当前位置:文档之家› TFT-LCD液晶显示器制造原理及工艺

TFT-LCD液晶显示器制造原理及工艺

TFT-LCD液晶显示器制造原理及工艺
TFT-LCD液晶显示器制造原理及工艺

TFT-LCD的基本原理及其制造工艺

摘要:液晶显示器是通过液晶盒使光发生变化而产生显示作用的非主动发光型显示器。它是利用液晶特定的分子排布,在施加电压时,局部分子的排列状态发生不同于其它分子排列的变化,由此产生了液晶盒的各项光学性质的变化,再通过偏振片等变换为视觉可感知的变化。TFT-LCD是目前使用最为广泛的液晶显示器,本文主要介绍了TFT-LCD的基本原理和制造工艺。

关键词:TFT;液晶;背光源;偏振片

1.前言

自人类社会进入信息时代以来,信息显示技术在人们社会活动和日常生活中的作用日益剧增。信息处理、接受及发送等操作均借助于信息系统终端设备与人之间的界面——显示来完成,因而显示技术的发展越来越受到人们的重视。近几年显示技术发展迅速,显示产业已成为光电子产业的龙头产业,在信息产业中仅次于微电子产业,成为举足轻重的产业。在美国Dis-play Search公司世界平板显示(简称FPD)市场评估中。2001年FPD 产值为300亿美2001年FPD产值为300亿美元,到2005年将达到700亿美元。这表明平板显示的年增长率为20%以上,CRT年增长率为7%,到2004年平板显示产值将超过CRT产值。液晶显示占FPD的80%-90%市场,尤其TFT-LCD成为主导技术。

2001

2002 2003

20042005

产值/亿美元

时间/年

图1 平板显示世界市场 TFT-LCD技术是微电子技术和LCD技术巧妙结合的高新技术。人们利用微电子精细加工技术和Si材料处理技术,来开发大面积玻璃板上生长Si材料和TFT平面阵列的工艺技术。再与日益成熟的LCD制作技术相结合,以求不断提高产品品质,增强自动化大规模生产能力,提高合格率,降低成本,使其性能/价格比向CRT逼近。日本西村和北原两位液晶专家归纳了TFT-LCD十几年来在玻璃基板尺寸、屏尺寸、分辨率及灰度级等方面的发展速度,得出结果是TFT-LCD增长速度为3年增长4倍,称为西村-北原规则。西村-北原规则和微电子领域摩尔规则一样,都是预测技术和产业发展速度的。这些预测表明TFT-LCD发展速度与集成电路发展速度相同。近几年TFT-LCD、PDP以及LED都将有很大的发展。

2. TFT-LCD的构造与原理

成品TFT-LCD主要部件是LCM,LCM是由panel板和背光源(back light)组成。Panel 板是整个液晶显示器的核心部分,它的制造工艺也是最复杂的。人们通常所说的亮点也

就是在panel板的制造过程中发生的。背光源的好坏能直接影响显示效果,它通常也是影响液晶显示器的寿命的关键所在。

2.1液晶材料及其性能特点

液晶是物质存在的一种特殊形态,它既不同于具有固定形状而在光学性质上具有各向异性的固态晶体(具有双折射等光学性能),又不同于没有固定形状在光学性质上具有各向同性的液体,而是一种在光学性质上具有各向异性(具有双折射等光学特性)的粘稠液体。

?Solid

固体

?Liquid Crystal

液晶

?Liquid

液体

图(2)固体、液体、液晶的分子排布

液晶称为溶质性液晶。从分子结构上可把液晶分为向列型、层列型和胆甾型三大因此,层列液晶显示出二维液轴方向可以比较自种光学性质,例如旋光性、选择性光散射、圆偏光二色性等都是基于这种螺以及应用都取得了许多重要的液晶材料的化学结构看,主要有胆甾醇酯类、烃类、二苯乙炔类、多炔类等。

人们认识到存在液晶这类特殊性能的物质已经有一百多年了,人们在研究中发现一些固态晶体在加热到一定温度后能转变成液晶,并把这类液晶称为致热性液晶,在显示技术和光电技术中应用的就是这类液晶。人们在研究中还发现在动植物体中某些固态物质溶解后具有液晶的特性,这些物质往往在生物体的新陈代谢或生命过程中起到重要作用,并把这类类。

在层列液晶中,棒状分子排列成层状结构,构成分子相互平行排列,与层面近似垂直。这种分子层间的结合较弱,层与层间易于相互滑动,体的性质。但与通常的液体相比,其粘度要高得多。

在向列液晶中,棒状分子都以相同的方式平行排列,每个分子在长由的移动,不存在层状结构,因此,富于流动性,粘度较小。

胆甾相液晶与层列液晶同样形成层状结构,分子长轴在层面内与向列液晶相似呈平行排列。但是相邻层面间分子长轴的取向方位多少有些差别,整个液晶形成螺旋结构。胆甾相液晶的各旋结构。

虽然人们早已发现液晶这种物体的存在,但在发现它之后的很长一段时间里对它的研究仍停留在实验室阶段。,而且未找到实际应用。但从二十世纪三十年代开始经过科学家们坚持不断的探索,对液晶材料的研制、有关理论的研究成果。平面显示上的应用就是其中重要的成果之一。

平面显示上应用的液晶材料需要具有较高的双折射率、有较高的介电各向异性、较低的液态黏度等性能。从目前投入实用的联苯芳

用的多是这种类型的液晶显示器。目前国内液晶显示器厂家生产的也多是这类产品。

20:1)的液晶显示器,视角只有30o,比较狭窄,面板尺寸最大只有三寸,所以在很大程度上限制了他的应用范围。目前只能用在电子表、计算器、简单的掌上游机上。

2.2 Panel板的结构及其工作原理 2.2.1扭曲向列(TN)液晶显示器

扭曲向列(TN 是英文Twisted Nematic的字头缩写)液晶是带有90o扭曲的向列液晶。扭曲向列液晶显示器是在上世纪七十年代出现的,它除了具备液晶显示所需的基本特点外,还具有对比度高、制作技术简单、成本低等特点。目前在便携式计算器、钟表、仪器仪表中大量使

White

图2.2

扭曲向列(TN)液晶显示器是由两块ITO玻璃板之间夹着扭曲向列(TN)液晶材料形成的,液晶的厚度一般为5μm,其具体厚度与液晶材料的双折射率有关,在上下ITO 玻璃基板上面涂一层取向层,利用液晶分子与取向层表面的相互作用力,利用液晶分子与表面摩擦定向方向平行排列并带有2—3o的倾斜角如图(3)所示。上下基片摩擦定向方向成90o,使液晶分子扭曲成90o,同时液晶中掺入少量手性剂材料,起到决定液晶分子扭曲方向的作用。在上下玻璃基片的外侧贴有偏振片,偏振片的光轴与玻璃基片的摩擦方向一致,从而在液晶显示屏上得到常白的显示。当入射光偏振面随液晶分子转动90o,使偏振光通过偏振片,即得到亮态。当施加电压时正性液晶分子随电场方向排列,线偏振光偏振面不变,偏振光不能通过出射光一侧的偏振片得到暗态,所以液晶显示器就是一个电控制的光阀。但由于扭曲向列(TN)液晶显示器目前在参数最佳化的条件下,它实际上最大的扫描行数只能达到32,信息容量很小,而且由于它只能做成黑白、单色、低对比度(图(3)扭曲向列(TN)液晶显示器的结

1.倾斜度是比0°高一些的

点,大大改善了显示品质,使它可应用到计算机高分辨率全色显示等领域。目前采用的薄膜晶体管(TFT)是建立在非晶硅薄膜晶体管(α-Si TFTAM-LCD)结构基础上的。

薄膜晶体管(TFT)液晶显示器是在扭曲向列(TN)液晶显示器中引入薄膜晶体管开关而形成的有源矩阵显示,从而克服无源矩阵显示中交叉干扰、信息量少、写入速度慢等缺

在下层玻璃基板上建有TFT阵列,每个像素的ITO电极与TFT漏电极联结,栅极与扫描总线连结,原源电源与信号总线连结。施加扫描信号电压时,原源电极导通使信号电压施加到存储电容器上并充电,在帧频内存储电容器的信号电压施加到液晶像素上,使之处于选通态。再一次寻址时,由信号电压大小来充电或放电。这样各像素之间被薄膜

没有倾斜角的话,液晶对电压随机移动的可能性高,因此向一个方向以任意的角度立起来. 图(5)TFT-LCD Panel 板的结构

晶体管开关元件隔离,既防止了交叉干扰又保证了液晶响应速度满足于帧频速度,同时以存储信息大小来得到灰度级,目前灰度已可达到256级,可得到1670万种颜色,几乎可获得全色显示。从上世纪90年代形成产业以来,薄膜晶体管(TFT)液晶显示器的生产线已由第一代发展到了第六代,没换代一次基板玻璃的面积都大幅增加,而且产量不断提高、成本不断降低。如第七代薄膜晶体管(TFT)液晶显示器生产线的玻璃基板尺寸将达到1870*2200mm,目前可制成的液晶电视屏94cm(37inch),笔记本电脑屏幕的最大尺寸为38.1cm(15inch),监视器屏幕最大尺寸达63.5cm(25inch)。薄膜晶体管(TFT)液晶显示器的另一种发展趋势是薄型化、轻量化、低功耗化。基于新型材料的开发、制造艺技术的革新、设备精度和自动化程度的提高及软件技术的进步,使得薄膜晶体管

ype. Side Light Type需要起将自侧面的Lamp上出射的光向B/L正面出光作用的,但Direct Light Type是自Lamp出射的光直接向B/L正面出光,因此不需要导光板。

工(TFT)液晶显示器产品的更新换代的速度非常快。

2.3 背光源(Backlight)的结构及其原理

2.3.1背光源的分类及灯管(Lamp)的构造

Backlight (以下称为B/L)按Lamp(灯管)的排列方式分Direct Light Type和Side Light T 导光板 GATE(闸门)

Pixel(像素)

图(6)TFT 断面图 图(7)Direct Light Type 和 Side Light Type

区分 Direct Light Type

Side Light Type

重量 轻 重 辉度 高辉度 比较低 消耗电力 大(10CCFL以上) 小(6CCFL以上) 画面尺寸 中、大画面(MNT, TV)

中、小画面(全模型可使用)

价格

高档

低档

导光板有无

无(扩散板使用)

有 厚度 厚

薄 TFT-LCD B/L光源使用的灯管是阴极荧光灯(Cathode Fluorescent Lamp),自外部供应一定的电压,在阴极上放出电子, 扫描荧光体而作出可视光线的光源。CFL的构造大体由玻璃板、电极、密封气体(Hg,Ar,Ne)、荧光体构成。CFL是将自密封的水银发生的紫外线扫描在玻璃管内壁涂的荧光体而发生可视光。为使少量的水银易启动,并为抑制阴极物质的蒸发,在玻璃管內密封氩. CFL的种类按放出电子的机构有CCFL (Cold Cathode Fluorescent Lamp)和 HCFL (Hot Cathode Fluorescent Lamp)两种。 表(1) Direct Light Type 和Side Light Type 的特性比较

2.3.2 背光源的构造 (1)Lamp

是自Inverter(反向交流器)接收高电压而发生可视光线的光源。

主要使用CCFL(Cold Cathode Fluorescent Lamp).还有HCFL(Hot Cathode Fluorescent Lamp)。

(2)Lamp housing

图(8)CCFL 的构造

反射自Lamp出光的光源, 入射到导光板上。使用黄铜、铝以及黄铜上附合Ag等材料的薄膜反射

(3)Light guide Panel (导光板)

主要使用丙烯(PMMA)以Injection Molding或Casting的方法而制作的,导光入射的光源,并且具有均匀分布光源的作用。

(4)Reflector

主要是聚醚(PET)器材上为减少导光板入射的光源损失,具有反射功能。

(5)Diffuser Down (扩散Sheet)

主要是聚醚(PET)器材上以丙烯类树脂形成球形的形状,均匀扩散自导光板出光的光源,同时起集光的作用.

(6)Bottom Prism

主要是聚醚(PET)器材上以丙烯类树脂起规则地形成棱柱形状而集光的作用.

辉度增加率为user表面的1.55倍.

(7)Top Prism

具有与Bottom Prism同样的功能,以Bottom Prism表面的1.33倍增加辉度.

Prism以相互十字交叉布置,收集X轴和Y轴方向的光源.

(8)Diffuser Up (Protector Film)

具有与Diffuser Down同样的构造,以保护Prism的作用为主要目的,亦称为保护膜。要使用透过性的Diffuser,由此,多少带来Top Prism集光的光源损失,但为减少Prism 特性的不良而使用。

Diffuser Up

Plate

图(9)背光源(Backlight)的构造3.TFT-LCD的制造工序

3.1薄膜晶体管(TFT)制造工序

TFT的制造工序分坚膜、清洗、Photo、刻蚀、脱膜、检测六大工序。如图所示

图(10)TFT制造工序图

(1) 坚膜工序

坚膜工序是指将Gate电极、Data(Source/Drain)电极、像素电极、绝缘膜、保护膜以及半导体膜, 以物理或化学方法,使其在Glass(玻璃)上形成膜的工序。

Gate电极、Data(Source/Drain)电极、像素电极是金属物质(铝、铬、ITO、钼),利用Sputtering(溅射)物理方法,再Target(主要是金属)和Glass之间的Plasma(离子区), 将Target物质贴在Glass上。Plasma(离子区)是两个电极之间注入的不活性Gas上施加高电压, 从而离子化生成。离子化的不活性Gas在Target上冲击, 然后脱掉的Target物质移到Glass而形成膜

Sputtering

A

绝缘膜、保护膜、半导体膜是利用化学方式的PECVD(Plasma Enhanced Chemical Vapor Deposition)工序,即利用两个电极之间注入Gas之后施加高频率电源而生成的Plasma(等离子),在Glass上生成膜的方式

(2)清洗工序

清洗工序是指将初期投入或工序中Glass或膜表面的污染、Particle事先除去,以免发生不良的工序。对确保膜与膜之间的黏着性有所帮助。主要Unit有UV清洗Unit、Brush清洗Unit、Mega Sonic Unit、CJ( Cavitation Jet) Unit。

(3)Photo 工序

Photo 工序是指用膜上形成要制作形态的Mask 通过光, 其形态从Mask 移到感光剂(PR)的作业,包括感光剂涂屏(PR Coating)、曝光及显像等的工序。

PR Coating

曝光

显像

图(12)Photo 工序

(4)刻蚀工序

刻蚀工序是指对去除感光剂(PR)部分的膜, 利用物理、化学方法有选择地去除的工序。刻蚀方式有如下的两个方式:1.Wet Etching 是利用化学溶液刻蚀金属物质(铝,铬, ITO,钼)的方式;2.Dry Etching 利用Gas Plasma 刻蚀 SiNx ,a-Si 的方式。

Wet Etching

Dry Etching

图(13)刻蚀工序

(5)脱膜工序

脱膜工序是指刻蚀工序后,去除为形成Pattern 而留下的感光剂(PR)的工序。 脱膜工序的必须条件是完全除去PR,下部膜不应有损伤,还要维持为进行下一工序的均匀的表面状态。 (6)检测工序。

检测工序是指调查/评价工序、半成品,产品的质量判定良、 不良的工序。

3.2 成盒/制屏的工序

TFT-LCD 的面板(屏)的组装过程,是首先将洗净后的彩膜基板与TFT 的阵列基板涂布上配向膜涂液,并摩擦定向。然后在TFT 的阵列基板四周涂上封框胶,并散布5~

10 μ m 大小的间隔物于其上作支撑点,再将阵列基板与彩膜基板组合,以封框胶封合形成空的盒(Cell)。再以两种方式注入液晶,一种方式是先将此空的cell基板裁切断、裂片、取最终显示器产品所需尺寸大小,经检查后,以真空方式注入液晶材料并加以封合;另一种方法是先注入液晶,再进行裁切断片后再封合。这两种方式所需的制作时间不同,会影响总合格率也会造成生产能力的不同。

Color

filte

1.初期清

2.调准层印刷

3.滑动

Glass

12.液晶注入

16.检测

图(14)Cell 的制造工序

阵列玻璃Array 彩色率光片C/F

清洗液

图(15)Cell的制造工序

3.3 模块的工艺流程

最后将TFT-LCD的panel面板与驱动电路(Drive IC)、印刷电路板连接,并装上背光源以及固定框架就完成了液晶显示模块(LCM)。其工序一共有偏光板贴合、 TAB贴合、PCB贴合、B/L组装、老化测试、包装如图()所示。另外每块LCM在老化的前后都要进行一次检查。

’y

图(16)模块工序的部件

PCB 贴合

图(17)模块制造工序详解

(1)偏光板贴合

主要分为清洗和偏光板的贴合两大工序。

清洗包括刀洗、刷洗、冲洗、干燥:刀洗是用旋转刀片去除玻璃碎屑;刷洗是用毛刷去除灰尘和指纹;冲洗是用纯水去除残留的杂质;干燥以高、低温的热风去掉微细水气。

Chip 去掉

(Glass Chip去掉)

(去掉灰尘、指纹)

表面清洗

D.I Water清洗

冲洗

干燥

偏光板贴合是指利用Panel 板和偏光板上的信息将上下偏光板分别贴附Panel 板的上板和下板。

吸附BLOCK

贴合上/下板

(2)TAB 贴合

TAB 贴合是指利用ACF(Anisotropic Conductive Film)将TAB(Tape Automated Bonding)和Panel 板连接。其工序包括ACF 附着、TAB 定位和本压榨:ACF 附着是指将ACF 贴附在Panel 板上;TAB 定位是利用Panel 板上的定位信息将TAB 预压在Panel 板上;本压榨是在高温高压下将TAB 完全压在Panel 板上并且使得连接部位的ACF 导通。

Transistor

TAB 贴合简化图

(3)PCB 贴合

PCB 贴合与TAB 贴合一样都是利用ACF 来连接,不同的是这里连接的是TAB 与PCB,所以由于材质的不同所使用的ACF 也不同,同样工程条件也不同。具体工序分为树脂涂屏,ACF 贴合和PCB 正式压榨:树脂涂屏是为了防止水分和其它异物进入Panel 板内;ACB 贴合是将ACF 贴附在PCB 面板上;PCB 正式压榨是将PCB 与TAB 在高温高压下压榨,并且使得连接部位的ACF 导通。

?

树脂涂屏

树脂

?PCB上贴合ACF

低温/加压

高温/加压

PCB正式压榨

(4)B/L 组装

B/L 组装是把Case top、连接好TAB 和PCB 的Panel、Back Light 以及Support Main 用手工的方式连接起来的工序。 (5)老化测试

老化测试是把组装好的液晶模块放置在50℃的老化房内检测模块的连接状况,根

据客户要求其老化时间各有长短。

(5)包装

同样是利用手工的方式将测试合格的液晶模块包装出厂。

4.结束语

TFT-LCD是科技含量、经济效益及社会效益都很高的技术,是现代通信和计算机等信息产业最重要的基础之一。电子计算机的普及应用,对21世纪信息化社会将产生深远的影响,而TFT-LCD是电子计算机重要的人机接口。近几年来,LCD的性能提高很快,已优于CRT,今后的发展前景及市场潜力很大,已成为近年来东南亚地区投资热点之一。大力发展彩色TFT-LCD产业不仅可缩短与经济发达国家在信息产业上的技术差距,同时还可带动一大批相关产业的发展。目前困扰我国TFT-LCD产业发展的主要因素是人才与资金的不足。故要想方设法使科研生产趋于合理,必须调整资产结构,增强投入力度,进行企业重组,形成集团优势,实现强强联合,使科研成果能迅速地转化为生产力,无疑将会加快我国TFT-LCD产业的发展

参考文献:

[1]田民波.电子显示.清华大学出版社,2001,56-64.

[2]黄锡珉.TFT-LCD技术的进步.液晶与显示,1999,14(2):79-88.

[3]扬柏梁.世界TFTLCD产业现状.液晶与显示,2000,15(3):154-158.

[4]李维讠 ,郭强,液晶显示应用技术.北京:电子工业出版社.2000:41-46.

[5]佐藤光世,LCD Intelligence,增刊号第1卷,1996,71

TFT-LCD液晶显示器的工作原理

TFT-LCD液晶显示器的工作原理 我一直记得,当初刚开始从事有关液晶显示器相关的工作时,常常遇到的困扰,就是不知道怎么跟人家解释,液晶显示器是什么? 只好随着不同的应用环境,来解释给人家听。在最早的时候是告诉人家,就是掌上型电动玩具上所用的显示屏,随着笔记型计算机开始普及,就可以告诉人家说,就是使用在笔记型计算机上的显示器。随着手机的流行,又可以告诉人家说,是使用在手机上的显示板。时至今日,液晶显示器,对于一般普罗大众,已经不再是生涩的名词。而它更是继半导体后另一种可以再创造大量营业额的新兴科技产品,更由于其轻薄的特性,因此它的应用范围比起原先使用阴极射线管(CRT,cathode-ray tube)所作成的显示器更多更广。 如同我前面所提到的,液晶显示器泛指一大堆利用液晶所制作出来的显示器。而今日对液晶显示器这个名称,大多是指使用于笔记型计算机,或是桌上型计算机应用方面的显示器。也就是薄膜晶体管液晶显示器。其英文名称为Thin-film transistor liquid crystal display,简称之TFT LCD。从它的英文名称中我们可以知道,这一种显示器它的构成主要有两个特征,一个是薄膜晶体管,另一个就是液晶本身。我们先谈谈液晶本身。 液晶(LC,liquid crystal)的分类 我们一般都认为物质像水一样都有三态,分别是固态液态跟气态。其实物质的三态是针对水而言,对于不同的物质,可能有其它不同的状态存在。以我们要谈到的液晶态而言,它是介于固体跟液体之间的一种状态,其实这种状态仅是材料的一种相变化的过程,只要材料具有上述的过程,即在固态及液态间有此一状态存在,物理学家便称之为液态晶体。

拼接屏的施工工艺

拼接屏的施工工艺 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

简介 液晶拼接屏的安装不像普通的显示设备一样,只是简单的一放就安装好了。液晶拼接屏的安装不仅要谨慎的选择安装的场地,还需要注意安装环境周围的光线,还需要注意布线,而且对于框架也有所要求,现在我们就来谈谈怎么安装液晶拼接屏 方法/步骤 安装地面的选择: 液晶拼接屏选择的安装地面要平整,因为液晶拼接屏整个系统不管是在体积还是在重量方面都比较大。选择的地面也需要有一定的承受重量的能力,如果地面是瓷砖的话,则有可能承受不住它的重量。还有一点就是安装的地面要能够防静电。 布线的注意事项: 安装液晶拼接屏的时候,在布线时要注意将其电源线和信号线区分开来,安装在不同的地方,避免产生干扰。另外要根据整个项目的屏幕的大小和安装位置,计算出所需要的各种线的长度和规格,计算整个工程的需要。 环境光线要求:

液晶拼接屏的亮度虽然非常高,但毕竟还是有限,所以选择安装的环境周围的光线不能太强,如果太强的话,则有可能看不到屏幕上的画面。屏幕附近可能射入的光线(如窗户),必要时要进行遮挡,同时设备运行时灯光最好关掉,以保证设备的正常运行。在屏幕正前方不要安装灯,安装筒式灯即可。 框架要求: 为了日后液晶拼接屏的维护更加便利,框架包边必须为可拆卸式包边。外框架内沿距拼墙外边每边预留约25mm间隙,大型拼墙还应根据列数适当增加余量。另外,为了后期进入箱体维护,维修通道原则上上不小于宽。可拆卸式边条以压住屏幕边缘3-5mm为宜,在箱体和屏幕完全安装到位后,最后再固定可拆卸式边条。 通风要求: 在维修通道内,必须要安装空调或者是出风口,保证设备的通风情况良好。出风口位置应尽量远离液晶拼接墙(1m左右较好),并且出风口的风不能对着箱体直接吹,以免屏幕冷热不均匀而损坏。 在液晶拼接施工现场,安装调试要根据故障反映的现象来判断其原因,要重点检查设备的同步接口与传输线缆,以及对照信号源与显示终端的同步频率范围。如果图像有重影,检查传输线缆是否过长或者过细,解决办法是换线测试,或增加信号放大器等设备。如果聚焦不太理想,可以调整显示终端。面对问题的出现,首先要学会分析,才能更好的解决问题的根源,通过强有力的分

TFT LCD显示原理详解

TFT LCD显示原理详解 <什么是液晶> 我们一般认为物体有三态:固态、液态、气态,其实这只是针对水而言,有一些有机化和物还有介于固态和液态中间的状态就是液晶态,如下图(一): 图(一) a:背景 两块偏光的栅栏角度相互垂直时光线就完全无法通过,图(六)是用偏光太阳镜做的测试。 图(六) b:TFT LCD显示原理 液晶显示器就是利用偏光板这个特性来完成的,利用上下两片栅栏之间互垂直的偏光板之间充满了液晶,在利用电场控制液晶分支的旋转,来改变光的行进方向,如此一来,不同的电场大小,就会形成不同颜色度了,如图(七)。

图(七) b-1:当在不加上电极的时候,当入射的光线经过下面的偏光板(起偏器)时, 会剩下单方向的光波,通过液晶分子时, 由于液晶分子总共旋转了90度, 所以当光波到达上层偏光板时, 光波的极化方向恰好转了90度。下层的偏光板与上层偏光板, 角度也是恰好差异90度。所以光线便可以顺利的通过,如果光打在红色的滤光片上就显示为红色。效果如图(七)中前两个图所示。 b-2:当在加上电极后(最大电极),液晶分子在受到电场的影响下,都站立着,光路没有改变,光就无法通过上偏光板,也就无法显示,如图(七)蓝色滤光片下面的液晶。 c:TFT-LCD驱动电路。 为了显示任意图形,TFT-LCD用m×n点排列的逐行扫描矩阵显示。在设计驱动电路时,首先要考虑液晶电解会使液晶材料变质,为确保寿命一般都采用交流驱动方式。已经形成的驱动方式有:电压选择方式、斜坡方式、DAC方式和模拟方式等。由于TFT-LCD主要用于笔记本计算机,所以驱动电路大致分成:信号控制电路、电源电路、灰度电压电路、公用电极驱动电路、数据线驱动电路和寻址线驱动电路(栅极驱动IC)。上述驱动电路的主要功能是:信号控制电路将数字信号、控制信号以及时钟信号供给数字IC,并把控制信号和时钟信号供给栅极驱动IC;电源电路将需要的电源电压供给数字IC和栅极驱动IC;灰度电压电路将数字驱动电路产生的10个灰度电压各自供给数据驱动;公用电极驱动电路将公用电压供给相对于象素电极的共享电极;数据线驱动电路将信号控制电路送来的RGB信号的各6个比特显示数据以及时钟信号,定时顺序锁存并续进内部,然后此显示数据以6比特DA变换器转换成模拟信号,再由输出电路变换成阻抗,供给液晶屏的资料线;栅极驱动电路将信号控制电路送来的时钟信号,通过移位寄存器转换动作,将输出电路切换成ON/OFF电压,并顺次加到液晶屏上。最后,将驱动电路装配在TAB (自动焊接柔性线路板)上,用ACF(各向异性导电胶膜)、TCP(驱动电路柔性引带)与液晶显示屏相连接。 d:TFT-LCD工作原理 首先介绍显示原理。液晶显示的原理基于液晶的透光率随其所施电压大小而变化的特性。当光通过上偏振片后,变成线性偏振光,偏振方向与偏振片振动方向一致,与上下玻璃基板上面液晶分子排列顺序一致。当光通过液晶层时,由于受液晶折射,线性偏振光被分解为两束光。又由于这两束光传播速度不同(相位相同),因而当两束光合成后,必然使振光的振动方向发生变化。通过液晶层的光,则被逐渐扭曲。当光达到下偏振片时,其光轴振动方向被扭曲了90度,且与下偏振片的振动方向保持一致。这样,光线通过下偏振片形成亮场。加上电压以后,液晶在电场作用下取向,扭曲消失。这时,通过上偏振片的线性偏振光,在液晶层不再旋转,无法通过下偏振片而形成暗场。可见液晶本身不发光,在外光源的调制下,才能显示,在整个显示过程中,液晶起到一个电压控制的光阀作用。TFT-LCD的工作原理则可简述为:当栅极正向电压大于施加电压时,漏源电极导通,当栅极正向电压等于0或负电压时,漏源电极断开。漏电极与ITO象素电极连结,源电极与源线(列电极)连结,栅极与栅线(行电极)连结。这就是TFT-LCD的简单工作原理

(工艺流程)图文详解液晶面板制造工艺流程

图文详解液晶面板制造工艺流程 时间:2009年11月02日来源:PCPOP作者:周冰【大中小】液晶显示器的核心:液晶面板 曾经爆发过的面板门事件,足以解释用户对于液晶显示器所采用液晶面板类型的重视,不仅如此,液晶显示器重要的技术提升,如LED背光,超广视角,都与面板有着直接的关系。而占一台液晶显示器80%成本的液晶面板,足以说明它才是整台显示器的核心部分,它的好坏,可以说直接决定了一台液晶显示器品质是否优秀。 如此来看,民用的液晶显示器的生产只是一个组装的过程,将液晶面板、主控电路、外壳等部分进行主装,基本上不会有太过于复杂的技术问题。难道这是说,液晶显示器其实是技术含量不好的产品吗?其实不然,液晶面板的生产制造过程非常繁复,至少需要300 道流程工艺,全程需在无尘的环境、精密的技术工艺下进行。 液晶面板的大体结构其实并不是很复杂,笔者将其分为液晶板与背光系统两部分。

液晶面板的LED背光系统 背光系统包括背光板、背光源(CCFL或LED)、扩散板(用于将光线分布均匀)、扩散片等等。由于液晶不会发光,因此需要借助其他光源来照亮,背光系统的作用就在于此,但目前所用的CCFL灯管或LED背光,都不具备面光源的特性,因此需要导光板、扩散片之类的组件,使线状或点状光源的光均匀到整个面,目的是为了让液晶面板整个面上不同点的发光强度相同,但实际要做到理想状态非常困难,只能是尽量减少亮度的不均匀性,这对背光系统的设计与做工有很大的考验。

液晶板在未通电情况下呈半透明状态 可弯曲的柔性印刷板起到信号传输的作用,并且通过异向性导电胶与印刷电路板(蓝 色PCB板的部分)压和,使两者连接想通 液晶板从外到里分别是水平偏光片、彩色滤光片、液晶、TFT玻璃、垂直偏光片,此外在液晶面板边上还有驱动IC与印刷电路板,主要用于控制液晶板内的液晶分子转动与

TFT LCD液晶显示器的驱动原理

TFT LCD液晶显示器的驱动原理 我们针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver所送出波形的timing图. SVGA分辨率的二阶驱动波形 我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=786432个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver 来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着768个gate

driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate d river打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压. 而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的t iming介绍过一次呢?因为我们接下来要讨论的feed through电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc). Cs on common架构且common电压固定不动的feed through电压 我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成f eed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed thro ugh电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame 的时间比例是不正确的.在此我们是为了能仔细解释每个frame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将7

LCD生产工艺流程

好的话请给分请请哈:) 1.液晶显示器的结构 一般地,TFT-LCD由上基板组件、下基板组件、液晶、驱动电路单元、背光灯模组和其他附件组成,其中:下基板组件主要包括下玻璃基板和TFT阵列,而上基板组件由上玻璃基板、偏振板及覆于上玻璃基板的膜结构,液晶填充于上、下基板形成的空隙内。图1.1显示了彩色TFT-LCD的典型结构,图1.2图进一步显示了背光灯模组与驱动电路单元的结构。 在下玻璃基板的内侧面上,布满了一系列与显示器像素点对应的导电玻璃微板、TFT半导体开关器件以及连接半导体开关器件的纵横线,它们均由光刻、刻蚀等微电子制造工艺形成,其中每一像素的TFT半导体器件的剖面结构如图1.3所示。 在上玻璃基板的内侧面上,敷有一层透明的导电玻璃板,一般为氧化铟锡(Indium Tin Oxide, 简称ITO)材料制成,它作为公共电极与下基板上的众多导电微板形成一系列电场。如图1.4所示。若LCD为彩色,则在公共导电板与玻璃基板之间布满了三基色(红、绿、蓝)滤光单元和黑点,其中黑点的作用是阻止光线从像素点之间的缝隙泄露,它由不透光材料制成,由于呈矩阵状分布,故称黑点矩阵(Black matrix)。 2 液晶显示器的制造工艺流程 彩色TFT-LCD制造工艺流程主要包含4个子流程:TFT加工工艺(TFT process)、彩色滤光器加工工艺(Color filter process)、单元装配工艺(Cell process)和模块装配工艺(Module process)[1][2]。各工艺子流程之间的关系如图2.1所示。 图2.1 彩色TFT-LCD加工工艺流程 2.1TFT加工工艺(TFT process) TFT加工工艺的作用是在下玻璃基板上形成TFT和电极阵列。针对图1.3所示TFT和电极层状结构,通常采用五掩膜工艺,即利用5块掩膜,通过5道相同的图形转移工艺,完成如图1.3TFT层状结构的加工[2],各道图形转移工艺的加工结果如图2.2所示。 (a)第1道图形转移工艺(b) 第2道图形转移工艺(c) 第3道图形转移工艺 (d) 第4道图形转移工艺(e) 第5道图形转移工艺 图2.2 各道图形转移工艺的加工结果 图形转移积工艺由淀积、光刻、刻蚀、清洗、检测等工序构成,其具体流程如下[1]: ?覆光刻胶?清洗?薄膜淀积?玻璃基板检验?开始 结束?检验?去除光刻胶?刻蚀?显影?曝光 其中刻蚀方法有干刻蚀法和湿刻蚀法两种。上述各种工序的加工原理与集成电路制造工艺中使用的相应工序的加工方法原理类似,但是,由于液晶显示器中的玻

TFT LCD 原理详解

TFT LCD液晶显示器的驱动原理 TFT LCD液晶显示器的驱动原理(一) 我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate 的方式的原因. 至于common走线, 我们在这边也需要顺便介绍一下. 从图2中我们可以发现, 不管您采用怎样的储存电容架构, Clc的两端都是分别接到显示电极与common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显

LCD液晶屏生产工艺流程

随着科技的发展,LCD液晶屏因为无电池辐射、显示信息量大、使用寿命长从而受到许多用户的喜爱。 那么LCD屏凭什么拥有如此多的优势,这就要从LCD液晶屏生产工艺流程来说起了。 一、LCD液晶屏生产工艺流程 1、ITO图形的蚀刻(ITO玻璃的投入到图检完成) A. ITO玻璃的投入:根据产品的要求,选择合适的ITO玻璃装入传递篮子中,要求ITO玻璃的规格型号符合产品要求,切记ITO层面一定要向上插入篮子中。 B. 玻璃的清洗与干燥:将用清洗剂以及去离子水(DI水)等洗净ITO玻璃,并用物理或化学的方法将ITO表面的杂质和油污洗净,然后把水除去并干燥,保证下道工艺的加工质量。 C. 涂光刻胶:在ITO玻璃的导电层面上均匀涂上一层光刻胶,涂过光刻胶的玻璃要在一定的温度下作预处理。 D. 前烘:在一定的温度下将涂有光刻胶的玻璃烘烤一段时间,以使光刻胶中的溶剂挥发,增加与玻璃表面的粘附性。 E. 曝光:用紫外光(UV)通过预先制作好的电极图形掩模版照射光刻胶表面,使被照光刻胶层发生反应,在涂有光刻胶的玻璃上覆盖光刻掩模版在紫外灯下对光刻胶进行选择性曝光。 F. 显影:用显影液处理玻璃表面,将经过光照分解的光刻胶层除去,保留未曝光部分的光刻胶层,用化学方法使受(UV)光照射部分的光刻胶溶于显影液中,显影后的玻璃要经过一定的温度的坚膜处理。 G. 坚膜:将玻璃再经过一次高温处理,使光刻胶更加坚固。 H. 蚀刻:用适当的酸刻液将无光刻胶覆盖的ITO膜蚀掉,这样就得到了所需要的ITO电极图形。注:ITO玻璃为(In203与Sn02)的导电玻璃,此易与酸发生反应,而用于蚀刻掉多余的ITO,从而得到相应的拉线电极。 I. 去膜:用高浓度的碱液(Naoh溶液)作脱膜液,将玻璃上余下的光刻胶剥离掉,从而使ITO玻璃上形成与光刻掩模版完全一致的ITO图形。 J. 清洗干燥:用高纯水冲洗余下的碱液和残留的光刻胶以及其它的杂质。

液晶显示的制造工艺流程

液晶显示的制造工艺流程 班级:11115D36 姓名:李家兴 摘要:液晶显示的制造工业流程可分为前段工位:ITO 玻璃的投入(grading)—玻璃清洗与干燥(CLEANING)—涂光刻胶(PR COAT)—前烘烤(PREBREAK)—曝光(DEVELOP)显影(MAIN CURE)—蚀刻(ETCHING)—去膜(STRIP CLEAN)—图检(INSP)—清洗干燥(CLEAN)—TOP 涂布(TOP COAT)—烘烤(UV CURE)—固化(MAIN CURE)—清洗(CLEAN)—涂取向剂(PI PRINT)—固化(MAIN CURE)—清洗(CLEAN)—丝网印刷(SEAL/SHORT PRINTING)—烘烤(CUPING FURNACE)—喷衬垫料(SPACER SPRAY)—对位压合(ASSEMBLY)—固化(SEAL MAIN CURING)。后段工位:切割(SCRIBING)— Y 轴裂片(BREAK OFF)—灌注液晶(LC INJECTION)—封口(END SEALING)—X 轴裂片(BREAK OFF)—磨边——次清洗(CLEAN)—再定向(HEATING)—光台目检(VISUAL INSP)—电测图形检验(ELECTRICAL)—二次清洗(CLEAN)—特殊制程(POLYGON)—背印(BACK PRINTING)—干墨(CURE)—贴片(POLARIZER ASSEMBLY)—热压(CLEAVER)—成检外观检判(FQC)—上引线(BIT PIN)—终检(FINAL INSP)—包装(PACKING)—入库(IN STOCK) 前言: 在学习这门可的时候我只知道液晶是一种我们平常的见到的显示屏,从来没考虑过这种东西的制造和历史,现在我知道了液晶是一种高分子材料,因为其特殊的物理、化学、光学特性,20世纪中叶开始被广泛应用在轻薄型的显示技术上。人们熟悉的物质状态(又称相)为气、液、固,较为生疏的是电浆和液晶。液晶相要具有特殊形状分子组合始会产生,它们可以流动,又拥有结晶的光学性质。液晶的定义,现在已放宽而囊括了在某一温度范围可以是现液晶相,在较低温度为正常结晶之物质。而液晶的组成物质是一种有机化合物,也就是以碳为中心所构成的化合物。同时具有两种物质的液晶,是以分子间力量组合的,它们的特殊光学性质,又对电磁场敏感,极有实用价值。

TFT液晶显示屏原理

传统电视机采用CRT作为图像的显示器件,它体积大、重量重、屏幕尺寸受限制等缺点,目前在电视机上的应用已经逐步被薄而轻的液晶和等离子显示屏取代,这样我们从事电视维修的技术人员就必须尽快的掌握被称为平板电视的液晶、等离子电视的维修技术。 目前在家庭中;液晶电视和CRT电视一样;一般是用来接收电视台播放的模拟电视节目;把接收下来的模拟电视节目,经过处理;由显示器重现图像。但是作为液晶电视机和CRT电视机的本身,两者则有巨大的区别: 首先图像显示器件:CRT电视采用的是一个体积较大、厚度大的显像管;液晶电视则采用的是一块显示面积较大,厚度很薄的液晶显示屏,厚度小于10公分;可以悬挂在墙上所以也成为平板电视。 在电视机的信号处理电路上:除高频头电路、中频放大电路、视频检波电路以外;视频小信号处理电路已经完全不同了,普通的CRT电视机一般采用的是模拟电路来处模拟信号(高清CRT除外);液晶电视是采用数字的方式来处理模拟信号。并且计算机软件技术、总线技术及大规模数字集成电路的大量应用等,电视机的电原理图越来越计算机化,我们原来的维修人员基本上缺乏数字电路的知识,对图纸也越来越看不懂。也无法去分析故障。 在开关电源电路上;为了克服CRT电视机开关电源电流波形的畸变而引起的电磁干扰(EMC)和电磁兼容(EMI)问题,目前生产的液晶电视均采用了PFC 技术,这样具有PFC功能的开关电源其电路原理及结构异常复杂。而且对于属于被动发光的液晶显示屏,还要有一个对液晶显示屏背光灯供电的背光高压板,这两项也是我们维修人员必须要过的一道门槛。 在所用的元器件上:比较突出的是在开关电源等大功率电路中采用了性能优秀的MOS管,取代过去常用的大功率晶体三极管作为开关管应用,电源部分的故障率大大降低,但是由于MOS管和普通大功率晶体三极管特性的不同,激励及周边电路也完全不同。对我们维修人员也是一个新的课题。 从上述看;要掌握液晶电视的维修除了要了解液晶屏成像的简单道理外,最主要的还是要掌握CRT电视机原来没有应用过的新技术、新电路、新元器件的知识,看懂电路并能分析电路原理,并掌握新型元器件的结构、性能、正确的应用方法,了解一下数字电路的基本知识,这样,修理液晶电视和原来修理显像管电视机一样得心应手,甚至还要简单。 本文重点就是前期CRT电视没有的新技术、新知识入手入以通俗语言全面详细介绍,最后以典型液晶电视进行整机电路分析及故障检查、故障分析乃至故障排除方法及典型案例。引导大家逐步掌握液晶电视机的维修技能。本书的目的是;从原理的讲解为主;以提高维修人员分析问题及处理问题的能力为目的,认识到基层知识的重要性,逐步改善,不按原理分析故障、盲目修机的现象。本书的特点是;复杂的原理均配以大量的图片;以“看图识字”的方式学习新知识、新技术。 在介绍液晶显示屏的工作原理之前,先把液晶究竟是什么,液晶控制光线的道理是什么简单的介绍一下 1、液晶是什么? 液晶是一种有机化合物,是液体;但是其分子具有固体水晶(水晶石)分子的特性,水晶石的分子对光具有优秀的投射和折射性能(用水晶石制造的镜片、镜头都是性能优秀、昂贵的)。 液晶的分子除了对光有优秀的特性以外;并且对电场有极其敏感的特性;把

液晶显示屏生产流程

曾经爆发过的面板门事件,足以解释用户对于 [url=https://www.doczj.com/doc/4610128655.html,/lcd/]液晶显示器[/url]所采用液晶面板类型的重视,不仅如此,液晶显示器重要的技术提升,如LED背光,超广视角,都与面板有着直接的关系。而占一台液晶显示器80%成本的液晶面板,足以说明它才是整台显示器的核心部分,它的好坏,可以说直接决定了一台液晶显示器品质是否优秀。 如此来看,民用的液晶显示器的生产只是一个组装的过程,将液晶面板、主控电路、外壳等部分进行主装,基本上不会有太过于复杂的技术问题。难道这是说,液晶显示器其实是技术含量不好的产品吗?其实不然,液晶面板的生产制造过程非常繁复,至少需要300道流程工艺,全程需在无尘的环境、精密的技术工艺下进行。 液晶面板的大体结构其实并不是很复杂,笔者将其分为液晶板与背光系统两部分。

液晶面板的LED背光系统 背光系统包括背光板、背光源(CCFL或LED)、扩散板(用于将光线分布均匀)、扩散片等等。由于液晶不会发光,因此需要借助其他光源来照亮,背光系统的作用就在于此,但目前所用的CCFL灯管或LED背光,都不具备面光源的特性,因此需要导光板、扩散片之类的组件,使线状或点状光源的光均匀到整个面,目的是为了让液晶面板整个面上不同点的发光强度相同,但实际要做到理想状态非常困难,只能是尽量减少亮度的不均匀性,这对背光系统的设计与做工有很大的考验。

液晶板在未通电情况下呈半透明状态 可弯曲的柔性印刷板起到信号传输的作用,并且通过异向性导电胶与印刷电路板(蓝色PCB板的部分)压和,使两者连接想通 液晶板从外到里分别是水平偏光片、彩色滤光片、液晶、TFT玻璃、垂直偏光片,此外在液晶面板边上还有驱动IC与印刷电路板,主要用于控制液晶板内

TFT显示原理

我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs. 图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由

LCD液晶模组的生产工艺

L C D液晶模组的生产工艺(总 4页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

原理、生产流程概述 所谓“模组”厂(LCM)其实是液晶显示器的“后段”生产过程,顾名思义,模组二字即模块组合,它共有三个步骤: 第一步:将LCD液晶成品面板(Cell)、异方向性导电胶(ACF)、驱动IC、柔性线路板(FPC)和PCB电路板利用机台压合(其间需在太上老君炼丹炉内经过一定的温度和压力才能练就火眼金睛:), 第二步:接下来和背光板、灯源、铁框一齐组装成品; 第三步:老化处理,经过重重检测就是我们见到的“液晶面板了”。 总之,相对于第五代面板厂那种天价的投资(动辄数十亿美元)、惊人的占地面积(起码五个足球场)和需要的无数高精尖设备(全在美国对大陆禁运之列),模组厂在技术、规模上还属于小巫见大巫的,不过能亲眼进入无尘车间也是一大快事,在进入车间前,沐浴修身是不必了,不过所有的电子设备包括数码相机、手机等均需统统枪毙。 在用图片展示整个生产流程之前,我们还是先来了解一下液晶显示面板的工作原理吧,这能加深我们对工厂的认识。 TFT-LCD液晶屏显示原理 液晶显示屏是透过硅玻璃上的电路形成电场,来驱动玻璃与滤光片间的液晶分子,在自然状态下呈并列平行排列,当电路对液晶层施加电场,液晶分子会朝不同的方向偏转,这时液晶类似于开关作用可以让光线通过,令液晶层形成不同的透光效果,从而达到显示不同画面的目的. 好,有了这个基础,我们沿着生产流程来看. 首先,在制造过程中,组装区和包装区所需要的“人力”成本还是相当可观,因此难怪台湾纷纷把大陆作为模组部分的首选——除接近客户外也可大幅降低成本。 生产流程详述 看到液晶面板,你能明白第一步有几个元件需要压合吗? 首先是异方向性导电胶(ACF)贴附:利用异方向性导电胶(可当作双面胶看待)黏附于IC和Cell间,提供导通和粘合之功能;其次进行集成电路(IC)压合作业,目的是为了使面板线路与IC线路通过导电粒子导通,以达到电流信号流通的目的。 接下来是可挠式线路板(FPC)压合作业:FPC是软性印刷板,起连接讯号的作用,经过这一步压合我们可以使面板线路与FPC线路通过导电粒子导通以顺利连接信号.

TFT LCD操作原理(上)--液晶简介.simple

TFT LCD液晶显示器的操作原理(上) -- 液晶(Liquid crystal)简介 谢崇凯 我一直记得, 当初刚开始从事有关液晶显示器相关的工作时, 常常遇到的困扰, 就是不知道怎么跟人家解释, 液晶显示器是什么? 只好随着不同的应用环境, 来解释给人家听. 在最早的时候是告诉人家, 就是掌上型电动玩具上所用的显示屏, 随着笔记型计算机开始普及, 就可以告诉人家说, 就是使用在笔记型计算机上的显示器. 随着手机的流行, 又可以告诉人家说, 是使用在手机上的显示板. 时至 今日, 液晶显示器, 对于一般普罗大众, 已经不再是生涩的名词. 而它更是继半导体后另一种可以再创造大量营业额的新兴科技产品, 更由于其轻薄的特性, 因此它的应用范围比起原先使用阴极射线管(CRT, cathode-ray tube)所作成的显 示器更多更广. 如同我前面所提到的, 液晶显示器泛指一大堆利用液晶所制作出来的显示器. 而今日对液晶显示器这个名称, 大多是指使用于笔记型计算机, 或是桌上型计算机应用方面的显示器. 也就是薄膜晶体管液晶显示器. 其英文名称为Thin-film transistor liquid crystal display, 简称之TFT LCD. 从它的英文名称中我们可以知道, 这一种显示器它的构成主要有两个特征, 一个是薄膜晶体管, 另一个就是液晶本身. 我们先谈谈液晶本身. 液晶(LC, liquid crystal)的分类 我们一般都认为物质像水一样都有三态, 分别是固态液态跟气态. 其实物质的三态是针对水而言, 对于不同的物质, 可能有其它不同的状态存在. 以我们要谈到的液晶态而言, 它是介于固体跟液体之间的一种状态, 其实这种状态仅是材料的一种相变化的过程(请见图1), 只要材料具有上述的过程, 即在固态及液态间有 此一状态存在, 物理学家便称之为液态晶体. 这种液态晶体的首次发现, 距今已经度过一百多个年头了. 在公元1888年, 被奥地利的植物学家Friedrich Reinitzer所发现, 其在观察从植物中分离精制出的安息香酸胆固醇(cholesteryl benzoate)的融解行为时发现, 此化合物加热至145.5度℃时, 固体会熔化,呈现一种介于固相和液相间之半熔融流动白浊状液体. 这种状 况会一直维持温度升高到178.5度℃, 才形成清澈的等方性液态(isotropic liquid). 隔年, 在1889年, 研究相转移及热力学平衡的德国物理学家O.Lehmann, 对此化合物作更详细的分析. 他在偏光显微镜下发现, 此黏稠之半流动性白浊液体化合物,具有异方性结晶所特有的双折射率(birefringence)之光学性质, 即光学异相性(optical anisotropic). 故将这种似晶体的液体命名为液晶. 此后, 科学家将此一新发现的性质, 称为物质的第四态-液晶(liquid crystal). 它在某一特定温度的范围内, 会具有同时液体及固体的特性. 一般以水而言, 固体中的晶格因为加热, 开始吸热而破坏晶格, 当温度超过熔点

液晶显示器制造工艺

液晶显示器制造工艺流程基础技术 一.工艺流程简述 前段工位:ITO 玻璃的投入(grading)——玻璃清洗与干燥(CLEANING)——涂光刻胶(PR COAT)——前烘烤(PREBREAK)——曝光(DEVELOP)显影(MAIN CURE)——蚀刻(ETCHING)——去膜(STRIP CLEAN)——图检(INSP)——清洗干燥(CLEAN)——TOP 涂布(TOP COA T)——烘烤(UV CURE)——固化(MAIN CURE)——清洗(CLEAN)——涂取向剂(PI PRINT)——固化(MAIN CURE)——清洗(CLEAN)——丝网印刷(SEAL/SHORT PRINTING)——烘烤(CUPING FURNACE)——喷衬垫料(SPACER SPRAY)——对位压合(ASSEMBLY)——固化(SEAL MAIN CURING) 1.ITO 图形的蚀刻:(ITO 玻璃的投入到图检完成) A.ITO 玻璃的投入:根据产品的要求,选择合适的ITO 玻璃装入传递篮具中,要求ITO 玻璃的规格型号符合产品要求,切记ITO层面一定要向上插入篮具中。 B.玻璃的清洗与干燥:将用清洗剂以及去离子水(DI 水)等洗净ITO 玻璃,并用物理或者化学的方法将ITO表面的杂质和油污洗净,然后把水除去并干燥,保证下道工艺的加工质量。 C.涂光刻胶:在ITO 玻璃的导电层面上均匀涂上一层光刻胶,涂过光刻胶的玻璃要在一定的温度下作预处理:(如下图) D.前烘:在一定的温度下将涂有光刻胶的玻璃烘烤一段时间,以使光刻胶中的溶剂挥发,增加与玻璃表面的粘附性。 E.曝光:用紫外光(UV)通过预先制作好的电极图形掩模版照射光刻胶表面,使被照光刻胶层发生反应,在涂有光刻胶的玻璃上覆盖光刻掩模版在紫外灯下对光刻胶进行选择性曝光:(如图所示) F.显影:用显影液处理玻璃表面,将经过光照分解的光刻胶层除去,保留未曝光部分的光刻胶层,用化学方法使受UV光照射部分的光刻胶溶于显影液中,显影后的玻璃要经过一定的温度的坚膜处理。(如图:) G.坚膜:将玻璃再经过一次高温处理,使光刻胶更加坚固。 H.刻蚀:用适当的酸刻液将无光刻胶覆盖的ITO 膜蚀掉,这样就得到了所需要的ITO 电极图形,如图所示: 注:ITO 玻璃为(In2O3 与SnO2)的导电玻璃,此易与酸发生反应,而用于蚀刻掉多余的ITO,从而得到相应的拉线电极。 I.去膜:用高浓度的碱液(NaOH 溶液)作脱膜液,将玻璃上余下的光刻胶剥离掉,从而使ITO玻璃上形成与光刻掩模版完全一致的ITO 图形。(即按客户要求进行显示的部分拉线蚀刻完成,如图) J.清洗干燥:用高纯水冲洗余下的碱液和残留的光刻胶以及其它的杂质。 2.特殊制程:(TOP 膜的涂布到固化后清洗) 一般的TN 与STN 产品不要求此步骤,TOP 膜的涂布工艺是在光刻工艺之后再做一次SiO2的涂布,以此把刻蚀区与非刻蚀区之间的沟槽填平并把电极覆盖住,这既可以起到绝缘层的作用,又能有效地消除非显示状态下的电极底影,还有助于改善视角特性等等,因此大部分的高档次产品要求有TOP涂布。 3.取向涂布(涂取向剂到清洗完成)〈BR〉〈/STRONG〉〈BR〉此步工艺为在蚀刻完成的ITO玻璃表面涂覆取向层,并用特定的方法对限向层进行处理,以使液晶分子能够在取向层表面沿特定的方向取向(排列),此步骤是液晶显示器生产的特有技术。

液晶显示屏生产流程

曾经爆发过的面板门事件,足以解释用户对于[url=lcd/]液晶显示器[/url]所采用液晶面板类型的重视,不仅如此,液晶显示器重要的技术提升,如LED 背光,超广视角,都与面板有着直接的关系。而占一台液晶显示器80%成本的液晶面板,足以说明它才是整台显示器的核心部分,它的好坏,可以说直接决定了一台液晶显示器品质是否优秀。 如此来看,民用的液晶显示器的生产只是一个组装的过程,将液晶面板、主控电路、外壳等部分进行主装,基本上不会有太过于复杂的技术问题。难道这是说,液晶显示器其实是技术含量不好的产品吗其实不然,液晶面板的生产制造过程非常繁复,至少需要300道流程工艺,全程需在无尘的环境、精密的技术工艺下进行。 液晶面板的大体结构其实并不是很复杂,笔者将其分为液晶板与背光系统两部分。 液晶面板的LED背光系统 背光系统包括背光板、背光源(CCFL或LED)、扩散板(用于将光线分布均匀)、扩散片等等。由于液晶不会发光,因此需要借助其他光源来照亮,背光系统的作用就在于此,但目前所用的CCFL灯管或LED背光,都不具备面光源的特性,因此需要导光板、扩散片之类的组件,使线状或点状光源的光均匀到整个面,目的是为了让液晶面板整个面上不同点的发光强度相同,但实际要做到理想状态非常困难,只能是尽量减少亮度的不均匀性,这对背光系统的设计与做工有很大的考验。 液晶板在未通电情况下呈半透明状态 可弯曲的柔性印刷板起到信号传输的作用,并且通过异向性导电胶与印刷电路板(蓝色PCB板的部分)压和,使两者连接想通 液晶板从外到里分别是水平偏光片、彩色滤光片、液晶、TFT玻璃、垂直偏光片,此外在液晶面板边上还有驱动IC与印刷电路板,主要用于控制液晶板内的液晶分子转动与显示信号的传输。液晶板很薄,不通电的情况下呈半透明状态,它的大体构造就像三明治,下层TFT玻璃与上层彩色滤光片中间夹着液晶。 微观液晶面板,会看到红绿蓝为一组三原色,一般一组或两组为一个像素

TFT-LCD显示原理及基本构成

TFT-LCD显示原理及基本构成 TFT-LCD百度百科 TFT(Thin Film Transistor)LCD即薄膜场效应晶体管LCD,是有源矩阵类型液晶显示器(AM-LCD)中的一种。液晶平板显示器,特别TFT-LCD,是目前唯一在亮度、对比度、功耗、寿命、体积和重量等综合性能上全面赶上和超过CRT的显示器件,它的性能优良、大规模生产特性好,自动化程度高,原材料成本低廉,发展空间广阔,将迅速成为新世纪的主流产品,是21 世纪全球经济增长的一个亮点。 目录 TFT型液晶显示器结构 TFT型液晶显示器原理 TFT-LCD玻璃基板制造方法 各代线的应用 主要特点 和TN技术不同的是,TFT的显示采用“背透式”照射方式——假想的光源路径不是像TN液晶那样从上至下,而是从下向上。这样的作法是在液晶的背部设置特殊光管,光源照射时通过下偏光板向上透出。由于上下夹层的电极改成FET电极和共通电极,在FET电极导通时,液晶分子的表现也会发生改变,可以通过遮光和透光来达到显示的目的,响应时间大大提高到80ms左右。因其具有比TN-LCD更高的对比度和更丰富的色彩,荧屏更新频率也更快,故TFT俗称“真彩”。 相对于DSTN而言,TFT-LCD的主要特点是为每个像素配置一个半导体开关器件。由于每个像素都可以通过点脉冲直接控制。因而每个节点都相对独立,并可以

进行连续控制。这样的设计方法不仅提高了显示屏的反应速度,同时也可以精确控制显示灰度,这就是TFT色彩较DSTN更为逼真的原因。应用 目前,绝大部分笔记本电脑厂商的产品都采用TFT-LCD。早期的TFT-LCD主要用于笔记本电脑的制造。尽管在当时TFT相对于DSTN具有极大的优势,但是由于技术上的原因,TFT-LCD在响应时间、亮度及可视角度上与传统的CRT显示器还有很大的差距。加上极低的成品率导致其高昂的价格,使得桌面型的TFT-LCD成为遥不可及的尤物。 不过,随着技术的不断发展,良品率不断提高,加上一些新技术的出现,使得TFT-LCD在响应时间、对比度、亮度、可视角度方面有了很大的进步,拉近了与传统CRT显示器的差距。如今,大多数主流LCD显示器的响应时间都提高到16ms以下,这些都为LCD走向主流铺平了道路。 LCD的应用市场应该说是潜力巨大。但就液晶面板生产能力而言,全世界的LCD主要集中在中国台湾、韩国和日本三个主要生产基地。亚洲是LCD面板研发及生产制造的中心,而台、日、韩三大产地的发展情况各有不同。主流的TFT面板目前主流的TFT面板有a,Si(非晶硅薄膜晶体管)TFT技术和LTPS TFT(低温复晶硅)TFT技术。 在a-Si方面,三个生产基地的技术各有千秋。日本厂商曾经研制出分辨率高达2560×2048的LCD产品。因此,有些人认为,a,Si TFT技术完全可满足高分辨率的产品需要,但是,由于技术的不成熟,它还不能满足高速视频影像或动画等的需要。LTPS TFT相对可以节约成本,这对于TFT LCD的推广有着重要意义。目前,日本厂商已经有量产12.1英寸LTPS TFT LCD的能力。而中国台湾已开发完成LTPS组件制造技术与LTPS SXGA面板技术。韩国在这方面缺少专门的设计人员和研发专家,但像三星等主要企业已经推出了LTPS产品,显示出韩国厂商的实

相关主题
文本预览
相关文档 最新文档