当前位置:文档之家› 如何设计轻便吊车项目可行性研究报告(技术工艺+设备选型+财务概算+厂区规划)投资方案

如何设计轻便吊车项目可行性研究报告(技术工艺+设备选型+财务概算+厂区规划)投资方案

如何设计轻便吊车项目可行性研究报告(技术工艺+设备选型+财务概算+厂区规划)投资方案
如何设计轻便吊车项目可行性研究报告(技术工艺+设备选型+财务概算+厂区规划)投资方案

如何设计轻便吊车项目可行性研究报告(技术工艺+设备选型+财务

概算+厂区规划)投资方案

【编制机构】:博思远略咨询公司(360投资情报研究中心)

【研究思路】:

【关键词识别】:1、轻便吊车项目可研2、轻便吊车市场前景分析预测3、轻便吊车项目技术方案设计4、轻便吊车项目设备方案配置5、轻便吊车项目财务方案分析6、轻便吊车项目环保节能方案设计7、轻便吊车项目厂区平面图设计8、轻便吊车项目融资方案设计9、轻便吊车项目盈利能力测算10、项目立项可行性研究报告11、银行贷款用可研报告12、甲级资质13、轻便吊车项目投资决策分析

【应用领域】:

【轻便吊车项目可研报告详细大纲——2013年发改委标准】:

第一章轻便吊车项目总论

1.1 项目基本情况

1.2 项目承办单位

1.3 可行性研究报告编制依据

1.4 项目建设内容与规模

1.5 项目总投资及资金来源

1.6 经济及社会效益

1.7 结论与建议

第二章轻便吊车项目建设背景及必要性

2.1 项目建设背景

2.2 项目建设的必要性

第三章轻便吊车项目承办单位概况

3.1 公司介绍

3.2 公司项目承办优势

第四章轻便吊车项目产品市场分析

4.1 市场前景与发展趋势

4.2 市场容量分析

4.3 市场竞争格局

4.4 价格现状及预测

4.5 市场主要原材料供应

4.6 营销策略

第五章轻便吊车项目技术工艺方案

5.1 项目产品、规格及生产规模

5.2 项目技术工艺及来源

5.2.1 项目主要技术及其来源

5.5.2 项目工艺流程图

5.3 项目设备选型

5.4 项目无形资产投入

第六章轻便吊车项目原材料及燃料动力供应

6.1 主要原料材料供应

6.2 燃料及动力供应

6.3 主要原材料、燃料及动力价格

6.4 项目物料平衡及年消耗定额

第七章轻便吊车项目地址选择与土建工程

7.1 项目地址现状及建设条件

7.2 项目总平面布置与场内外运

7.2.1 总平面布置

7.2.2 场内外运输

7.3 辅助工程

7.3.1 给排水工程

7.3.2 供电工程

7.3.3 采暖与供热工程

7.3.4 其他工程(通信、防雷、空压站、仓储等)第八章节能措施

8.1 节能措施

8.1.1 设计依据

8.1.2 节能措施

8.2 能耗分析

第九章节水措施

9.1 节水措施

9.1.1 设计依据

9.1.2 节水措施

9.2 水耗分析

第十章环境保护

10.1 场址环境条件

10.2 主要污染物及产生量

10.3 环境保护措施

10.3.1 设计依据

10.3.2 环保措施及排放标准

10.4 环境保护投资

10.5 环境影响评价

第十一章劳动安全卫生与消防

11.1 劳动安全卫生

11.1.1 设计依据

11.1.2 防护措施

11.2 消防措施

11.2.1 设计依据

11.3.2 消防措施

第十二章组织机构与人力资源配置

12.1 项目组织机构

12.2 劳动定员

12.3 人员培训

第十三章轻便吊车项目实施进度安排

13.1 项目实施的各阶段

13.2 项目实施进度表

第十四章轻便吊车项目投资估算及融资方案

14.1 项目总投资估算

14.1.1 建设投资估算

14.1.2 流动资金估算

14.1.3 铺底流动资金估算

14.1.4 项目总投资

14.2 资金筹措

14.3 投资使用计划

14.4 借款偿还计划

第十五章轻便吊车项目财务评价

15.1 计算依据及相关说明

15.1.1 参考依据

15.1.2 基本设定

15.2 总成本费用估算

15.2.1 直接成本估算

15.2.2 工资及福利费用

15.2.3 折旧及摊销

15.2.4 修理费

15.2.5 财务费用

15.2.6 其它费用

15.2.7 总成本费用

15.3 销售收入、销售税金及附加和增值税估算

15.3.1 销售收入估算

15.3.2 增值税估算

15.3.2 销售税金及附加费用

15.4 损益及利润及分配

15.5 盈利能力分析

15.5.1 投资利润率,投资利税率

15.5.2 财务内部收益率、财务净现值、投资回收期

15.5.3 项目财务现金流量表

15.5.4 项目资本金财务现金流量表

15.6 不确定性分析

15.6.1 盈亏平衡

15.6.2 敏感性分析

第十六章经济及社会效益分析

16.1 经济效益

16.2 社会效益

第十七章轻便吊车项目风险分析

17.1 项目风险提示

17.2 项目风险防控措施

第十八章轻便吊车项目综合结论

第十九章附件

1、公司执照及工商材料

2、专利技术证书

3、场址测绘图

4、公司投资决议

5、法人身份证复印件

6、开户行资信证明

7、项目备案、立项请示

8、项目经办人证件及法人委托书

10、土地房产证明及合同

11、公司近期财务报表或审计报告

12、其他相关的声明、承诺及协议

13、财务评价附表

《轻便吊车项目可行性研究报告》主要图表目录图表项目技术经济指标表

图表产品需求总量及增长情况

图表行业利润及增长情况

图表2013-2020年行业利润及增长情况预测

图表项目产品推销方式

图表项目产品推销措施

图表项目产品生产工艺流程图

图表项目新增设备明细表

图表主要建筑物表

图表主要原辅材料品种、需要量及金额

图表主要燃料及动力种类及供应标准

图表主要原材料及燃料需要量表

图表厂区平面布置图

图表总平面布置主要指标表

图表项目人均年用水标准

图表项目年用水量表

图表项目年排水量表

图表项目水耗指标

图表项目污水排放量

图表项目管理机构组织方案

图表项目劳动定员

图表项目详细进度计划表

图表土建工程费用估算

图表固定资产建设投资单位:万元

图表行业企业销售收入资金率

图表投资计划与资金筹措表单位:万元

图表借款偿还计划单位:万元

图表正常经营年份直接成本构成表

图表逐年直接成本

图表逐年折旧及摊销

图表逐年财务费用

图表总成本费用估算表单位:万元

图表项目销售收入测算表

图表销售收入、销售税金及附加估算表单位:万元图表损益和利润分配表单位:万元

图表财务评价指标一览表

图表项目财务现金流量表单位:万元

图表项目资本金财务现金流量表单位:万元

图表项目盈亏平衡图

图表项目敏感性分析表

图表敏感性分析图

图表项目财务评价主要数据汇总表

【更多增值服务】:

轻便吊车项目商业计划书(风险投资+融资合作)编制

轻便吊车项目细分市场调查(市场前景+投资期市场调查)分析

轻便吊车项目IPO上市募投(甲级资质+符合招股书)项目可研编制

轻便吊车项目投资决策风险评定及规避策略分析报告

【博思远略成功案例】:

1. 500千瓦太阳能储能充电站项目可行性研究报告

2. 新建纳米晶染料敏化太阳能电池生产线项目可行性研究报告

3. 新能源(磁动力)产业基地项目可行性研究报告

4. 年产4000万平米锂电池隔膜项目可行性研究报告

5. 年产200MW 太阳能晶体硅片项目可行性研究报告

6. 3000吨太阳能级多晶硅生产项目可行性研究报告

7. 透明导电膜(TCO)玻璃项目商业计划书

8. 200MW太阳能薄膜板厂及1GW太阳能发电站项目

9. 循环经济静脉产业园项目可行性研究报告

10. 治理矿渣废水及矿渣综合利用项目可行性研究报告

11. 可再生资源回收加工中心项目可行性研究报告

12. 某经济开发区循环经济产业园项目可研报告

13. 电子废物拆解及处理项目可行性研究报告

14. 年产20万吨绿色节能多高层钢结构项目可行性研究报告

15. 收集、净化废矿物油项目可行性研究报告

16. 高性能微孔滤料生产线建设项目可行性研究报告

17. 工业废水及城市污水处理项目可研报告

18. 太阳能节能设备项目可行性研究报告

19. 高效节能生物污水处理项目可行性研究报告

20. 年处理2000吨钕铁硼废料综合利用项目

21. 山东烟台某文化产业园区可行性研究报告

22. 文化创意旅游产业区项目可行性研究报告

23. 3D产业动漫工业园项目可行性研究报告

24. 四川省动漫产业基地项目可行性研究报告

25. 创意产业园综合服务平台建设项目可行性研究报告

26. 历史文化公园项目可行性研究报告

27. 生物麻纤维绿色环保功能型面料生产线项目

28. 氟硅酸综合清洁利用项目可行性研究报告

29. 年产300万码研磨垫项目可行性研究报告

30. 年产20万吨有机硅项目可行性研究报告

31. 车用稀土改性镍氢动力电池生产基地建设项目可行性研究报告

32. 12万吨/年磷精矿(浮选)、配套8万吨/年饲料级磷酸三钙项目

33. 电石下游精细化工品生产装置建设项目可研

34. 含氟高分子材料及含氟精细化学品系列产品项目

35. 精细化工产业配套园项目建议书兼可研报告

36. 大气颗粒物监测仪器生产项目可研报告

37. 矿山机械及配件制造项目可行性研究报告

38. 汽车配套高分子材料成型产品生产项目

39. 年产3万吨异形精密汽车锻件项目可行性研究报告

40. 汽车商业旅游综合体项目可行性研究报告

41. 新建磁动力轿车项目可行性分析报告

42. 4万吨PA6浸胶帘子线(含鱼网丝)项目申请报告

43. 年产20万辆电动车项目可行性研究报告

44. 扩建年产30000套各类重型汽车差速器总成生产线项目

45. 高科技农业园区建设项目可行性研究报告

46. 绿色农产品配送中心项目立项报告

47. 富硒食品工业园项目可行性研究报告

48. 采用生物发酵技术生产优质低温肉制品项目立项报告

49. 蔬菜、瓜果、花卉设施栽培项目可行性研究报告

50. 新型水体富营养化处理项目商业计划书

51. 现代农业生态观光示范园区建设项目

52. 5000吨水果储藏保鲜气调库可行性研究报告

53. 我国国际生态橄榄油物流中心基地项目可行性研究报告

54. 综合物流园区项目可行性研究报告

55. 大型水果物流中心建设项目可行性研究报告

56. 超五星级园林式温泉度假酒店可行性研究报告

57. 信息安全灾难恢复信息系统项目可研报告

58. “祥云”高校云服务平台成果转化项目可行性研究报告

59. 气象数据处理解释中心项目申请报告

60. 电子束辐照项目可行性研究报告

61. 年产3000台智能设备控制系统电液伺服系统项目可行性研究报告

62. 年产3000万根纳米碳碳素纤维加热管/加热板项目

63. 压敏电阻片及SPD电涌保护器项目可行性研究报告

64. 智能电网电能量综合管理系统项目可行性研究报告

65. 10万套镁合金手提电脑外壳压铸生产线可行性研究报告

66. 年产10万吨金属镁及镁合金加工生产项目可行性研究报告

67. 38万吨废钢铁加工处理生产线项目可行性研究报告

68. 年产80万吨铁矿石采选工程项目可行性研究报告

69. 年产1万吨高性能铜箔生产项目可行性研究报告

70. 年产3万吨碳酸二甲酯项目可行性研究报告

71. 新建年产500吨钼制品生产线可行性研究报告

72. 3万锭亚麻高档生态面料生产线项目立项报告

73. 年产废纸再造30万吨白板纸并自备20000KW热电厂项目立项报告

74. 年产6000万套烟用商标纸彩色印刷项目立项报告

75. 11.6万立方米竹板材加工项目可行性研究报告

76. 北京某小区汽车远程遥控监控防盗系统项目可研报告

77. 山东淄博张周路花卉种植基地产业化项目

78. 山东烟台某企业年产1000吨海红果汁产品扩建3万吨项目

79. 韩国某品牌天然抗肿瘤新药进入中国市场商业计划书

80. 大连某IT企业财务软件外包投资价值分析报告

81. 电热水循环式床垫专利实施项目商业计划书

82. 辽宁省朝阳市某企业年产12万吨鱼/禽饲料农业产业化发展项目

83. 粉煤灰纤维及经纬线造纸三项专利产品项目

84. 河北唐山某企业年产30吨超级电容器电极用多孔复合材料项目

85. 杭州某企业年产30万吨630ERW大口径高频直缝焊管项目

86. 江苏连云港某企业集团果蔬(脱水)加工项目

87. 鄂尔多斯某企业年产250吨纳米二氧化钛粉体项目

88. 广东惠州某企业集成电路封装项目

89. 新疆某企业液态原料奶冷链物流系统改造项目

90. 14万吨棉秸秆高密度压缩板材项目

91. 湖南省双语智能幼儿园项目投资价值分析报告

92. 烟台某企业5000吨蔬菜果品气调保鲜库建设项目

93. 江苏某企业年产1万吨钢结构项目可行性研究

94. 新疆石河子1500吨辣椒色素生产项目

95. 河北邯郸某集团南瓜粉及系列产品加工建设项目

96. 河北25mw非晶硅薄膜太阳能电池生产项目

97. 杭州高新区某企业PDP等离子体大屏幕显示板项目

98. 吉林省梅河口市100万只朗德鹅填饲、屠宰加工基地建设项目

99. 湖南常德某集团特种钢结构涂料生产线项目

100. 福建某生物科技有限公司引进战略投资者商业计划书

101. 安康市再生资源回收加工中心项目可行性研究报告

102. 福建省企业信息化项目资金申请报告

103. 山东省某企业技术改造专项资金项目资金申请报告

104. 武汉市某企业节能专项资金申请报告

105. 重庆某集团引进年产200万台汽车直流电机生产线项目

106. 鹤岗市绿色无害优质大米综合开发项目

107. 山东省东营开发区某高新企业国家中小企业发展专项资金申请报告108. 大连市某企业环境保护专项资金申请报告

109. 山东淄博某纺织集团青岛三万锭精梳天然彩色棉纺纱分厂建设项目110. 河南驻马店某企业彩钢夹芯板项目

111. 辽宁凌源某企业年产15万吨超细矿石微粉可行性研究报告112. 辽宁鞍山年产20万吨630ERW大口径高频直缝焊管项目

113. 北京昌平生态农业观光园区项目可行性研究报告

114. 云南昆明某企业年产6000吨浓缩峰蜜生产项目

115. 广东深圳150mm重掺硅单晶抛光片出口建设项目

116. 衢州年产5万辆电动观光车及配套零部件项目

117. 绿色充电电池投资价值分析报告

118. 江苏南通米糠综合利用项目

119. 广东东莞年产80万只节能灯和卤素灯项目

120. 内蒙某企业年产15000吨氯化钡生产项目

121. 西安某矿山机械制造公司粉碎机项目

122. 湖南再制造产业园区项目可行性研究报告

123. 河北某公司年产300吨磷酸铁锂项目可行性研究报告

124. 上海某船舶制造有限公司80万吨/年拆船项目可行性研究报告125. 郑州某企业汽车铝合金轮毂镀膜加工项目

126. 广州某企业胎盘系列化妆品生产项目

127. 福建漳州某企业年产30吨白光LED荧光粉项目可行性研究报告128. 速溶型纤维蛋白胶产业化项目投资价值分析报告

129. 临沂某化工企业年产20万吨保险粉项目可行性研究报告

130. 某投资公司投资北京健康体检中心项目可行性研究报告

131. 长沙某科研机构电热远红外高科技研发中心项目

132. 青岛某企业年产10万套健身器材生产线项目可行性研究报告133. 河南某企业迁扩建年产8万吨碳素制品生产线项目

134. 山东德州某企业年产15万台太阳能热水器建设项目

135. 广东某企业年产5万台空气能热泵热水器项目

136. 江西南昌化工循环产业园区项目

137. 大连某企业年产4000台套不锈钢橱柜可行性研究报告

138. 上海某公司瑜伽教练学校商业计划书

139. 山西阳泉洗精长烟煤50万吨每年洁净化综合利用项目

140. 北京某快餐集团直营20家连锁店可行性研究报告

141. 广东梅州某集团甲流诊断试剂项目可行性研究报告

142. 潍坊年产5000吨花生制品生产线可行性报告

143. 山东淄博城市创意产业园可行性报告

144. 齐鲁石化某企业20万吨PVC技改项目

145. 齐鲁石化某企业乙烯燃气管件生产线技术改造项目项目

146. 内蒙古某企业年产3万台/套新型太阳能水泵系统项目

147. 河南平顶山20万吨PVC粒料与1.5亿平米环保型PVC壁纸联产项目148. 辽宁某企业燃油燃气锅炉项目

149. 广西南宁铁路货场建设物流园区项目

150. 济南微晶玻璃板材生产线投资项目

151. 中油集团某机械厂CNG气瓶生产线技术改造项目

152. 西安车辆GPS定位导航电子地图市场分析与投资项目

153. 无锡某物联网高技术企业传感器项目

154. 江苏常州60吨/年甲基戊炔醇项目

155. 高纯金属材料投资项目价值分析报告

156. 稀土永磁电机项目投资经济效益分析报告

157. 全自动按摩椅项目投资价值分析报告

158. 北京某高新企业Kx2100系列分布智能火灾探测系统项目

159. 6000万平米胶粘制品生产项目可行性研究报告

160.五万锭精梳纱生产线高新技术改造项目可研报告

161. 年产10万吨超细矿石微粉可行性研究报告

162. 年产2000万块新型空心砖生产线项目申请报告163. 年产2.0亿标块粉煤灰蒸压砖项目建议书

164. 年产6000万块煤矸石空心砖项目可行性研究报告165. 年产500万平方米高档陶瓷墙地砖生产线项目可研报告166. 大理石板型材生产线项目可行性研究报告

167. 年产8000万吨高性能建筑乳胶涂料可行性研究报告168. 云南红河州开远市方解石粉加工厂项目可行性研究报告169. 废矿物油再生利用项目可研报告

170. 煤层气开发项目可行性研究报告

171. 高新技术研发中心扩建项目可行性研究报告

……更多案例请联系博思远略咨询公司案例研究中心

【完】

吊车梁设计

吊车梁系统结构组成 吊车梁设计 吊梁通常简单地支撑(结构简单,施工方便且对轴承不敏感) 常见形式为:钢梁(1),复合工字梁(2),箱形梁(3),起重机桁架(4)等。 吊车梁上的负载 永久载荷(垂直) 具有横向和横向方向的动载荷具有重复作用的特征,并且容易引起疲劳破坏。因此,对钢的高要求,除抗拉强度,伸长率,屈服点等常规要求外,还要确保冲击韧性合格。 吊车梁结构系统的组成 1.吊梁 2.制动梁或制动桁架 吊车梁的负载 吊车梁直接承受三个载荷:垂直载荷(系统重量和重量),水平载荷(制动力和轨道夹紧力)和纵向水平载荷(制动力)。 吊车梁的设计不考虑纵向水平荷载,而是根据双向弯曲进行设计。 垂直载荷,横向水平载荷和纵向水平载荷。 垂直载荷包括起重机及其重量以及起重机梁的自重。 当起重机通过导轨时,冲击将对梁产生动态影响。设计中采用增加车轮压力的方法。 横向水平载荷是由轨道夹紧力(轨道不平整)产生的,它会产生

横向水平力。 起重机负荷计算 根据载荷规范,起重机水平横向载荷的标准值应为横向小车的重力g与额定起重能力的Q之和乘以以下百分比: 软钩起重机:Q≤100kN时为20% 当q = 150-500kn时为10% Q≥750kn时为8% 硬钩起重机:20% 根据GB 50017的规定,重型工作系统起重机梁(工作高度为a6-a8)由起重机摆动引起的作用在每个车轮压力位置上的水平力的标准值如下: 吊车梁的内力计算 计算吊车梁的内力时,吊车荷载为移动荷载, 首先,应根据结构力学中影响线的方法确定每种内力所需的起重机负载的最不利位置, 然后,计算在横向水平载荷作用下的最大弯曲力矩及其相应的剪切力,支座处的最大剪切力和水平方向上的最大弯曲力矩。 在计算吊车梁的强度,稳定性和变形时,应考虑两台吊车; 疲劳和变形的计算采用起重机载荷的标准值,而不考虑动力系数。 1.首先,根据影响线法确定载荷的最不利位置; 2.其次,计算吊车梁的最大弯矩和相应的剪力,支座处的最大剪力以及横向水平荷载下的最大弯矩。

施工用缆索式起重机设计计算教材

施工用缆索式起重机设计计算Design and simplified calculation for cable crane 攀钢集团冶金工程技术有限公司机电安装工程分公司 Pangang Group Metallurgical engin eeri ng tech no logy co,,ltd Electromecha nical subsidiary compa ny 朱明 2012年3月7日

一、概述 缆索式起重机(架空索道)在我公司的工程施工中被广泛运用,我们曾承建了会理锌矿 长距离架空索道及设备安装、502电厂架空索道的安装,由于我市及周边地区处于山区,运 输条件极为不便,在设备安装施工中也广泛采用了缆索式起重机运送设备和管道的运送方式,如会理县云甸乡20t渡槽安装、会理黎溪电站水轮机组吊装(分解后设备单件重5t),攀钢白马铁矿至西昌二基地精矿压力输送管道管廊吊装、攀钢耐密煤气管线敷设吊装、大直 径浓缩池中心耙架及设备吊装等,自己多次参与架空索道的选择及计算应用实例,现结合现场实际情况将有关计算理论附列如下: 支架1 图1施工用缆索式起重机要件构成 图2 白马矿至西昌基地精矿压力输送管通廊吊装 有关型式及说明: 在此以攀钢白马矿至西昌精矿浆长输管线施工用缆索起重机为例,见图1、图2,起吊 重量G=5t,水平运距150m,运送点与支架1落差约150 m,安装点在深山峡谷间无路可往,在支架1处有临时便道公路通往,支架2未采用,而是直接在峡谷对面山上埋桩代替。 二、缆索起重机结构及计算 1、支架高度H=h1+h2+h3+h4+h5+h6+f

hl —所需最大起重咼度,此处取 0.2 m ; h2 —上述咼度与所吊起构件间的间隙, 一般采用2m ; h3—被吊装构件的最大高度,在此取 1.2 m ; h4—吊索的栓系绑扎高度,一般采用 1 m ; h5—起重滑轮组的最小长度,在此取 0.5 m ; h6—起重小车净高,一般采用 1m ; £ L L f —缆索(承重索)在跨度中央的下垂度,可按经验选取 f =0.05~0.07L 或- 一 ■— 1S 20 L 表示跨距,按150m 代入,相对垂度f/L 的数值越小,承重钢丝绳的拉力越大, f/L 数 值过小,贝U 所需支架高度就比较高,同时运行阻力较大,牵引索要加大。根据以上数值,可 取 H=10 m 。 2、承重索计算及依据 悬挂在两支点上的钢索, 在其均布荷载的作用下所呈现的线形如图 3所示,在其上取一 微小线段dL 进行受力分析,由力的平衡原理得钢丝绳微段在平衡静态时的方程为: T cos ( 0 +d 0 ) =Tcos 0 =H T sin ( 0 +d 0 ) =Tsin 0 +qdL 又由于 y =tg 0 ; dy =dtg 0 , 联立这几个式子得微分方程式: 当x=0时,一 一 小的,可以省略不计,并将曲线的坐标原点移动一个 a 值的位置,则得悬挂钢索曲线的近以 A( q 为悬索单位长度的质量 , ) V — 7 T' +d H' H ■ r ―=— qdL T --------- V = -=:称为补偿函数,即可解得 ■,将此式展开为代数函数的形式有: 在上式中若补偿函数 a 值较大,即悬挂钢索的挠度系数较小时, 第三项以后的值是很微

吊车梁设计

1设计资料 简支起重机梁,跨度为12m,工作吊车有两台,均为A5级DQQD 型桥式起重机,起重机跨度L=10.5m,横行小车自重g=3.424t。 起重机梁材料采用Q235钢,腹板与翼缘连接焊接采用自动焊,自动梁宽度为1.0m。最大轮压标准值FK=102kN. 起重机侧面轮压简图如下: 1.内力计算 (1)两台起重机作用下的内力。竖向轮压在支座A产生的最大剪力,最不利轮位只可能如下图所示:由图可知:

243.53KN )3.635.01(1212 1 102KN V K.A =++??= 即最大剪力标准值243.53KN.V kmax = 竖向轮压产生的最大弯矩轮压如图所示 : 最大弯矩在C 点处,其值为 mm a 800102 31650 1024050102=??-?= KN 2.63112000 6400 KN 0213R A =? ?= m KN 38.31605.4102KN -4.6KN 2.631M K C ?=??= 计算起重机梁及制动结构强度时应考虑油起重机摆动引起的横向水

平力,产生的最大水平弯矩为: ()kN n g Q M yk 2.3238.63148.9270.14424.312.038.631%12=??+? =?+? = (2) 一台起重机作用下的内力最大剪力如图所示: 169.6kN )21(7.951/12kN 021V K1=+??= 最大弯矩如图所示:

kN 8.4812 4.988 kN 0212R A =? ?= m kN 0.234m 988.4kN 8.48M kc1?=?= 在C 点处的相应的剪力为: kN 8.48R V A K C1== 计算制动结构的水平挠度时应采用由一台起重机横向水平荷载标准值Tk (按标准规范取值)所产生的挠度: ()kN kN n g Q T k 2.54 8 .9270.14424.312.0%12=?+?=+= 水平荷载最不利轮位和最大弯矩图相同,产生的最大水平弯矩 m kN m kN M yk ?=??=56.21102 2 .50.4231 (3)内力汇总,如下表

双梁门式起重机设计计算书(—)150吨20米

第一章设计出始参数 第一节基本参数: 起重量PQ=150.000 ( t ) 跨度S = 20.000 (m ) 左有效悬臂长ZS1=0.000 (m) 左悬臂总长ZS2=1.500 (m) 右有效悬臂长YS1=1.500 (m ) 右悬臂总长YS2=0.770 (m) 起升高度H0=20.000 (m) 结构工作级别ABJ=5级 主起升工作级别ABZ=0级 副起升工作级别ABF=5级 小车运行工作级别ABX=5级 大车运行工作级别ABD=5级 主起升速度VZQ=3.4000 (m/min) 副起升速度VFQ=3.4000 (m/min) 小车运行速度VXY=2.4000 (m/min) 大车运行速度VDY=2.4000 (m/min) 第二节选用设计参数 起升动力系数02=1.20 运动冲击系数04=1.10 钢材比重R=7.85 t/m'3 钢材弹性模量E=2.1*10'5MPa 钢丝绳弹性模量Eg=0.85*10'5MPa 第三节相关设计参数 大车车轮数(个)AH=8 大车驱动车轮数(个)QN=4 大车车轮直径RM=0.7000(mm) 大车轮距L2=11.000 (m) 连接螺栓直径MD=0.0360 (m) 工作最大风压q1=0/*250*/(N/m'2) 非工作风压q2=0/*600*/(N/m'2) 第四节设计许用值 钢结构材料Q235----B 许用正应力[ σ ] I=156Mpa [ σ ] II=175Mpa 许用剪应力[ ? ]=124Mpa 龙门架许用刚度:

主梁垂直许用静刚度: 跨中(Y)x~1=S/800=30.00mm 悬臂(Y)1=ZS1/700=2.00mm 主梁水平许用静刚度: 跨中(Y)y~1=S/2000=12.00mm 悬臂(Y)1=ZS1/700=2.00mm 龙门架纵向静刚度: 主梁严小车轨道方向(Y)XG=H/800=16.4mm 许用动刚度(f )=1.7H z 连接螺栓材料8.8级螺栓 许用正应力[ σ ] 1s=210.0Mpa 疲劳强度及板屈曲强度依GB3811-83计算许用值选取。 第二章起重小车设计 第一节小车设计参数 小车质量(t) GX=50.000(t) 小车车距(m) B=3.500(m) 轨道至主梁内边(m) L5=0.030(m) 小车轨距( m ) L6=2.500(m) 小车左外伸(m) L7=0.500(m) 小车右外伸(m) L8=0.500(m) 主梁与马鞍间距(m) L11=0(m) 吊钩下探量(m) H6=2.000(m) 小车轨道截面高(m) H7=0.120(m) 小车高H8=1.650(m) 小车顶至马鞍(m) 小车罩沿大车轨道方向 迎风面积(m'2) XDS=12.000(m'2) 小车罩垂直于大车轨道方向 迎风面积(m'2) XXS=12.000(m'2) 钢丝绳金属丝截面积(m'2) DO=6.550700e-004(m'2) 滑轮组钢丝绳分支数半NO=5 小车轨道型号QU70 小车外罩至导电架距离(m)L9=0.97(m) 小车外罩至栏杆距离(m) L10=0.970(m) 法兰至主梁上盖板距离(m)HD=1.800(m) 第二节设计计算 为工厂便于组织生产,提高标准件的通用性,设计中不进行起重小车设计,而采用5t--50t 通用桥式起重机小车。此,起重机小车设计详见5t--50t通用桥式起重机小车计算说明书。

龙门起重机设计计算(完整版)

龙门起重机设计计算 」?设计条件 1. 计算风速 最大工作风速:6级 最大非工作风速:10级(不加锚定) 最大非工作风速:12级(加锚定) 2. 起升载荷 Q=4 0 吨 3. 起升速度 满载:v=1 m/min 空载:v=2 m/min 4?小车运行速度: 满载:v=3 m/min 空载:v=6 m/min 5. 大车运行速度: 满载:v=5 m/min 空载:v=10 m/min 6. 采用双轨双轮支承型式,每侧轨距 2米 7. 跨度44米,净空跨度40米。 8. 起升高度:H 上=50米,H 下=5米 二.轮压及稳定性计算 (一)载荷计算 1. 起升载荷:Q=40t 2. 自重载荷 小车自重 G 龙门架自重 G 大车运行机构自重 G 司机室 G 电气 G 3. 载荷计算 1 =6.7t 2=260t 3=10t 4=0.5t 5=1.5t

工作风压:q i =114 N/m 2 q n=190 N/m 2 q m=800 N/m 2(10 级) q m=1000 N/m 2(12 级) 正面:Fw i=518x114N=5.91 104N Fw U=518x190N=9.86 104N Fw m=518x800N=41.44 104N (10 级) Fw m=518x1000N=51.8 104N (12 级) 侧面:Fw i =4.61 104N Fw n=7.68 104N Fw m=32.34 104N (10 级) Fw rn =40.43 104N (12 级) 二)轮压计算 1. 小车位于最外端, U类风垂直于龙门吊正面吹大车,运行机构起制 动,并考虑惯性力的方向与风载方向相同。 龙门吊自重:G=G1+ G2+G3+G4+G5=6.7+260+10+2=278.7t 起升载荷: Q=40t 水平风载荷:Fw U=9.86t 水平风载荷对轨道面的力矩:Mw U=9.86 X 44.8=441.7 tm 水平惯性力:F a=(G+Q) X a =(278.7+40) X 0.2 X 1000 = 6.37 X 10000 N =6.37 t 小车对中心线的力矩:M2=(6.7+40)X 16=747.2tm 最大腿压:P =0.25 max=0.25 (G+Q) + M 1/2L + M q/2K 318.7 + 722.0/48 + 747.2/84 水平惯性力对轨道面的力矩:总的水平力力矩:M M a = 6.37 X 44=280.3tm 1 = M a+ Mw U =722 tm =79.675+15.04+8.9 =103.6t

吊车梁设计计算书

吊车梁设计 (1)设计资料 车。距 (2m ax 1m ax Q F P αβγ==1..05×1.03×1.4×38=57.54KN 57.542375 45.556000 45.55 2.375108.18.57.5445.5511.99B C C C R K N M K N m V V K N ?= ==?==-=-=左右 2)求m ax T M

() max 57.54 3.5691.116 V KN ?+= = 4)求m ax T V m ax 2.191.11 3.3357.54 T V K N = ?= (3)截面估算 1)梁高 ①按经济条件确定: 6 3 1.2108.1810 603795215 73007300292sh W m m h m m ??= ==?=? = ②按允许挠度值确定: 66min 0.6100.6215600050010387l h fh m m v -?? =?=????=????

③建筑净空无要求 故取h=500mm 。 2)腹板厚度 ①经验公式: 73730.58.5mm w t h =+=+?= ②按抗剪要求: 3 max min 1.2 1.291.1110 1.75.500125 w V t m m h f ??= = =? ③按局部挤压要求: 52505102134368z y R l a h h m m =++=+?+?= 3 m in 1.057.5410 0.73.368215 w z F t m m l f ψ??= ==? 故取8w t m m = ④局部要求 50062.5808 =<= 3)翼缘尺寸 为使截面经济合理,选用上、下翼缘不对称工字形截面,所要翼缘板面积按下列公式近似计算。 16037951.85005416500 6 w w W A t h m m h = -= -??= 取上翼缘A=250×10=25002mm 下翼缘A=200×10=20002mm 即初选上翼缘板-250×10,下翼缘板-200×10

塔式起重机设计说明书讲解

设计题目:QTZ40塔式起重机总体及塔身的优化设计设计人: 设计项目计算与说明结果 前言 塔式起重机概述 塔式起重机发展情况 第1章前言 1.1 塔式起重机概述 塔式起重机是一种塔身竖立起重臂回转的起重机械。在工业与民用建筑施工中塔式起重机是完成预制构件及其他建筑材料与工具等吊装工作的主要设备。在高层建筑施工中其幅度利用率比其他类型起重机高。由于塔式起重机能靠近建筑物,其幅度利用率可达全幅度的80%,普通履带式、轮胎式起重机幅度利用率不超过50%,而且随着建筑物高度的增加还会急剧地减小。因此,塔式起重机在高层工业和民用建筑施工的使用中一直处于领先地位。应用塔式起重机对于加快施工进度、缩短工期、降低工程造价起着重要的作用。同时,为了适应建筑物结构件的预制装配化、工厂化等新工艺、新技术应用的不断扩大,现在的塔式起重机必须具备下列特点: 1.起升高度和工作幅度较大,起重力矩大。 2.工作速度高,具有安装微动性能及良好的调速性能。 3.要求装拆、运输方便迅速,以适应频繁转移工地的需要。 QTZ40型自升式塔式起重机,其吊臂长40米,最大起重量4吨,额定起重力矩40吨米。是一种结构合理、性能比较优异的产品,比较目前国内外同规格同类型的塔机具有更多的优点,能满足高层建筑施工的需要,可用于建筑材料和构件的调运和安装,并能在市内狭窄地区和丘陵地带建筑施工。整机结构不算太大,可满足中小型施工的要求。 本机以基本高度(独立式)30米。用户需高层附着施工,只需提出另行订货要求,即可增加某些部件实现本机的最大设计高度100米,也就是附着高层施工可建高楼32层以上。 1.2 塔式起重机发展情况 塔式起重机是在二次世界大战后才真正获得发展的。战后各国面临着重建家园的艰巨任务,浩大的建筑工程量迫切需要大量性能良好的塔式起重机。欧洲率先成功,1923年成

吊车及吊车梁设计

钢结构设计规范(新规范)GB50017-2003中表A.1.1 手动吊车梁和单梁吊车(包括悬挂吊车)L/500 轻级工作制桥式吊车L/800 中级工作制桥式吊车L/1000 重级工作制和起重量Q≥50的中级工作制桥式吊车L/1200 风荷载控制柱顶位移,1/500,1/400; 吊车作用下,仅重级工作制控制梁顶处节点位移,1/1250;中级可以放松吊车下位移,有PKPM 计算的图籍为例吊车下位移(1/800). A1-A3 轻级如:安装,维修用的电动梁式吊车.手动梁式吊车. A4-A5中级如:机械加工车间用的软钩桥式吊车 A6-A7 重级如:繁重工作车间软钩桥式吊车 A8超重级如:冶金用桥式吊车,连续工作的电磁,抓斗桥式吊车 吊车轻重级别不能片面的根据工作频繁程度分,但是和吨位无关系。 如前帖所说,按照载荷状态和利用等级两个指标来分。 1、载荷状态:是一个概率分布参数,通俗的说,就是这台吊车在整台吊车的寿命期间内(如20年),吊额定载荷的次数和所有的吊装次数的百分比。分轻、中、重、特重4级。 举例来说,对于港口的抓斗,它在自己的寿命内,每吊一次都是额定载荷,属于特重,而有些车间的检修桥吊,它一辈子只吊额定载荷只有几次,其余只吊额定载荷的几分之一。就属于轻。 2、利用等级:整个寿命期间的工作循环数,通俗的说,就是一辈子的吊多少次。从U0~U9分为10个级别,U0是1.6E+4,也就是少于16000次,U9为4E+6,也就是多于400万次。 3、根据上述2个指标,列表后,X方向为利用等级,Y为载荷状态,根据对角线原则再确定。如果载荷状态为轻,但是利用等级为U9,也是特重;如果载荷状态为特重,但是利用等级为U0,也是轻级。 有关吊车荷载主要有以下几种: 1、吊车竖向荷载标准值应采用吊车最大轮压或最小轮压。(《荷规》5.1.1) Pmax与Pmin关系: Pmin= (Q总+Q)/n-Pmax Dmax与Dmin根据影响线求出:Dmax与Dmin同时出现,一端出现Dmax时,对应另一端出现Dmin。 吊车梁计算时,先确定最大弯矩(Mc)出现的截面和极限荷载Pk,根据截面C处的弯矩影响线,求出吊车梁绝对最大弯矩标准值。并注意吊车梁计算时应乘以动力系数(轻中级区1.05,重级1.1)和分项系数。 排架计算时,通过支座反力的影响线,确定极限荷载的位置,求出支座反力最大值,即为吊车对排架产生的竖向荷载Dmax,和Dmin. 2、吊车纵向水平荷载应按作用在一边轨道上所有的刹车轮的最大轮压之和的10%采用;作用点位于刹车轮与轨道的接触点,其方向与轨道方向一致。 单侧所有刹车轮的纵向水平荷载标准值: Tv=0.1 *Pmax*2/n N表示吊车的单侧轮数 3、吊车横向水平荷载应取横行小车与吊重之和的某个百分数。

MG40t×26m门式起重机计算书

MG40/5t×26m 电动双梁门式起重机 设计计算书 编制 审核

设计计算依据及采用标准 一.设计计算的依据为合同的技术规范 二.设计计算采用的标准为《GB3811-83》起重机设计规范

目录 一、总图及主要技术参数 二、小车部分的配套选型计算 三、大车部分的配套选型计算 四、稳定性计算 五、桥架部分的主梁结构强度、刚度计算 六、支腿部分的结构强度计算

一、总图及主要技术参数 (一)、40/5t×26m门式起作用总图(图1-1) (二)、主要技术参数: 1、起重量:40/5t 2、跨度:26m 3、有效悬臂:6.5m 4、起升高度:9/10m 5、起升速度7.5/15.5m/min 6、小车运行速度42m/min 7、大车运行速度36.2m/min 7、工作级别:主起升:M3,副起升、大小车运行:M3 8、小车轨道型号:38kgf/m 9、小车轨距:2.5m 10、起重机自重:109.93t

二、小车部分的配套选型计算 (一)、机构配套选型 1、主起升减速器采用ZQ850减速器,小车运行减速器采立 式减速器ZSC600,副起升采用ZQ500。 2、40吊钩采用单钩,40t 吊钩组重1.09t ,倍率m=4 5t 吊钩组重量为0.107t, 倍率m=2。 3、小车采用四只φ400车轮,采用集中驱动,车轮材质为 ZG55SiMn 。 (二)、机构选型计算 1.主起升设计计算: 起重量:40t 工作级别:M3 起升静功率: Kw V G Q P j 24.5985 .06120105.709.1406120(3 =???+=?+=)()吊钩η 选用 YZR315M-10 JC40% 75kw n=576r/min 合格 钢丝绳的最大工作拉力: kgf t m G Q S 4643643.485 .04209 .1402m ax ==??+= ??+= η 吊钩 按GB3811-83 M3 工作级别 钢丝绳的安全系数5,钢丝绳计算选

吊车梁设计

吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载、横向水平荷载和沿吊车梁纵向的水平荷载。纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。吊车沿轨道运行、起吊、卸载以及工件翻转时将引起吊车梁振动。特别是当吊车越过轨道接头处的空隙时还将发生撞击。因此在计算吊车梁及其连接强度时吊车竖向荷载应乘以动力系数。对悬挂吊车(包括电动葫芦)及工作级别A1~A5的软钩吊车,动力系数可取1.05;对工作级别A6~A8的软钩吊车、硬钩吊车和其他特种吊车,动力系数可取为1.1。 吊车的横向水平荷载由小车横行引起,其标准值应取横行小车重量与额定起重量之和的下列百分数,并乘以重力加速度: 1)软钩吊车:当额定起重量不大10吨时,应取12%;当额定起重量为16~50吨时,应取10%;当额定起重量不小于75吨时,应取8%。 2)硬钩吊车:应取20%。 横向水平荷载应等分于桥架的两端,分别由轨道上的车轮平均传至轨道,其方向与轨道垂直,并考虑正反两个方向的刹车情况。对于悬挂吊车的水平荷载应由支撑系统承受,可不计算。手动吊车及电动葫芦可不考虑水平荷载。 计算重级工作制吊车梁及其制动结构的强度、稳定性以及连接 (吊车梁、制动结构、柱相互间的连接)的强度时,由于轨道不可能绝对平行、轨道磨损及大车运行时本身可能倾斜等原因,在轨道上产生卡轨力,因此钢结构设计规范规定应考虑吊车摆动引起的横向水平力,此水平力不与小车横行引起的水平荷载同时考虑。 二、吊车梁的形式 吊车梁应该能够承受吊车在使用中产生的荷载。竖向荷载在吊车梁垂直方向产生弯矩和剪力,水平荷载在吊车梁上翼缘平面产生水平方向的弯矩和剪力。吊车的起重量和吊车梁的跨度决定了吊车梁的形式。吊车梁一般设计成简支梁,设计成连续梁固然可节省材料,但连续梁对支座沉降比较敏感,因此对基础要求较高。吊车梁的常用截面形式,可采用工字钢、H 型钢、焊接工字钢、箱型梁及桁架做为吊车梁。桁架式吊车梁用钢量省,但制作费工,连接节点在动力荷载作用下易产生疲劳破坏,故一般用于跨度较小的轻中级工作制的吊车梁。一般跨度小起重量不大(跨度不超6米,起重量不超过30吨)的情况下,吊车梁可通过在翼缘上焊钢板、角钢、槽钢的办法抵横向水平荷载,对于焊接工字钢也可采用扩大上翼缘尺寸的方法加强其侧向刚度。对于跨度或起重量较大的吊车梁应设置制动结构,即制动梁或制动桁架;由制动结构将横向水平荷载传至柱,同时保证梁的整体稳定。制动梁的宽度不宜小于1~1.5米,宽度较大时宜采用制动桁架。吊车梁的上翼缘充当制动结构的翼缘或弦杆,制动结构的另一翼缘或弦杆可以采用槽钢或角钢。制动结构还可以充当检修走道,故制动梁腹板一般采用花纹钢板,厚度6~10毫米。对于跨度大于或等于12米的重级工作制吊车梁,跨度大于或等于18米的轻中级工作制吊车梁宜设置辅助桁架和下翼缘(下弦)水平支撑系统,同时设置垂直支撑,其位置不宜设在发生梁或桁架最大挠度处, 以免受力过大造成破坏。对柱两侧均有吊车梁的中柱则应在两吊车梁间设置制动结构。二、吊车梁的设计1、吊车梁钢材的选择吊车梁承受动态载荷的反复作用,因此,其钢材应具有良好的塑性和韧性,且应满足钢结构设计规范GB50017条款3.3.3—3.3.4的要求。 2、吊车梁的内力计算由于吊车荷载为移动载荷,计算吊车梁内力时必须首先用力学方法确定使吊车梁产生最大内力(弯矩和剪力)的最不利轮压位置,然后分别求梁的最大弯矩及相应的剪力和梁的最大剪力及相应弯矩,以及横向水平载荷在水平方向产生的最大弯矩。计算吊车梁的强度及稳定时按作用在跨间荷载效应最大的两台吊车或按实际情况考虑,并采用载荷设计值。计算吊车梁的疲劳及挠度时应按作用在跨间内载荷效应最大的一台吊车确

门式起重机计算书

常熟市莫城起重机械制造厂 门式起重机计算书 型号: MDG 起重量:主钩50T副钩10T 跨度: 24M 有效悬臂:左9M右9M 工作级别:A5 内容:悬臂刚度强度校核;整机稳定性校核

50/10-24M 单梁门式起重机计算书 起重机主参数及计算简图: Lx1=11721Lk=24000Lx2=11421 B=3600 b1b2 p 1p 2 8 5 4 1 = h L=9000 计算简图 小车自重: G X=153.8 KN主梁自重: G Z=554.1 KN走台栏杆滑导支架等附件: G F=40.2 KN 桥架自重: 1100.54 KN额定起重量: G E=490 KN 760e 2751413 0 4 0 2 1 1 2 2 6 1 602 103 222 222 1338.7 1358.7 支腿折算惯性矩的等值截面14140012 6 14261 主梁截面 刚性支腿折算惯性矩:I 1BH 3bh3 5.18 1010 MM 4 12 主梁截面惯性矩: I 2BH 3bh37.91010 MM 4 12 主梁 X 向截面抵弯矩:W X BH 3bh3 7.087 107MM3

主梁 Y 向截面抵弯矩:W Y HB 3hb3 5.089 107 MM 3 6B 一. 悬臂强度和刚度校核。 Ⅰ. 悬臂刚度校核 该门式起重机采用两个刚性支腿,故悬臂端挠度计算按一次超静定龙门架计算简图计算。 ( P1 P2) L2C 38K 3 f(L L K) 3EI 28K12 式中C3:小车轮压合力计算挠度的折算系数 ( P1b1 P2b2) L(2L K3L ) P2b2 3 C3 2 ( L K L) 2(P1 P2)L =1.00055 K:考虑轮缘参与约束,产生横向推力 K I 2h 0.927 I 1L K P1,P2:小车轮压 P1P2G X G E 321.9KN 2 代入数值: f(P P2C(L L K8K 3 ) 12)L3 3EI 28K12 (321.9103321.9 103 )9000 2 1.00055 (90002400080.927 3 ) 3 2.1021057.9101080.92712 22.911mm 按起重机设计规范有效悬臂端的许用挠度:[ f ]L K900025.7mm 350350 f [ f ] 结论:综上计算校核,该起重机的悬臂梁的刚度满足起重机械设计规范的要求。 Ⅱ. 悬臂的强度校核 1.该起重机悬臂的危险截面为支承处截面,满载小车位于悬臂端时该截面受到最大弯曲应力和最 大剪应力。 此时弯曲应力: M x M qw M q s M p s MT max W y W y W x W x

门式起重机计算手册

门式起重机计算书 型号:MDG 起重量:主钩50T副钩10T 一.悬臂强度和刚度校核。 Ⅰ.悬臂刚度校核 该门式起重机采用两个刚性支腿,故悬臂端挠度计算按一次超静定龙门架计算简图计算。 式中C 3 :小车轮压合力计算挠度的折算系数 =1.00055 K:考虑轮缘参与约束,产生横向推力 P 1,P 2 :小车轮压 代入数值:

按起重机设计规范有效悬臂端的许用挠度:mm L f K 7.25350 9000350][=== 结论:综上计算校核,该起重机的悬臂梁的刚度满足起重机械设计规范的要求。 Ⅱ.悬臂的强度校核 1. 该起重机悬臂的危险截面为支承处截面,满载小车位于悬臂端时该截面受到最大弯曲应力和最大剪应力。 此时弯曲应力: 式中x M 为垂直载荷(固定载荷和移动载荷组成)产生的弯矩 qw M 由风载荷产生的水平弯矩 B 371034.4MM S X ?=X S 为中性轴x 以上截面对x 轴的静面矩 261013.3mm ?=ΩΩ为悬臂截面中心线所包围面积的2倍 所以: 按起重机设计规范强度计算按载荷组合Ⅱ进行,其许用剪应力 2/02.1023 7.1763][][mm N ===στ

][max ττ<满足要求。 3. 由于该危险截面受最大正应力和最大剪应力,故还需验算复合应力 故][1.132 max 2max στσ<+成立 结论:综上计算校核,该起重机的悬臂梁的强度满足起重机械设计规范的要求。 二.起重机整机稳定性校核 该起重机为工作场地固定的桥门式类型起重机,故其起重机组别为Ⅲ。该地区属内陆地区。又因其带有悬臂的门式起重机,故整机稳定性校核有三种工况:1.无风静载2.有风动载3.暴风侵袭下的非工作状态。 其抗倾覆稳定性计算条件式: 式中-=m B 91大车轮距 -=q A CK F H h '1横向作用于桥架和小车上的风力 -=m h 15.13'1桥架与小车架横向挡风面积自支腿铰接点起的形心高度 故该工况通过抗倾覆稳定性校核。 结论:综上计算校核,该起重机整机稳定性满足起重机械设计规范的要求。

钢结构厂房吊车梁设计

吊车梁设计 3.3.1设计资料 P 轮压P 图3-1 吊车轮压示意图 吊车总重量:8.84吨,最大轮压:74.95kN ,最小轮压:19.23kN 。 3.3.2吊车荷载计算 吊车荷载动力系数05.1=α,吊车荷载分项系数40.1=Q γ 则吊车荷载设计值为 竖向荷载设计值 max 1.05 1.474.95110.18Q P P kN αγ=??=??= 横向荷载设计值 0.10()0.108.849.8 1.4 3.032 Q Q g H kN n γ?+??==?= 3.3.3力计算 3.3.3.1吊车梁中最大弯矩及相应的剪力 如图位置时弯矩最大

A 图2-2 C 点最大弯矩Mmax 对应的截面位置 考虑吊车来那个自重对力的影响,将力乘以增大系数03.1=w β,则最大弯矩好剪力设计值分别为: 2 22.max 274.95(3.75 1.875)273.107.5c k l P a M kN m l ωβ?? ∑- ? ????-??==?=???? ? 2max ()2110.18(30.125) 2 1.0387.07.5 c w l P a V kN l β-??-==?=∑ 3.3.3.2吊车梁的最大剪力 如图位置的剪力最大

图2-3 A 点受到剪力最大时截面的位置 3.5 1.03110.18( 1)179.606 A R kN =??+=,max 179.69V kN =。 3.3.3.3水平方向最大弯矩 max 3.3312.688.6110.18 c H H M M kN m P = =?=?。 3.3.4截面选择 3.3. 4.1梁高初选 容许最小高度由刚度条件决定,按容许挠度值(500 l v = )要求的最小高度为:6min 0.6[][]0.6600050020010360l h f l mm v -≥=????=。 由经验公式估算梁所需要的截面抵抗矩 6 33max 1.2 1.2312.68101876.0810200 M W mm f ??===? 梁的经济高度为:300563.34h mm ==。取600h mm =。 3.3.4.2确定腹板厚度 0600214576h mm =-?=。 按抗剪强度要求计算腹板所需的厚度为: 3 max 01.2 1.2179.6910 2.34576160 w v V t mm h f ??===?? 2.40 3.5 w t mm ===。取6w t mm =。 3.3. 4.3确定翼缘尺寸 初选截面时: 01111 (~)(~)576115.2~1925353 b h mm ≈=?=

起重机设计计算书

起重机设计计算书

————————————————————————————————作者:————————————————————————————————日期: ?

桁架式双梁门式起重机 设计计算书 设计: 审核:

第一章 型式及主要技术参数 一、型式及构造特点 ME型桁架式双梁门式起重机,主要适用于大型料场、铁路货站、港口码头等装卸、搬运;还可以配以多种吊具进行各种特殊作业。 正常使用的工作环境温度为-25℃~+40℃范围内。安装使用地点的海拔高度不得超过2000m,超过1000m时,应对电动机容量进行校核。 整机主要由门架、小车、大车运行机构及电气控制设备四大部分组成:门架采用桁架结构,具有自重轻、用料省、刚度大、迎风面积小等特点。本机小车有两个吊钩,分为主、副钩,小车副钩可在额定负荷范围内,协同主钩进行工作(但决不允许两钩同时提放两个重物),物体的重量不得超过主钩的额定起重量。 二、主要技术参数和结构简图 主要技术参数 工作级别:A5、操纵方式:地操、单边悬臂长:9.1m 起重量:主钩75t 副钩20t 跨度:27 m 起升高度:11/13m 主钩起升速度:3.7m/min 副钩起升速度:6m/min (1)

小车运行速度:27m/min 大车运行速度:34.1m/min 小车轮距:2800mm小车车轮:4-φ500 小车轨距:3600mm 小车轨道:P43 大车轮距:10600mm 大车车轮:8-φ700 大车轨距:27000mm大车轨道:QU80 起重机总重:117067kg 其中:小车运行机构:22080kg 大车运行机构:12780kg 电气设备(含电缆卷筒)等:4120kg 门架金属结构部件重量: 主梁:2x24751=49502kg 支腿(Ⅰ):2x2835.3=5670.3kg 支腿(Ⅱ):2x2245=4490kg 联系梁:2x992.4=1984.8kg 马鞍梁: 2962.6kg 下横梁:2x4871=9742kg 电缆滑车架: 1332kg 梯子、平台、栏杆等:1720kg 电缆拖车自重:1320㎏ (2)

3t起重机计算书

3t起重机设计计算书 1.计算依据: 1.1依据起重机设计规范GB3811-2008, 依据《电动葫芦门式起重机技术条件》 JB/T5663-2008设计。 1.2主要技术参数 主结构:桁架结构 支腿结构:桁架结构 额定起重量:3t 实验负荷静载起重量:3.75t 实验负荷动载荷起重量:3t 吊钩起升速度:7m/min 吊钩行走速度:20m/min 吊钩有效起升高度:24m,4m(桥上)+20m(桥下) 大车行走速度:0-60m/min 大车设计轮压:8t以下 供电方式:自带发电机(低噪音环保型) 工作电源:380v/5Hz 工作状态风压:≤6级(即:250N/m2) 非工作状态风压:≤11级(即:800N/m2) 龙门吊工作级别:A3 起升机构工作级别:M3 大车走行机构工作级别:M4 跨度:9.65m 悬臂:两侧有效悬臂各4米 适应坡度:±2% 走行方式:轮胎式 2.计算说明: 载荷组合计算 2.1载荷计算 2.1.1结构自重载荷 龙门吊大车结构自重约12000kg. 2.1.2起升载荷P Q =30kN 起升冲击系数φ 1 因为0.9≤φ 1≤1.1,取φ 1 =1.05 轮胎式起重机运行冲击系数φ 4 φ 4 =1.3 2.1.5起升载荷动载系数φ 2 φ 2 =1+0.71*V=1+0.71*0.117=1.08 式中:V----起升速度,V=7m/min=0.117m/s 2.1.6运行加速度α 按行程很长的低速与中速的起重设备,根据葫芦的运行速度V=20m/min=0.33m/s,加减速时间按 4.5s考虑。α =0.07m/s2 大车运行速度V=60m/min=1m/s,加减速时间按4.5s考虑,a=0.22m/s2.

MG10t28m门式起重机设计计算书

双梁通用门式起重机MLH10T28M 设计计算书

目录 一、产品用途…………………………………………………………… 二、主要技术参数……………………………………………………… 三、设计计算校核……………………………………………………… 1.主梁设计……………………………………………………… 2.支腿设计校核………………………………………………… 3.上下横梁设计校核………………………………………………… 4.起重机刚度设计校核……………………………………………… 5.起重机拱度设计校核……………………………………… 6.减速电机的选用……………………………………… 设计计算校核:

一、产品用途 门式起重机是广泛用于工厂、建筑工地、铁路货场、码头仓库等处的重要装卸设备,按其用途不同,分为通用门式起重机,造船门式起重机和集装箱门式起重机。本产品为双梁门式起重机,为应用最广的一种。 二、主要技术参数

三.设计计算校核 (一).主梁计算 主梁的截面高度取决于强度、刚度条件,一般取h=(121~14 1 )L=2333.3~ 2000 主梁计算的最不利工况为:起重机带载(小车在任意位置)运行起、制动并发生偏斜的情况。 主梁承受的载荷有:结构重量,小车载荷,起升或运行冲击力,运行惯性力,偏斜侧向力。 1.载荷与内力 主梁承受垂直载荷与水平载荷,应分别计算。 A ,垂直平面 主梁在垂直平面内的计算模型应按门式起重机的各种工况分析确定。当门式起重机静止工作时,由于超静定门架的刚性支腿下端有水平约束,而使主梁减载、支腿加载;当门式起重机带载运行工作时,却能明显地减小超静定门架支腿下端的水平约束,甚至降低到零,这时主梁受载最大。因此,应取简支梁计算模型。 对门式起重机的静定门架,不管其工况如何,主梁始终为简支梁模型。 (1)载荷 1)主梁自重载荷——自重载荷可参照相近的结构估算,也可根据预选的主梁截面推算,已知一根主梁质量m G =21070kg ,则一根主梁的单位重

吊车梁截面的设计

吊车梁截面的设计 摘要:本文根据吊车的载荷情况,对吊车梁的截面进行了深入的分析。通过对吊车梁截面进行验算,进行合理地设计,保证了吊车梁结构的安全和可靠,同时又节省了用钢量。 关键词:动力作用,制动结构,截面验算 abstract: according to the load carried by the crane,the cross section of the crane beam is deeply analysised in tis article. the safty and reliability of the structure of the crane beam will be ensured by the checking computations and rational design on the cross section of the crane beam, which will reduce the quantity of the steel needed at the same time. keywords:dynamical effect; brake structure; section checking computations 中图分类号:s611文献标识码: a 文章编号: 1 引言 吊车梁是吊车的路基,吊车梁上有吊车轨道,吊车就通过轨道在吊车梁上来回行驶。在吊车梁的设计中,主要是吊车梁截面的设计。吊车梁承受吊车的动力作用,合理设计的吊车梁有利于吊车的稳定运行。本文主要从以下几个方面对吊车梁截面的设计进行详细的描述。 2 吊车梁的载荷 吊车梁直接承受吊车载荷,计算其强度及稳定时,应考虑吊车载

钢结构厂房吊车梁设计

吊车梁设计 设计资料 P 轮压P 图3-1 吊车轮压示意图 吊车总重量:吨,最大轮压:,最小轮压:。 吊车荷载计算 吊车荷载动力系数05.1=α,吊车荷载分项系数40.1=Q γ 则吊车荷载设计值为 竖向荷载设计值 max 1.05 1.474.95110.18Q P P kN αγ=??=??= 横向荷载设计值 0.10()0.108.849.8 1.4 3.032 Q Q g H kN n γ?+??==?= 内力计算 吊车梁中最大弯矩及相应的剪力 如图位置时弯矩最大

A 图2-2 C 点最大弯矩Mmax 对应的截面位置 考虑吊车来那个自重对内力的影响,将内力乘以增大系数03.1=w β,则最大弯矩好剪力设计值分别为: 2 22.max 274.95(3.75 1.875)273.107.5c k l P a M kN m l ωβ?? ∑ - ? ????-??==?=????? 2max ()2110.18(30.125) 2 1.0387.07.5 c w l P a V kN l β-??-==?=∑ 吊车梁的最大剪力 如图位置的剪力最大

图2-3 A 点受到剪力最大时截面的位置 3.5 1.03110.18( 1)179.606 A R kN =??+=,max 179.69V kN =。 水平方向最大弯矩 max 3.3312.688.6110.18 c H H M M kN m P = =?=?。 截面选择 梁高初选 容许最小高度由刚度条件决定,按容许挠度值(500 l v = )要求的最小高度为:6min 0.6[][]0.6600050020010360l h f l mm v -≥=????=。 由经验公式估算梁所需要的截面抵抗矩 6 33max 1.2 1.2312.68101876.0810200 M W mm f ??===? 梁的经济高度为:300563.34h mm ==。取600h mm =。 确定腹板厚度 0600214576h mm =-?=。 按抗剪强度要求计算腹板所需的厚度为: 3 max 01.2 1.2179.6910 2.34576160 w v V t mm h f ??===?? 2.40w t mm = ==。取6w t mm =。 确定翼缘尺寸 初选截面时: 01111 (~)(~)576115.2~1925353 b h mm ≈=?= 上翼缘尺寸取35014mm mm ?,下翼缘尺寸取24014mm mm ?。

相关主题
文本预览
相关文档 最新文档