当前位置:文档之家› 不等式的证明 人教试验修订本

不等式的证明 人教试验修订本

不等式的证明 人教试验修订本
不等式的证明 人教试验修订本

6.3 不等式的证明

【基础知识精讲】

1.证明不等式时,常用的不等式:

①(a-b)2≥0 (a 、b ∈R)

a 2+

b 2≥2ab (a 、b ∈R) a b +b

a ≥2 (ab>0) ②222

b a +≥2b a +≥ab ≥b

a 112+ (a 、b>0)(即平方平均数不小于算术平均数,算术平均数不小于几何平均数,几何平均数不小于调和平均数.)

③a 3+b 3+c 3≥3abc (a 、b 、c ∈R +当且仅当a =b =c 时取等号) 3

c b a ++≥3abc (a 、b 、c ∈R +当且仅当a =b =c 时取等号) ④a 2+b 2+c 2≥ab+bc+ca (a 、b 、c ∈R)

2.不等式的证明方法

①比较法

比较法是不等式的各种证法中最基本、最重要的方法,它包括作差比较法和作商比较法.用比较证明不等式的一般步骤是:作差(作商)??→?变形

判断符号(或判断与1的大小).变形的主要方法是因式分解、配方、通分等.过程要详细叙述.

②综合法:从已知条件出发,利用不等式的性质及其它已经证明过的不等式来推出结论成立的方法. ③分析法:即从结论出发,执果索因,步步寻求上一步成立的充分条件.分析法与综合法对立统一、相辅相成.

④反证法:从假设结论的反面成立,逐步推出矛盾,从而肯定结论正确的方法.当题中有“至多”、“至少”、“都”等词语时,可考虑采用反证法.

⑤换元法:当直接证不等式遇到困难时,可考虑“换元”,常见的换元有“三角换元”、“均值换元”、“整体换元”.

⑥放缩法:利用不等式的传递性,欲证A ≤B ,若知A ≤C ,只需证C ≤B 即可.应用此法时应注意放大或缩小不等式的范围,用舍掉一些正(负)项而使不等式各项之和变小(大),或者分式放大或缩小分式的分子、分母等方法而达到其目的.

⑦判别式法:有理分式函数去分母整理或关于x 的二次方程,利用判别式求函数值域达到证明不等式的目的.

⑧函数的单调性:利用二次函数,三角函数及其它函数单调性来证明不等式.

3.本节学习要求

(1)证明不等式,常常要利用到不等式的性质和一些已经证明过的常用不等式.

(2)本节中涉及数学思想方法较多,如反证法、换元法、判别式法、放缩法等.深刻理解不等式证明的各种思想方法,灵活运用这些方法来证题.

通过本节学习,培养学生逻辑推理能力以及具体问题具体分析的能力,使学生掌握比较、分析、综合、反证法、换元等数学思想方法.

【重点难点解析】

不等式的证明,由于题型多变、方式多样、技巧性强,加上无固定程序可循,因而常有一定的难度.解决这个困难的出路在于深刻理解不等式证明中应用的数学思想方法,熟练掌握不等式的性质和一些基本不等

式,灵活运用常用的证明方法——比较法、分析法、综合法,以及其它的证明方法——反证法、换元法、判别式法、放缩法、函数的单调性法、构造法等.

例1 证明45

22++x x ≥

25 分析一 注意到题中x 2+5=x 2+4+1.可将式子拆开,

故 45

22++x x =4

1422+++x x =42+x +412+x ∵ 42+x =4

1

2+x 不能成立,故不能直接运用均值不等式.设t =42+x ,则t ≥2且4522++x x =t+t 1,并设f(t)=t+t 1

,则需研究函数在t ∈[2,+∞)的单调性,再利用函数的单调性来进行证明.

设t 1、t 2∈[2,+∞)且t 1

则f(t 1)-f(t 2)=t 1+11t -t 2-2

1t =(t 1-t 2)+ 2

112t t t t - =(t 1-t 2)(1-

211t t ) =2

11212)1)((t t t t t t -- ∵ t 1-t 2<0 t 1t 2-1>0 t 1t 2>0

∴ f(t 1)

即 f(t)在t ∈[2,+∞]为增函数.

∴ f(t)≥f(2)=2+21=2

5 即 45

22++x x ≥2

5 注意:此题很可能发生y =42+x +

412+x ≥2的错误而证不到结论,需特别小心. 分析二 注意到x 2+4>0,联想到三角公式1+tg 2θ=sec 2θ,可令x 2=4tg 2θ,利用三角换元法可证得: 原式=4

45422++θθtg tg =θθsec 21sec 42+=θθcos 2cos 42+ =θcos 2+2

cos θ

≥2cos cos 22

θθ? =2 当且仅当2

cos cos 2θθ= 2cos =θ时取等号但cos θ取不到2

∴ 得不到结论

而得不到结论,错误原因还是在于应用均值定理时等号不能取到.

例2 已知a 、b 、c 、d ∈R ,求证ac+bd ≤))((2222d c b a ++.

分析一 可用分析法证明.

证法一:当ac+bd ≤0时,命题显然成立.

当ac+bd ≥0时,要证原不等式成立.

即证:(ac+bd)2≤(a 2+b 2)(c 2+d 2)

即证:2abcd ≤b 2c 2+a 2d 2

即 (bc-ad)2≥0 显然成立

所以,原不等式成立.

分析二 可用综合法证明.

∵ (a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2

=(a 2c 2+2abcd+b 2d 2)+(b 2c 2-2abcd+a 2d 2)

=(ac+bd)2+(bc-ad)2≥(ac+bd)2

∴ ))((2222d c b a ++≥|ac+bd |≥ac+bd.

分析三 可用比较法证明.

∵ (a 2+b 2)(c 2+d 2)-(ac+bd)2=(bc-ad)2≥0

∴ (a 2+b 2)(c 2+d 2)≥(ac+bd)2

∴ ))((2222d c b a ++≥|ac+bd |≥ac+bd

分析四 可用放缩法证明.

为了避免讨论,由ac+bd ≤|ac+bd |.

可以转化求证:|ac+bd |≤))((2222d c b a ++下同证法一.

分析五 可用换元法证明.

设???==θθsin cos r b r a ?

??==φφsin cos R d R c (r 、R 均为变量) 则 ac+bd =rRcos(θ-φ)≤|rR |

而|rR |=)(22b a +·)(22d c +

∴ ac+bd ≤))((2222d c b a ++

分析六 可用构造法证明.

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

浅谈中学几种常用证明不等式的方法

成绩: 江西科技师范大学 毕业论文 题目:浅谈中学几种常用证明不等式的方法 (外文):On the method commonly used in Middle School to prove inequality 院(系):数学与计算机科学学院 专业:数学与应用数学 学生姓名:吴丹 学号:20091741 指导教师:樊陈 2013年3月20日

目录 1引言 (1) 2放缩法证明不等式 (1) 2.1放缩法 (1) 2.2(改变分子分母)放缩法 (1) 2.3拆补放缩法 (2) 2.4编组放缩法 (3) 2.5寻找“中介量”放缩法 (4) 3反正法证明不等式 (4) 3.1反证法定义 (4) 3.2反证法步骤 (5) 4.换元法证明不等式 (6) 4.1利用对称性换元,化繁为简 (6) 4.2三角换元法 (7) 4.3和差换元法 (8) 4.4分式换元法 (8) 5.综合法证明不等式 (9) 5.1综合法证明不等式的依据 (9) 5.2用综合法证明不等式的应用 (9) 5.3综合法与比较法的内在联系 (10) 6.分析法 (11) 6.1分析法的定义 (11) 6.2分析法证明不等式的方法与步骤 (11) 6.3分析法证明不等式的应用 (11) 7.构造法证明不等式 (13) 7.1构造函数模型 (13) 7.2构造数列模型 (14) 8.数学归纳法证明不等式 (15) 8.1分析综合法 (16) 8.2放缩法 (16) 8.3递推法 (17) 9.判别式法证明不等式 (17) 10.导数法证明不等式 (18) 10.1利用函数的单调性证明不等式 (18) 9.2利用极值(或最值) (20) 11比较法证明不等式 (20) 11.1差值比较法 (20) 11.2商值比较法 (21) 11.3比较法的应用范围 (22) 12结束语: (22) 参考文献 (22)

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

(完整word版)柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

浅谈不等式的证明

浅谈不等式的证明 不等式问题是高中数学的重要内容之一,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目占有一定的比例,命题主要涉及解不等式、不等式的证明、不等式的应用这三方面,现将不等式的证明进行研究。 证明不等式有利于提高学生的分析与综合能力,证明不等式没有固定的程序,一个不等式的证法往往不止一种,证明过程往往是几种方法的综合运用,但无论是哪种方法,都离不开不等式的基本性质,另外在教材中提到了平均值不等式、排序不等式、三角不等式,如果能熟记并能运用的话,在证明不等式的过程中会有很大的帮助。下面将详细列举证明不等式的方法。 一、比较法 比较法是证明不等式的一种最基本也是最重要的方法,主要有作差比较和作商比较两种形式。 (1)作差比较法的步骤一般为:①作差式②差式变形③判断差式的正负④下结论;在这些步骤中,最难的就是差式变形,常用到的有配方法、通分法、因式分解法等等。 (2)作商比较法的步骤为:①作商式②商式变形③判断商式的值是大于1、小于1还是等于1④下结论。 (3)当不等式两边为多项式、分式或对数形式时,往往选择作差法;当不等式两边为指数时,常采用作商法。下面将列举例子进行

分析,以进一步加深对比较法的认识。 例1 若40πβα< <<,则ββααcos sin cos sin +<+ 证明 β βααβαβαβαβαβαβαπβαβαππβαβαβαβαβαβαβαβαβαβαβ βααcos sin cos sin 02 sin 2cos 2sin 22 sin 222cos ,02sin 420,02840)2 sin 2(cos 2sin 22 cos 2sin 22sin 2cos 2) cos (cos )sin (sin cos sin cos sin +<+<+-+-+>>+<-<+<<-<-<<<+-+-=-+--+=-+-=+-+即)(所以得于是有,所以因为 二、放缩法 放缩法是证明不等式所特有的方法,把要证的不等式中的一部分量进行放大或缩小,形成新的不等式,而这个新的不等式必须是比原不等式更容易证明的,同时,由新的不等式成立可以推出原不等式成立。另外,放缩目标必须明确,从实际出发,从原不等式过渡到新的不等式是证明的关键。下面就实际例子进行分析。 例2 若,求证:且3,0,,≥++>zx yz xy z y x

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证 明及其应用 Prepared on 22 November 2020

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角 度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 等号成立条件:()d c b a bc ad //== 扩展:()()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=?????当或时,和都等于,不考虑 二维形式的证明: 三角形式 三角形式的证明: 向量形式 向量形式的证明: 一般形式 一般形式的证明: 2 2 2 111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

证明: 推广形式(卡尔松不等式): 卡尔松不等式表述为:在m*n 矩阵中,各行元素之和的几何平均数不小于各列元素 之积的几何平均之和。 或者: 或者 推广形式的证明: 推广形式证法一: 或者 推广形式证法二: 事实上涉及平均值不等式都可以用均值不等式来证, 这个不等式并不难,可以简单证明如下: 付:柯西(Cauchy )不等式相关证明方法: 等号当且仅当021====n a a a 或i i ka b =时成立(k 为常数,n i 2,1=)现将它的证明介绍如下: 证明1:构造二次函数 ()()()2 2 222 11)(n n b x a b x a b x a x f ++++++= =()()()22 222 121122122n n n n n n a a a x a b a b a b x b b b ++ ++++ ++++ + ()0f x ∴≥恒成立 即()()()2 22 2211221212n n n n n n a b a b a b a a a b b b ++ +≤++ +++ + 当且仅当()01,2i i a x b x i n +== 即 12 12 n n a a a b b b === 时等号成立 证明(2)数学归纳法

浅谈中学数学不等式的证明方法

本科生毕业论文 学院数学与计算机科学学院 专业数学与应用数学 届别 2015 届 题目浅谈中学数学不等式的证明方法 学生姓名徐亚娟 学号 201111401138 指导教师吴万勤 教务处制

云南民族大学毕业论文(设计)原创性声明 本人郑重声明:所呈交的毕业论文(设计),是本人在指导教师的指导下进行研究工作所取得的成果。除论文中已经注明引用的内容外,本论文没有抄袭、剽窃他人已经发表的研究成果。本声明的法律结果由本人承担。 毕业论文(设计)作者签名: 日期:年月日 …………………………………………………………………………… 关于毕业论文(设计)使用授权的说明 本人完全了解云南民族大学有关保留、使用毕业论文(设计)的规定,即:学校有权保留、送交论文的复印件,允许论文被查阅,学校可以公布论文(设计)的全部或部分内容,可以采用影印或其他复制手段保存论文(设计)。 (保密论文在解密后应遵守) 指导教师签名:论文(设计)作者签名: 日期:年月日

目录

摘要 (4) 引言 (6) 1、预备知识 (6) 1.1不等式的概念 (6) 1.2不等式的性质 (6) 1.3基本不等式 (7) 1.4几个重要不等式 (7) 1.4.1柯西不等式 (7) 1.4.2伯努利不等式 (7) 2、证明不等式的常用方法 (7) 2.1比较法 (8) 2.1.1求差法 (8) 2.1.2求商法 (8) 2.1.3过度比较法 (8) 2.2分析法 (9) 2.3综合法 (9) 2.4缩放法 (10) 2.4.1放缩法的常见技巧 (10) 2.5反推法 (10) 2.6数学归纳法 (11) 2.7反证法 (11) 2.7.1反证法的基本思路 (11) 2.7.2反证法的步骤 (11) 2.8判别式法 (12) 2.9等式法 (12) 2.10中值定理法 (12) 2.11排序法 (12) 2.12分解法 (13) 2.13函数极值法 (13) 3 .利用构造法证明不等式 (13) 3.1构造函数模型 (13) 3.1.1构造一次函数模型 (14) 3.1.2构造二次函数模型 (14) 3.1.3构造单调函数证明不等式 (14) 3.2构造复数模型 (14) 3.3构造方程法 (15) 4.换元法证明不等式 (15) 4.1.三角换元法 (15) 4.2均值换元 (16)

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

柯西不等式的证明及其应用

柯西不等式的证明及其应用 赵增林 (青海民族大学,数学学院,青海,西宁,810007) 摘要:柯西不等式是一个非常重要的不等式,本文用五种不同的方法证明了柯西不等式,并 给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 柯西不等式 定理:如果1212,,,;,,,n n a a a b b b …………为两组实数,则 2222222 11221212()()()n n n n a b a b a b a a a b b b +++≤++++++……………… (*) 当且仅当12211331110n n a b a b a b a b a b a b -=-==-=……时等号成立。 若120,0,,0n b b b ≠≠≠……,则不等式的等号成立的条件是 12 12n n a a a b b b ===……。 我们称不等式(*)为柯西不等式。 柯西不等式的证明: 一)两个实数的柯西不等式的证明: 对于实数1212,,,a a b b ,恒有22222 11221212()()()a b a b a a b b +≤++,当且仅当 12210a b a b -=时等号成立。如果120,0b b ≠≠则等式成立的条件是12 12 a a b b =。 证明:对于任意实数1212,,,a a b b ,恒有 2222 22121211221221()()()()a a b b a b a b a b a b ++=++-,而21221()0a b a b -≥, 故2222211221212()()()a b a b a a b b +≤++。 当且仅当12210a b a b -=时等号成立。 不等式的几何意义如图1所示,在直角坐标系中有 异于原点O 的两点12(,)P a a ,12(,)Q b b ,由距离公式 得:|OP |=,|OQ |=

浅谈高中数学不等式的证明方法

浅谈高中数学不等式的证明方法 姜堰市罗塘高级中学 李鑫 摘要:不等式是中学数学的重要知识,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解。 关键字:比较法,分析法,综合法,反证法,放缩法,数学归纳法,换元法,均值不等式,柯西不等式,导数法 不等式在中学数学中占有重要地位,因此在历年高考中颇为重视。由于不等式的形式各异, 所以证明没有固定的程序可循,技巧多样,方法灵活,因此有关不等式的证明是中学数学的难点之一。本文从不等式的各个方面进行讲解和研究。 一.比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法。 例1 已知:0>a ,0>b ,求证:ab b a ≥+2. 分析:两个多项式的大小比较可用作差法 证明 02 )(2222 ≥-=-+=-+b a ab b a ab b a , 故得 ab b a ≥+2 . 例2 设0>>b a ,求证:a b b a b a b a >. 分析:对于含有幂指数类的用作商法 证明 因为 0>>b a , 所以 1>b a ,0>- b a . 而 1>??? ??=-b a a b b a b a b a b a , 故 a b b a b a b a > 二.分析法 从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立,这种方法叫做分析法。

一个不等式的七种证明方法

一个不等式的七种证明方法 证明不等式就是证明所给不等式在给定条件下恒成立.由于不等式的形式是多种多样的,因此,不等式的证明方法也可谓是千姿百态.针对不等式证明,要具体问题具体分析,灵活选用证明方法,提高代数变形,推理论证能力,一题多解,有助于我们对辩证唯物主义观点有进一步的认识. 题目:已知a ,b ,c ,d ∈R ,求证:ac +bd ≤))((2222d c b a ++ 分析一:用分析法 证法一:(1)当ac +bd ≤0时,显然成立. (2)当ac +bd >0时,欲证原不等式成立, 只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2) 即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2 即证2abcd ≤b 2c 2+a 2d 2 即证0≤(bc -ad )2 因为a ,b ,c ,d ∈R ,所以上式恒成立, 综合(1)、(2)可知:原不等式成立. 分析二:用综合法 证法二: (a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2 =(a 2c 2+2abcd +b 2d 2)+(b 2c 2-2abcd +a 2d 2)

=(ac +bd )2+(bc -ad )2≥(ac +bd )2 ∴))((2222d c b a ++≥|ac +bd |≥ac +bd . 故命题得证. 分析三:用比较法 证法三:∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(bc -ad )2≥0, ∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2 ∴))((2222d c b a ++≥|ac +bd |≥ac +bd , 即ac +bd ≤))((2222d c b a ++. 分析四:用放缩法 证法四:为了避免讨论,由ac +bd ≤|ac +bd |, 可以试证(ac +bd )2≤(a 2+b 2)(c 2+d 2). 由证法1可知上式成立,从而有了证法四. 分析五:用三角代换法 证法五:不妨设???==???==ββ ααsin cos ,sin cos 2 211r d r c r b r a (r 1,r 2均为变量). 则ac +bd =r 1r 2cos αcos β+r 1r 2sin αsin β=r 1r 2cos (α-β) 又|r 1r 2|=|r 1|·|r 2|=))((22222222d c b a d c b a ++=+?+ 及r 1r cos (α-β)≤|r 1r 2| 所以ac +bd ≤))((2222d c b a ++. 分析六:用换元法

4 基本不等式的证明(1)

4、基本不等式的证明(1) 目标: (,0)2 a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。 过程: 一、问题情境 把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 a 。如果天平制造得不精确,天平的两臂长略有不同(其他因素不计) ,那么a 并非物体的实际质量。不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。那么如何合理的表示物体的质量呢? 把两次称得的物体的质量“平均”一下,以2 a b A +=表示物体的质量。这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b == ,有2,M ab M == ,0a b >时,2 a b +叫,a b ,a b 的几何平均数 2 a b + 二、建构 一般,判断两数的大小可采用“比较法”: 02a b +-=≥ 2 a b +≤(当且仅当a b =时取等号) 说明:当0a =或0b =时,以上不等式仍成立。 从而有 2 a b +≤(0,0)a b ≥≥(称之“基本不等式” )当且仅当a b =时取等号。 2 a b +≤的几何解释: 如图,,2 a b OC CD OC CD +≥== 三、运用 例1 设,a b 为正数,证明:1(1)2(2)2b a a a b a +≥+≥ 注意:基本不等式的变形应用 2,2a b a b ab +??≤+≤ ???

例2 证明: 22(1)2a b ab +≥ 此不等式以后可直接使用 1(2)1(1)1 x x x + ≥>-+ 4(3)4(0)a a a +≤-< 2 2≥ 2 2> 例3 已知,0,1a b a b >+=,求证:123a b +≥+ 四、小结 五、作业 反馈32 书P91 习题1,2,3

几个重要不等式

几个重要不等式(二)柯西不等式 ,当且仅当b i=l a i(1£i£n)时取等号 柯西不等式的几种变形形式 1.设a i?R,b i>0 (i=1,2,…,n)则,当且仅当b i=l a i(1£i£n)时取等号 2.设a i,b i同号且不为零(i=1,2,…,n),则,当且仅当b1=b2=…=b n时取等号 例1.已知a1,a2,a3,…,a n,b1,b2,…,b n为正数,求证: 证明:左边= 例2.对实数a1,a2,…,a n,求证: 证明:左边= 例3.在DABC中,设其各边长为a,b,c,外接圆半径为R,求证:

证明:左边3 例4.设a,b,c为正数,且a+b+c=1,求证:证明:左边= 3 = = 例5.若n是不小于2的正整数,试证: 证明: 所以求证式等价于 由柯西不等式有

于是: 又由柯西不等式有 < 例6.设x1,x2,…,x n都是正数(n32)且,求证: 证明:不等式左端即 (1) ∵,取,则(2) 由柯西不等式有 (3) 及 综合(1)、(2)、(3)、(4)式得:

三、排序不等式 设a1£a2£…£a n,b1£b2£…£b n;r1,r2,…,r n是1,2,…,n的任一排列,则有:a1b n+ a2b n-1+…+ a n b1£a1b r1+ a2b r2+…+ a n b rn£ a1b1+ a2b2+…+ a n b n 反序和£乱序和£同序和 例1.对a,b,c?R+,比较a3+b3+c3与a2b+b2c+c2a的大小 解:取两组数a,b,c;a2,b2,c2,则有a3+b3+c33a2b+b2c+c2a 例2.正实数a1,a2,…,a n的任一排列为a1/,a2/,…a n/,则有 证明:取两组数a1,a2,…,a n; 其反序和为,原不等式的左边为乱序和,有 例3.已知a,b,c?R+求证: 证明:不妨设a3b3c>0,则>0且a123b123c12>0 则

文本预览
相关文档 最新文档