user-defined state variables.

The state variables can be updated in USDFLD and then passed into other user subroutines that can be called at this material point, such as those listed above. You specify the number of such state variables, as shown in the example at the end of this section (see also “Allocating space” in “User subroutines: overview,” Section 17.1.1 of the Abaqus Analysis User's Manual).

(在USDFLD中重新定义的作为当前变量(场变量的值通过在每个增量开始的节点数值内插得到),任何新的变量必须被使用子程序用户定义变量。

在USDLFD中,状态变量能够更新,并且在其他子程序(上述列出的)中能够被调用,在这章的最后的例子中,你可以确定这些状态变量的数目。)

User subroutine interface(用户子程序的接口)

SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT,

1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER,

2 KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO,LACCFLA)

C

INCLUDE 'ABA_PARAM.INC'

C

CHARACTER*80 CMNAME,ORNAME

CHARACTER*3 FLGRAY(15)

DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3),

1 T(3,3),TIME(2)

DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),COORD(*)

user coding to define FIELD and, if necessary, STATEV and PNEWDT

RETURN

END

Variable to be defined(被定义的变量)

FIELD(NFIELD)

An array containing the field variables at the current material point. These are passed in with the values interpolated from the nodes at the end of the current increment, as specified with initial condition definitions, predefined field variable definitions, or user subroutine UFIELD. The interpolation is performed using the same scheme used to interpolate temperatures: an average value is used for linear elements; an approximate linear variation is used for quadratic elements (also see “Solid (continuum) elements,” Section 27.1.1 of the Abaqus Analysis User's Manual). The updated values are used to calculate the values of material properties that are defined to depend on field variables and are passed into other user subroutines (CREEP, HETVAL, UEXPAN, UHARD, UHYPEL, UMAT, UMATHT, and UTRS) that are called at this material point.

(一个数组包含着当前材料点上的场变量。在当前增量结束的节点通过内插法求得,作为指定的初始状态,预定义场变量或者只用子程序USDFLD。方法和温度的差值法相同:平均值用于线性单元;一个近似的线性变量被用于二次元素(可参考27.1.1)。这些更新的数据用来计算材料性能的数据,这些数值用场变量来定义,并且能够被子程序(CREEP, HETVAL, UEXPAN, UHARD, UHYPEL, UMAT, UMATHT, and UTRS)调用。)

Variables that can be updated(可以更新的变量)

STATEV(NSTATV)

An array containing the solution-dependent state variables. These are passed in as the values at the beginning of the increment. In all cases STATEV can be updated in this subroutine, and the updated values are passed into other user subroutines (CREEP, HETVAL, UEXPAN, UMAT, UMATHT, and UTRS) that are called at this material point. The number of state variables associated with this material point is defined as described in “Allocating space” in “User subroutines: overview,” Section 17.1.1 of the Abaqus Analysis User's Manual.

(一组数据用来保存解相关的变量。它们在增量开始时被接入。在所有的例子中,STATEV能够在子程序中被更新,并且被更新的数值能够在(CREEP, HETVAL, UEXPAN, UMAT, UMATHT, and UTRS)子程序中被调用。状态变量的数目与材料点的相关,在17.1.1中描述)

PNEWDT

Ratio of suggested new time increment to the time increment being used (DTIME, see below). This variable allows you to provide input to the automatic time incrementation algorithms in Abaqus/Standard (if automatic time incrementation is chosen).

(推荐的新的时间增量和时间增量的比例。这个变量允许你提供输入到abaqus

里面的自动时间增量的算法。)

PNEWDT is set to a large value before each call to USDFLD.

(在USDFLD被调用之前,PNEWDT被设置成一个大的数值。)

If PNEWDT is redefined to be less than 1.0, Abaqus/Standard must abandon the time increment and attempt it again with a smaller time increment. The suggested new time increment provided to the automatic time integration algorithms is PNEWDT × DTIME, where the PNEWDT used is the minimum value for all calls to user subroutines that allow redefinition of PNEWDT for this iteration.

(如果PENWD被重新定义成小于1.0的数,Abaqus/Standard必须禁止时间变量,并且尝试更小的时间变量。新的时间变量采用自动时间积分算法是PNEWDT × DTIME,PNEWDT使用最小的值对于调用其他的子程序,允许PENWDT迭代。)

If PNEWDT is given a value that is greater than 1.0 for all calls to user subroutines for this iteration and the increment converges in this iteration, Abaqus/Standard may increase the time increment. The suggested new time increment provided to the automatic time integration algorithms is PNEWDT × DTIME, where the PNEWDT used is the minimum value for all calls to user subroutines for this iteration.

If automatic time incrementation is not selected in the analysis procedure, values of PNEWDT that are greater than 1.0 will be ignored and values of PNEWDT that are less than 1.0 will cause the job to terminate.

(如果PENWD在所有调用的子程序中因为迭代或增量在迭代中收敛被重新定义成大于1.0的数,Abaqus/Standard可能增长时间变量。建议新的时间增量采用自动时间积分方法PNEWDT × DTIME计算,PNEWDT在迭代中采用最小值)

Variables passed in for information(传递信息的变量)

DIRECT(3,3)

An array containing the direction cosines of the material directions in terms of the global basis directions. DIRECT(1,1), DIRECT(2,1), DIRECT(3,1) give the (1, 2, 3) components of the first material direction; DIRECT(1,2), DIRECT(2,2), DIRECT(3,2) give the second material direction, etc. For shell and membrane elements, the first two directions are in the plane of the element and the third direction is the normal. This information is not available for beam elements.

(一组数据包含着材料各个方向的方向余弦。DIRECT(1,1), DIRECT(2,1), DIRECT(3,1) give the (1, 2, 3)是第一材料方向的组成成分;DIRECT(1,2), DIRECT(2,2), DIRECT(3,2) 是第二材料方向的组成成分。对于壳体和薄膜单元,第一和第二方向在平面的上面,第三方向是正常的。这个信息不能用于梁构件。)

T(3,3)

An array containing the direction cosines of the material orientation components relative to the element basis directions. This is the orientation that defines the material directions (DIRECT) in terms of the element basis directions. For continuum elements T and DIRECT are identical. For shell and membrane elements T(1,1) , T(1,2) , T(2,1) , T(2,2) , T(3,3) , and all other

components are zero, where is the counterclockwise rotation around the normal vector that defines the orientation. If no orientation is used, T is an identity matrix. Orientation is not available for beam elements.

(一组数据包含着相对于单元基本方向而言是材料导向组件的方向余弦。根据单元的基本方向,定义材料的方向(DIRECT)。连续单元T和DIRECT是相同的。对于壳体和膜单元T(1,1) , T(1,2) , T(2,1) , T(2,2) , T(3,3) ,其他的单元为0,是绕正常向量逆时针旋转定义方向的。如果没有方向,T是单位矩阵。定位不适用于梁单元。)

Characteristic element length. This is a typical length of a line across an element for a first-order element; it is half of the same typical length for a second-order element. For beams and trusses it is a characteristic length along the element axis. For membranes and shells it is a characteristic length in the reference surface. For axisymmetric elements

it is a characteristic length in the plane only.

(特征元素的长度。这是对于一阶元素而言,一条直线的典型长度;对于二阶元素而言,它是典型长度的一半。对于梁和桁架结构,它是沿着元件轴线的特征长度。对于膜和壳而言,是在参考表面上的特征长度。对于轴对称元素它只是在

平面上的特征长度。)

TIME(1)

Value of step time at the beginning of the current increment.

(在当前增量开始时的步长的数值。)

TIME(2)

Value of total time at the beginning of the current increment.

(在当前增量开始时的总时间的数值。)

DTIME

Time increment.

(时间增量)

CMNAME

User-specified material name, left justified.

(用户指定的材料名称,左对齐)

ORNAME

User-specified local orientation name, left justified.

(用户指定的局部定向的名字,左对齐)

Number of field variables defined at this material point.

(在这个材料点定义的字段变量的个数)

NSTATV

User-defined number of solution-dependent state variables (see “Allocating space” in “User subroutines: overview,” Section 17.1.1 of the Abaqus Analysis User's Manual).

(用户定义的解相关状态变量的个数)

NOEL

Element number.

(单元数目)

NPT

Integration point number.

(集成点数量)

LAYER

Layer number (for composite shells and layered solids).

(层号(用于复合壳体和层状实体))

KSPT

Section point number within the current layer.

(当前层内的节点数)

KSTEP

Step number.

(时间步长)

KINC

Increment number.

(时间增量)

NDI

Number of direct stress components at this point.

(在这一点上的正应力分量数)

NSHR

Number of shear stress components at this point.

(在这一点上的切应力分量数)

COORD

Coordinates at this material point.

(在材料点上的坐标)

JMAC

Variable that must be passed into the GETVRM utility routine to access an output variable.

(通过GETVRM的实际程序输出变量)

JMATYP

Variable that must be passed into the GETVRM utility routine to access an output variable.

(通过GETVRM的实际程序输出变量)

MATLAYO

Variable that must be passed into the GETVRM utility routine to access an output variable.

(通过GETVRM的实际程序输出变量)

LACCFLA

Variable that must be passed into the GETVRM utility routine to access an output variable.

(通过GETVRM的实际程序输出变量)

Example: Damaged elasticity model(例子:弹性模型的损坏)

Included below is an example of user subroutine USDFLD. In this example a truss element is loaded in tension. A damaged elasticity model is introduced: the modulus decreases as a function of the maximum tensile strain that occurred during the loading history. The maximum tensile strain is stored as a solution-dependent state variable—se e “Defining solution-dependent field variables” in “Predefined fields,” Section 32.6.1 of the Abaqus Analysis User's Manual.

(下面是使用USDFLD的一个例子。在这个例子中,桁架单元受到拉力作用。弹性损伤模型被描述为:在加载过程中,根据最大拉伸应变的函数,弹性模量减少。最大拉伸应变作为解相关状态变量被储存—可参考定义解相关变量)

Input file(输入数据)

*HEADING

DAMAGED ELASTICITY MODEL WITH USER SUBROUTINE USDFLD

*ELEMENT, TYPE=T2D2, ELSET=ONE

1, 1, 2

*NODE

1, 0., 0.

2, 10., 0.

*SOLID SECTION, ELSET=ONE, MATERIAL=ELASTIC

1.

*MATERIAL, NAME=ELASTIC

*ELASTIC, DEPENDENCIES=1

** Table of modulus values decreasing as a function

** of field variable 1.

2000., 0.3, 0., 0.00

1500., 0.3, 0., 0.01

1200., 0.3, 0., 0.02

1000., 0.3, 0., 0.04

*USER DEFINED FIELD

*DEPVAR

1

*BOUNDARY

1, 1, 2

2, 2

*STEP

*STATIC

0.1, 1.0, 0.0, 0.1

*CLOAD

2, 1, 20.

*END STEP

*STEP

*STATIC

0.1, 1.0, 0.0, 0.1

*CLOAD

2, 1, 0.

*END STEP

*STEP, INC=20

*STATIC

0.1, 2.0, 0.0, 0.1

*CLOAD

2, 1, 40.

*END STEP

User subroutine

SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT,

1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER,

2 KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO,

3 LACCFLA)

C

INCLUDE 'ABA_PARAM.INC'

C

CHARACTER*80 CMNAME,ORNAME

CHARACTER*3 FLGRAY(15)

DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3),

1 T(3,3),TIME(2)

DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),

1 COORD(*)

C

C Absolute value of current strain:

CALL GETVRM('E',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP, MATLAYO,LACCFLA)

EPS = ABS( ARRAY(1) )

C Maximum value of strain up to this point in time:

CALL GETVRM('SDV',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,

MATLAYO,LACCFLA)

EPSMAX = ARRAY(1)

C Use the maximum strain as a field variable

FIELD(1) = MAX( EPS , EPSMAX )

C Store the maximum strain as a solution dependent state

C variable

STATEV(1) = FIELD(1)

C If error, write comment to .DAT file:

IF(JRCD.NE.0)THEN

WRITE(6,*) 'REQUEST ERROR IN USDFLD FOR ELEMENT NUMBER ', 1 NOEL,'INTEGRATION POINT NUMBER ',NPT

ENDIF

C

RETURN

END

Abaqus User Subroutines Reference Manual

ABAQUS中Fortran子程序调用方法

第一种方法: / o/ J5 @6 U/ ^- o$ 1. 建立工作目录/ ]" 2. 将Abaqus安装目录\6.4-pr11\site下的aba_param_dp.inc或aba_param_sp.inc拷贝到工作目录,并改名为aba_param.inc; # ~/ |0 I0 E6 {, @4 X3 q: W3. 将编译的fortran程序拷贝到工作目录; 4. 将.obj文件拷贝到工作目录; 5. 建立好输入文件.inp; 6. 运行abaqusjob=inp_name user=fortran name即可。 第二种方法: 在Job模块里,创建工作,在EditJob对话框中选择General选项卡,在Usersubroutine file中点击Select 按钮,从弹出对话框中选择你要调用的子程序文件(后缀为.for或.f)。 , D8 i7 d/r c6 @" | 以下是网上摘录的资料,供参考:. |$ t/ }$W7 Y6 m4 h6 D6 j 用户进行二次开发时,要在命令行窗口执行下面的命令: 4 O. R+ ^,@( ? abaqus job=job_name user=sub_name ABAQUS会把用户的源程序编译成obj文件,然后临时生成一个静态库standardU.lib和动态库standardU.dll,还有其它一些临时文件,而它的主程序(如standard.exe和explicit.exe等)则没有任何改变,由此看来ABAQUS是通过加载上述2个库文件来实现对用户程序的连接,而一旦运行结束则删除所有的临时文件。这种运行机制与ANSYS、LS-DYNA、marc等都不同。 : j6 g' R-o( {0 [* N2 J3 X这些生成的临时文件要到文件夹C:\Documentsand Settings\Administrator\Local Settings\Temp\中才能找到,这也是6楼所说的藏了一些工作吧,大家不妨试一下。 1子程序格式(程序后缀是.f; .f90; .for;.obj??) 答:我试过,.for格是应该是不可以的,至少6.2和6.3版本应该是不行,其他的没用过,没有发言权。在Abaqus中,运行abaqusj=jobname user=username时,默认的用户子程序后缀名是.for(.f,.f90应该都不行的,手册上也有讲过),只有在username.for文件没有找到的情况下,才会去搜索username.obj,如果两者都没有,就会报错误信息。 如果username包括扩展名for或obj,那么就根据各自的扩展名ABAQUS会自动选择进行操作。 2CAE中如何调用?Command下如何调用? 答:CAE中在creat job的jobmanager中的general中可以指定子程序; Command下用命令:abaqus j=jobnameuser=userfilename (无后缀); 3若有多个子程序同时存在,如何处理 答:将其写在一个文件中即可,然后用一个总的子程序调用(具体参见手册) 4我对VF不是很熟,是否可以用VC,C++编写子程序? A: 若要在vf中调试,那么应该根据需要把SITE文件夹中的ABA_PARAM_DP.INC(双精度)或ABA_PARAM_SP.INC(单精度)拷到相应的位置,并改名为ABA_PARAM.INC即可。 据说6.4的将可以,6.3的你可以尝试着将VC,C++程序编译为obj文件,没试过。在你的工作目录下应该已经存在ufield.obj和uvarm.obj这两个文件(这两个文件应该是你分别单独调试ufield.FOR和uvarm.FOR时自动编译生成的,你可以将他们删掉试试看),但是由于你的FOR文件中已经有了UV ARM 和UFIELD这两个subroutine,显然会造成重复定义,请查实。 用户子程序的使用 假设你的输入文件为:a.inp b.for 那么在ABAQUS Command 中的命令应该是这样的: abaqusjob=a user=b

ABAQUS子程序

Home 浅谈ABAQUS用户子程序 李青清华大学工程力学系 摘要本文首先概要介绍了ABAQUS的用户子程序和应用程序,然后从参数,功能两方面详细论述了DLOAD, UEXTERNALDB, URDFIL三个用户子程序和GETENVVAR,POSFIL,DBFILE三个应用程序,并详细介绍了ABAQUS的结果文件(.FIL)存储格式。 关键字ABAQUS,用户子程序,应用程序,结果文件 一、前言: ABAQUS为用户提供了强大而又灵活的用户子程序接口(USER SUBROUTINE)和应用程序接口(UTILITY ROUTINE)。ABAQUS 6.2.5一共有42个用户子程序接口,13个应用程序接口,用户可以定义包括边界条件、荷载条件、接触条件、材料特性以及利用用户子程序和其它应用软件进行数据交换等等。这些用户子程序接口使用户解决一些问题时有很大的灵活性,同时大大的扩充了ABAQUS的功能。例如:如果荷载条件是时间的函数,这在ABAQUS/CAE 和INPUT 文件中是难以实现的,但在用户子程序DLOAD中就很容易实现。 二.在ABAQUS中使用用户子程序 ABAQUS的用户子程序是根据ABAQUS提供的相应接口,按照FORTRAN语法用户自己编写的代码。在一个算例中,用户可以用到多个用户子程序,但必须把它们放在一个以.FOR为扩展名的文件中。运行带有用户子程序的算例时有两种方法,一是在CAE中运行,在EDIT JOB菜单的GENERAL子菜单的USER SUBROUTINE FILE对话框中选择用户子程序所在的文件即可;另外是在ABABQUS COMMAND用运行,语法如下: ABAQUS JOB=[JOB] USER?[.FOR]?C 用户在编写用户子程序时,要注意以下几点: 1.用户子程序不能嵌套。即任何用户子程序都不能调用任何其他用户子程

abaqus简单umat子程序

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,RPL,DDSDDT, 1 DRPLDE,DRPLDT,STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED, 2 CMNAME,NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT, 3 PNEWDT,CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) include 'aba_param.inc' CHARACTER*8 CMNAME DIMENSION STRESS(NTENS),STATEV(NSTATV),DDSDDE(NTENS,NTENS), 1 DDSDDT(NTENS),DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS), 2 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3), 3 DFGRD0(3,3),DFGRD1(3,3) C UMAT FOR ISOTROPIC ELASTICITY C CANNOT BE USE D FOR PLAN E STRESS C ---------------------------------------------------------------- C PROPS(1) - E C PROPS(2) - NU C ---------------------------------------------------------------- C IF (NDI.NE.3) THEN WRITE (*,*) 'THIS UMAT MAY ONLY BE USED FOR ELEMENTS 1 WITH THREE DIRECT STRESS COMPONENTS' CALL XIT ENDIF open(400,file='D:\test.txt') C ELASTIC PROPERTIES EMOD=PROPS(1) ENU=PROPS(2) EBULK3=EMOD/(1-2*ENU) EG2=EMOD/(1+ENU) EG=EG2/2 EG3=3*EG ELAM=(EBULK3-EG2)/3 write(400,*) 'temp=',temp C ELASTIC STIFFNESS C DO K1=1, NDI DO K2=1, NDI DDSDDE(K2, K1)=ELAM END DO DDSDDE(K1, K1)=EG2+ELAM

ABAQUS用户子程序

当用到某个用户子程序时,用户所关心的主要有两方面:一是ABAQUS提供的用户子程序的接口参数。有些参数是ABAQUS传到用户子程序中的,例如SUBROUTINE DLOAD中的KSTEP,KINC,COORDS;有些是需要用户自己定义的,例如F。二是ABAQUS何时调用该用户子程序,对于不同的用户子程序ABAQUS调用的时间是不同的。有些是在每个STEP的开始,有的是STEP结尾,有的是在每个INCREMENT的开始等等。当ABAQUS 调用用户子程序是,都会把当前的STEP和INCREMENT利用用户子程序的两个实参KSTEP和KINC传给用户子程序,用户可编个小程序把它们输出到外部文件中,这样对ABAQUS何时调用该用户子程序就会有更深的了解。 (子程序中很重要的就是要知道由abaqus提供的那些参量的意义,如下) 首先介绍几个子程序: 一.SUBROUTINE DLOAD(F,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, JLTYP,SNAME) 参数: 1.F为用户定义的是每个积分点所作用的荷载的大小; 2.KSTEP,KINC为ABAQUS传到用户子程序当前的STEP和INCREMENT值;3.TIME(1),TIME(2)为当前STEP TIME和INCREMENT TIME的值;4.NOEL,NPT为积分点所在单元的编号和积分点的编号; 5.COORDS为当前积分点的坐标; 6.除F外,所有参数的值都是ABAQUS传到用户子程序中的。 功能: 1.荷载可以被定义为积分点坐标、时间、单元编号和单元节点编号的函数。 2.用户可以从其他程序的结果文件中进行相关操作来定义积分点F的大小。 例1:这个例子在每个积分点施加的荷载不仅是坐标的函数,而且是随STEP变化而变化的。SUBROUTINE DLOAD(P,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, 1 JLTYP,SNAME) INCLUDE 'ABA_PARAM.INC' C DIMENSION TIME(2),COORDS(3) CHARACTER*80 SNAME PARAMETER (PLOAD=100.E4) IF (KSTEP.EQ.1) THEN !当STEP=1时的荷载大小 P=PLOAD ELSE IF (KSTEP.EQ.2) THEN !当STEP=2时的荷载大小 P=COORDS(1)*PLOAD !施加在积分点的荷载P是坐标的函数 ELSE IF (KSTEP.EQ.3) THEN !当STEP=3时的荷载大小 P=COORDS(1)**2*PLOAD ELSE IF (KSTEP.EQ.4) THEN !当STEP=4时的荷载大小 P=COORDS(1)**3*PLOAD ELSE IF (KSTEP.EQ.5) THEN !当STEP=5时的荷载大小 P=COORDS(1)**4*PLOAD END IF RETURN END UMAT 子程序具有强大的功能,使用UMAT 子程序: (1) 可以定义材料的本构关系,使用ABAQUS 材料库中没有包含的材料进行计算,扩

Abaqus材料用户子程序UMAT基础知识与手册例子完整解释

1、为何需要使用用户材料子程序(User-Defined Material, UMAT )? 很简单,当ABAQUS 没有提供我们需要的材料模型时。所以,在决定自己定义一种新的材料模型之前,最好对ABAQUS 已经提供的模型心中有数,并且尽量使用现有的模型,因为这些模型已经经过详细的验证,并被广泛接受。 UMAT 子程序具有强大的功能,使用UMAT 子程序: (1)可以定义材料的本构关系,使用ABAQUS 材料库中没有包含的材料进行计算,扩充程序功能。 (2) 几乎可以用于力学行为分析的任何分析过程,几乎可以把用户材料属性赋予ABAQU S 中的任何单元。 (3) 必须在UMAT 中提供材料本构模型的雅可比(Jacobian )矩阵,即应力增量对应变增量的变化率。 (4) 可以和用户子程序“USDFLD ”联合使用,通过“USDFLD ”重新定义单元每一物质点上传递到UMAT 中场变量的数值。 2、需要哪些基础知识? 先看一下ABAQUS 手册(ABAQUS Analysis User's Manual )里的一段话: Warning: The use of this option generally requires considerable expertise(一定的专业知识). The user is cautioned that the implementation (实现) of any realistic constitutive (基本) model requires extensive (广泛的) development and testing. Initial testing on a single eleme nt model with prescribed traction loading (指定拉伸载荷) is strongly recommended. 但这并不意味着非力学专业,或者力学基础知识不很丰富者就只能望洋兴叹,因为我们的任务不是开发一套完整的有限元软件,而只是提供一个描述材料力学性能的本构方程(Constitutive equation )而已。当然,最基本的一些概念和知识还是要具备的,比如: 应力(stress),应变(strain )及其分量; volumetric part 和deviatoric part ;模量(modul us )、泊松比(Poisson’s ratio)、拉梅常数(Lame constant);矩阵的加减乘除甚至求逆;还有一些高等数学知识如积分、微分等。 3、UMAT 的基本任务? 我们知道,有限元计算(增量方法)的基本问题是: 已知第n 步的结果(应力,应变等)n σ,n ε,然后给出一个应变增量1+n d ε,计算新的应力1+n σ。UMAT 要完成这一计算,并要计算Jacobian 矩阵DDSDDE(I,J) =εσΔ?Δ?/。σΔ是应力增量矩阵(张量或许更合适),εΔ是应变增量矩阵。DDSDDE(I,J) 定义了第J 个应变分量的微小变化对

ABAQUS用户子程序

ABAQUS用户子程序 转自https://www.doczj.com/doc/4510294906.html, 当用到某个用户子程序时,用户所关心的主要有两方面:一是ABAQUS提供的用户子程序的接口参数。有些参数是ABAQUS传到用户子程序中的,例如SUBROUTINE DLOAD中的KSTEP,KINC,COORDS;有些是需要用户自己定义的,例如F。二是ABAQUS何时调用该用户子程序,对于不同的用户子程序ABAQUS调用的时间是不同的。有些是在每个STEP的开始,有的是STEP结尾,有的是在每个INCREMENT的开始等等。当ABAQUS调用用户子程序是,都会把当前的STEP和INCREMENT利用用户子程序的两个实参KSTEP和KINC传给用户子程序,用户可编个小程序把它们输出到外部文件中,这样对ABAQUS何时调用该用户子程序就会有更深的了解。 (子程序中很重要的就是要知道由abaqus提供的那些参量的意义,如下) 首先介绍几个子程序: 一.SUBROUTINE DLOAD(F,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, JLTYP,SNAME) 参数: 1. F为用户定义的是每个积分点所作用的荷载的大小; 2. KSTEP,KINC为ABAQUS传到用户子程序当前的STEP和INCREMENT值; 3. TIME(1),TIME(2)为当前STEP TIME和INCREMENT TIME的值; 4. NOEL,NPT为积分点所在单元的编号和积分点的编号; 5. COORDS为当前积分点的坐标; 6.除F外,所有参数的值都是ABAQUS传到用户子程序中的。 功能: 1.荷载可以被定义为积分点坐标、时间、单元编号和单元节点编号的函数。 2.用户可以从其他程序的结果文件中进行相关操作来定义积分点F的大小。 例1:这个例子在每个积分点施加的荷载不仅是坐标的函数,而且是随STEP变化而变化的。SUBROUTINE DLOAD(P,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, 1 JLTYP,SNAME) INCLUDE 'ABA_PARAM.INC' C DIMENSION TIME(2),COORDS(3) CHARACTER80 SNAME PARAMETER (PLOAD=100.E4) IF (KSTEP.EQ.1) THEN !当STEP=1时的荷载大小 P=PLOAD ELSE IF (KSTEP.EQ.2) THEN !当STEP=2时的荷载大小 P=COORDS(1)PLOAD !施加在积分点的荷载P是坐标的函数 ELSE IF (KSTEP.EQ.3) THEN !当STEP=3时的荷载大小 P=COORDS(1)2PLOAD ELSE IF (KSTEP.EQ.4) THEN !当STEP=4时的荷载大小 P=COORDS(1)3PLOAD ELSE IF (KSTEP.EQ.5) THEN !当STEP=5时的荷载大小 P=COORDS(1)4PLOAD

ABAQUS子程序UMAT的应用

A B A Q U S子程序U M A T 的应用 This model paper was revised by the Standardization Office on December 10, 2020

目录

摘要 ABAQUS软件功能强大,特别是能够模拟复杂的非线性问题,它包括了多种材料本构关系及失效准则模型,并具有良好的开放性,提供了若干个用户子程序接口,允许用户以代码的形式来扩展主程序的功能。 本文主要研究了ABAQUS用户子程序UMAT的开发方法,采用FORTRAN语言编制了各向同性硬化材料模型的接口程序,研究该类材料的弹塑性本构关系极其实现方法。 本文紧紧围绕UMAT的二次开发技术,首先对其接口原理做了详细介绍,然后针 对非线性有限元增量理论中的常刚度法和切线刚度法的算法理论做了深入的剖析,推导出了常刚度法和切线刚度法的算法理论的具体表达式,然后分别编制了两种算法的UMAT程序,最后建立了一个具体的验算模型,通过与ABAQUS自带弹塑性本构关系的计算结果相比较,验证两者的正确性。 本文还对常刚度法和切线刚度法得算法效率做了对比,得出了在非线性程度较高 时切线刚度法效率高于常刚度法的结论。 关键字: ABAQUS、UMAT、有限元、材料非线性、FORTRAN、切线刚度 ABSTRACT ABAQUS software powerful, especially to simulate complex non-linear problem, which includes a wide range of material constitutive model and failure criteria, and has a good open, providing a number of user subroutine interface that allows users to code form to expand the functions of the main program.

ABAQUS子程序USDFLD

Abaqus/CAE User's Manual 12.8.5 Defining field variables at a material point (在一个材料点定义场变量) In Abaqus/Standard you can introduce dependence on solution variables with user subroutine USDFLD. This subroutine allows you to define field variables at a material point as functions of time, of any of the available material point quantities listed in “Abaqus/Standard output variable identifiers,” Section 4.2.1 of the Abaqus Analysis User's Manual, and of material directions. Material properties defined as functions of these field variables may, thus, be dependent on the solution. User subroutine USDFLD is called at each point for which the material definition includes a reference to the user subroutine. (在ABAQUS里面,你能够用子程序USDFLD来求解变量。USDFLD允许你将一个材料点上的场变量定义为时间函数,能够使用到的材料点在用户使用手册4.2.1节中“abaqus输出变量的标识码”中被提及到。材料的特性被定义作为场变量的函数,因此依赖于求解方法。) (在每个被定义材料性能的点USDFLD能够被调用) To include a reference to user subroutine USDFLD in a material definition: 1.From the menu bar in the Edit Material dialog box, select General User Defined Field. (For information on displaying the Edit Material dialog box, see “Creating or editing a material,” Section 12.7.1.) 2.Click OK to close the Edit Material dialog box. Alternatively, you can select another material behavior to define from the menus in the Edit Material dialog box (see “Browsing and modifying material behaviors,” Section 12.7.2, for more information). Abaqus/CAE User's Manual (子程序USDFLD在材料中的定义过程可参考下面:

abaqus材料子程序

各向同性材料损伤本构模型 SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, + RPL,DDSDDT,DRPLDE,DRPLDT, + STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, + NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, + CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) INCLUDE 'ABA_PARAM.INC' CHARACTER*80 CMNAME DIMENSION STRESS(NTENS),STATEV(NSTATV), + DDSDDE(NTENS,NTENS),DDSDDT(NTENS), + DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS), + TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS), + COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) DIMENSION STRANT(6),TSTRANT(4),PT(1) DIMENSION OLD_STRESS(6) DIMENSION DOLD_STRESS(6),D_STRESS(6) DIMENSION C(6,6),CD(6,6),DSTRESS(6),BSTRESS(6),ROOT(3), + DFMNDE(6),DDMDE(6),DCDDM(6,6),ATEMP1(6), ATEMP2(6) PARAMETER (ZERO=0.D0,ONE=1.D0,TWO=2.D0,FOUR=4.D0,HALF = 0.5D0) C start C IF (NPROPS.LT.2) THEN C WRITE(7,*) '** ERROR: UMAT REQUIRES *NPROPS=2' C STOP C EN D IF E11 =PROPS(1) V12 =PROPS(2) G12 =PROPS(1)/TWO/(ONE+PROPS(2)) C Critical values of stresses XT=PROPS(3) XC=PROPS(4) XS=PROPS(5) GX=PROPS(6) !Fracture energy in matrix ETA=0.001 C Current strain DO I = 1, NTENS STRANT(I) = STRAN(I) + DSTRAN(I) END DO C Stiffness DO I = 1, 6 DO J = 1, 6 C(I,J)=ZERO END DO END DO ATEMP = (1+V12)*(1-TWO*V12) C(1,1) = E11*(1-V12)/ATEMP C(2,2) = E11*(1-V12)/ATEMP C(3,3) = E11*(1-V12)/ATEMP C(1,2) = E11*V12/ATEMP

ABAQUS用户子程序

ABAQUS用户子程序 ABAQUS/Standard subroutines: 1.CREEP: Define time-dependent, viscoplastic behavior (creep and swelling). 定义和时间相关的、粘塑性的运动(蠕变和膨胀) 2. DFLOW: Define nonuniform pore fluid velocity in a consolidation analysis. 在压实分析中,定义非均匀孔隙流速度 3. DFLUX: Define nonuniform distributed flux in a heat transfer or mass diffusion analysis. 在热传递和质量扩散分析中,定义非均匀的分布流量 4. DISP: Specify prescribed boundary conditions. 指定规定的边界条件 5. DLOAD: Specify nonuniform distributed loads. 指定非均匀的分布荷载 6. FILM: Define nonuniform film coefficient and associated sink temperatures for heat transfer analysis. 对热传递分析指定非均匀的膜层散热系数和联合的散热器温度 7. FLOW: Define nonuniform seepage coefficient and associated sink pore pressure for consolidation analysis. 对压实分析定义非均匀的渗流系数和渗入孔隙压力 8. FRIC: Define frictional behavior for contact surfaces. 对接触面定义摩擦 9. GAPCON: Define conductance between contact surfaces or nodes in a fully coupled temperature-displacement analysis or pure heat transfer analysis. 在一个完全耦合的温度—置换分析或者是纯热传递分析中,定义接触面或节点间的导热系数。 10. GAPELECTR: Define electrical conductance between surfaces in a coupled thermal-electrical analysis. 在耦合热电分析中,定义表面间的导电系数 11. HARDINI: Define initial equivalent plastic strain and initial backstress tensor. 定义初始等效应变和初始反应力张量 12. HETVAL: Provide internal heat generation in heat transfer analysis. 在热传递分析中提供初始热 13. MPC: Define multi-point constraints. 定义多点约束 14. ORIENT: Provide an orientation for defining local material directions or local directions for kinematic coupling constraints or local rigid body

abaqus1用户材料子程序

19 ABAQUS用户材料子程序(UMAT) 虽然ABAQUS为用户提供了大量的单元库和求解模型,使用户能够利用这些模型处理绝大多数的问题;但是现实世界毕竟十分复杂,ABAQUS不可能把所有可能出现的问题都包含进去。所以ABAQUS提供了大量的用户子程序(User Subroutine)。用户子程序允许用户在找不到合适模型的情况下自行定义符合自己问题的模型。这些用户子程序涵盖了建模从载荷到单元的几乎各个部分。 ABAQUS为用户提供的这个接口,允许用户通过自定义的子程序定制ABAQUS,以实现特定的功能。用户子程序具有以下的功能和特点:(1)如果ABAQUS的一些固有选项模型功能有限;用户子程序可以提高ABAQUS中这些选项的功能;(2)通常用户子程序是用FORTRAN语言的代码写成;(3)它可以以几种不同的方式包含在模型中;(4)由于它们没有存储在restart文件中,如果需要的话,可以在重新开始运行时修改它;(5)在某些情况下它可以利用ABAQUS允许的已有程序。 要在模型中包含用户子程序,可以利用ABAQUS执行程序,在abaqus执行程序中应用user选项指明包含这些子程序的FORTRAN源程序或者目标程序的名字。 提示:ABAQUS的输入文件除了可以通过ABAQUS/CAE的作业模块中提交运行外,还可以在ABAQUS Command窗口中输入ABAQUS执行程序直接运行: ABAQUS job=输入文件名 user=用户子程序的Fortran文件名 ABAQUS/Standard和ABAQUS/Explicit都支持用户子程序功能,但是他们所支持的用户子程序种类不尽相同,读者在需要使用时请注意查询手册。 在接下来的最后两章里,我们将讨论两种常用的用户子程序——用户材料子程序和用户单元子程序。 本章将通过在ABAQUS/Standard中创建Johnson-Cook的材料模型,对编写Standard 的用户材料子程序UMAT进行一个简单介绍。ABAQUS/Explicit中的用户材料子程序VUMAT的思想与之相似,但是由于隐式和显式两种方法本身的差异,它们之间也有一些不同,请读者在自己具体使用前首先仔细查阅ABAQUS手册中的相关内容。

ABAQUS中Fortran子程序调用方法—自己总结

第一种方法:在Job模块里,创建工作,在Edit Job对话框中选择General选项卡,在User subroutine file中点击Select按钮,从弹出对话框中选择你要调用的子程序文件(后缀为.for 或.f)。 第二种方法: 1. 建立工作目录 2. 将Abaqus安装目录\\site下的或拷贝到工作目录,并改名为; 3. 将编译的fortran程序拷贝到工作目录; 4. 将.obj文件拷贝到工作目录; 5. 建立好输入文件.inp; 6. 运行abaqus job=inp_name user=fortran name即可。 以下是网上摘录的资料,供参考: 用户进行二次开发时,要在命令行窗口执行下面的命令: abaqus job=job_name user=sub_name ABAQUS会把用户的源程序编译成obj文件,然后临时生成一个静态库和动态库,还有其它一些临时文件,而它的主程序(如和等)则没有任何改变,由此看来ABAQUS是通过加载上述2个库文件来实现对用户程序的连接,而一旦运行结束则删除所有的临时文件。这种运行机制与ANSYS、LS-DYNA、marc等都不同。 这些生成的临时文件要到文件夹C:\Documents and Settings\Administrator\Local Settings\Temp\中才能找到,这也是6楼所说的藏了一些工作吧,大家不妨试一下。 1 子程序格式(程序后缀是.f; .f90; .for;.obj) 答:我试过,.for格是应该是不可以的,至少和版本应该是不行,其他的没用过,没有发言权。 在Abaqus中,运行abaqus j=jobname user=username时,默认的用户子程序后缀名是.for (.f,.f90应该都不行的,手册上也有讲过),只有在文件没有找到的情况下,才会去搜索,如果两者都没有,就会报错误信息。 如果username包括扩展名for或obj,那么就根据各自的扩展名ABAQUS会自动选择进行操作。 2 CAE中如何调用Command下如何调用 答:CAE中在creat job的job manager中的general中可以指定子程序; Command下用命令:abaqus j=jobname user=userfilename(无后缀); 3 若有多个子程序同时存在,如何处理 答:将其写在一个文件中即可,然后用一个总的子程序调用(具体参见手册) 4 我对VF不是很熟,是否可以用VC,C++编写子程序

abaqus中UMAT子程序编写方法

UMAT User subroutine to define a material's mechanical behavior. Product: Abaqus/Standard Warning: The use of this subroutine generally requires considerable expertise. You are cautioned that the implementation of any realistic constitutive model requires extensive development and testing. Initial testing on a single-element model with prescribed traction loading is strongly recommended. References ?“User-defined mechanical material behavior,” Section 25.7.1 of the Abaqus Analysis User's Manual ?“User-defined thermal material behavior,” Section 25.7.2 of the Abaqus Analysis User's Manual ?*USER MATERIAL ?“SDVINI,” Section 4.1.11 of the Abaqus Verification Manual ?“UMAT and UHYPER,” Section 4.1.21 of the Abaqus Verification Manual Overview User subroutine UMAT: ?can be used to define the mechanical constitutive behavior of a material; ?will be called at all material calculation points of elements for which the material definition includes a user-defined material behavior; ?can be used with any procedure that includes mechanical behavior; ?can use solution-dependent state variables; ?must update the stresses and solution-dependent state variables to their values at the end of the increment for which it is called; ?must provide the material Jacobian matrix, , for the mechanical constitutive model; ?can be used in conjunction with user subroutine USDFLD to redefine any field variables before they are passed in; and

21ABAQUS用户材料子程序_1502407

21 ABAQUS用户材料子程序(UMAT) 虽然ABAQUS为用户提供了大量的单元库和求解模型,使用户能够利用这些模型处理绝大多数的问题;但是实际问题毕竟非常复杂,ABAQUS不可能直接求解所有可能出现的问题。所以ABAQUS提供了大量的用户自定义子程序(User Subroutine),允许用户在找不到合适模型的情况下自行定义符合自己问题的模型。这些用户子程序涵盖了建模、载荷到单元的几乎各个部分。 用户子程序具有以下的功能和特点:(1)如果ABAQUS的一些固有选项模型功能有限,用户子程序可以提高ABAQUS中这些选项的功能;(2)通常用户子程序是用FORTRAN语言的代码写成;(3)它可以以几种不同的方式包含在模型中;(4)由于它们没有存储在restart文件中,如果需要的话,可以在重新开始运行时修改它;(5)在某些情况下它可以利用ABAQUS允许的已有程序。 要在模型中包含用户子程序,可以利用ABAQUS执行程序,在执行程序中应用user 选项指明包含这些子程序的FORTRAN源程序或者目标程序的名字。 提示:ABAQUS的输入文件除了可以通过ABAQUS/CAE的作业模块中提交运行外,还可以在ABAQUS Command窗口中输入ABAQUS执行程序直接运行: ABAQUS job=输入文件名 user=用户子程序的Fortran文件名 ABAQUS/Standard和ABAQUS/Explicit都支持用户子程序功能,但是他们所支持的用户子程序种类不尽相同,读者在需要使用时请注意查询手册。 在接下来的两章里,我们将讨论两种常用的用户子程序——用户材料子程序和用户

ABAQUS子程序

ABAQUS用户子程序 当用到某个用户子程序时,用户所关心的主要有两方面:一是ABAQUS提供的用户子程序的接口参数。有些参数是ABAQUS传到用户子程序中的,例如SUBROUTINE DLOAD中的KSTEP,KINC,COORDS;有些是需要用户自己定义的,例如F。二是ABAQUS何时调用该用户子程序,对于不同的用户子程序ABAQUS调用的时间是不同的。有些是在每个STEP的开始,有的是STEP结尾,有的是在每个INCREMENT的开始等等。当ABAQUS调用用户子程序是,都会把当前的STEP和INCREMENT利用用户子程序的两个实参KSTEP和KINC传给用户子程序,用户可编个小程序把它们输出到外部文件中,这样对ABAQUS何时调用该用户子程序就会有更深的了解。 (子程序中很重要的就是要知道由abaqus提供的那些参量的意义,如下) 首先介绍几个子程序: 一.SUBROUTINE DLOAD(F,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, JLTYP,SNAME) 参数: 1.F为用户定义的是每个积分点所作用的荷载的大小; 2.KSTEP,KINC为ABAQUS传到用户子程序当前的STEP和INCREMENT值; 3.TIME(1),TIME(2)为当前STEP TIME和INCREMENT TIME的值; 4.NOEL,NPT为积分点所在单元的编号和积分点的编号; 5.COORDS为当前积分点的坐标; 6.除F外,所有参数的值都是ABAQUS传到用户子程序中的。 功能: 1.荷载可以被定义为积分点坐标、时间、单元编号和单元节点编号的函数。 2.用户可以从其他程序的结果文件中进行相关操作来定义积分点F的大小。 例1:这个例子在每个积分点施加的荷载不仅是坐标的函数,而且是随STEP变化而变化的。SUBROUTINE DLOAD(P,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, 1 JLTYP,SNAME) INCLUDE 'ABA_PARAM.INC' C DIMENSION TIME(2),COORDS(3) CHARACTER*80 SNAME PARAMETER (PLOAD=100.E4) IF (KSTEP.EQ.1) THEN !当STEP=1时的荷载大小 P=PLOAD ELSE IF (KSTEP.EQ.2) THEN !当STEP=2时的荷载大小 P=COORDS(1)*PLOAD !施加在积分点的荷载P是坐标的函数 ELSE IF (KSTEP.EQ.3) THEN !当STEP=3时的荷载大小 P=COORDS(1)**2*PLOAD ELSE IF (KSTEP.EQ.4) THEN !当STEP=4时的荷载大小 P=COORDS(1)**3*PLOAD ELSE IF (KSTEP.EQ.5) THEN !当STEP=5时的荷载大小 P=COORDS(1)**4*PLOAD END IF RETURN END UMAT 子程序具有强大的功能,使用UMAT 子程序:

相关主题
文本预览
相关文档 最新文档