当前位置:文档之家› 进口柱塞泵马达液压原理图集锦 之6 派克PARKER

进口柱塞泵马达液压原理图集锦 之6 派克PARKER

进口柱塞泵马达液压原理图集锦 之6  派克PARKER
进口柱塞泵马达液压原理图集锦 之6  派克PARKER

液压马达的工作原理

液压马达工作原理 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速小转矩液压马达。 高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用内曲线式等。此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式。低速液压马达的主要特点是排量大、体积大、转速低(有时可达每分种几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千牛顿·米到几万牛顿·米),所以又称为低速大转矩液压马达。 液压马达也可按其结构类型来分,可以分为齿轮式、叶片式、柱塞式和其他型式。 二、液压马达的性能参数 液压马达的性能参数很多。下面是液压马达的主要性能参数: 1.排量、流量和容积效率习惯上将马达的轴每转一周,按几何尺寸计算所进入的液体容积,称为马达的排量V,有时称之为几何排量、理论排量,即不考虑泄漏损失时的排量。 液压马达的排量表示出其工作容腔的大小,它是一个重要的参数。因为液压马达在工作中输出的转矩大小是由负载转矩决定的。但是,推动同样大小的负载,工作容腔大的马达的压力要低于工作容腔小的马达的压力,所以说工作容腔的大小是液压马达工作能力的主要标志,也就是说,排量的大小是液压马达工作能力的重要标志。 根据液压动力元件的工作原理可知,马达转速n、理论流量q i与排量V之间具有下列关系

液压马达分类与原理

创作编号: BG7531400019813488897SX 创作者:别如克* 液压马达分类与原理 (一)液压马达分类 (二)齿轮马达的工作原理 图2-12为外啮合齿轮马达的工作原理图。图中I为输出扭矩的齿轮,B为空转齿轮,当高压油输入马达高压腔时,处于高压腔的所有齿轮均受到压力油的作用(如中箭头所示,凡是齿轮两侧面受力平衡的部分均未画出),其中互相啮合的两个齿的齿面,只有一部分处于高压腔。设啮合点c到两个齿轮齿根的距离分别为阿a和b,由于a 和b均小于齿高h,因此两个齿轮上就各作用一个使它们产生转矩的作用力pB(h—a)和pB(h—b)。这里p代表输入油压力,B代表齿宽。在这两个力的作用下,两个齿轮按图示方向旋转,由扭矩输出轴输出扭矩。随着齿轮的旋转,油液被带到低压腔排出。 图2-12 啮合齿轮马达的工作原理图 齿轮马达的结构与齿轮泵相似,但是内于马达的使用要求与泵不同,二者是有区别的。例如;为适应正反转要求,马达内部结构以及进出油道都具有对称性,并且有单独的泄漏油管,将轴承部分泄漏的油液引到壳体外面去,而不能向泵那样由内部引入低压腔。这是因为马达低压腔油液是由齿轮挤出来的,所以低压腔压力稍高于大气压。若将泄漏油液由马达内部引到低压腔,则所有与泄漏油道相连部分均承受回油压力,而使轴端密封容易损坏。 (三)叶片马达的工作原理 图2-13为叶片马达的工作原理图。当压力为p的油液从进油口进入叶片1和叶片3之间时,叶片2因两面均受液压油的作用,所以不产生转矩。叶片1和叶片3的一侧作用高压油,另一侧作用低压油.并且叶片3伸出的面积大于叶片1伸出的面积,因此使转子产生顺时针方向的转矩。同样,当压力油进入叶片5和叶片7之间时,叶片

8液压马达的工作原理

河北机电职业技术学院备课记录No9-1 序号9 日期200811.10 班级数控0402 课题§3.1第一节液压马达 §3.2第二节液压缸 重点与难点重点: 1.液压马达的工作原理 难点: 2.液压缸的类型和特点 教师魏志强2008 年11月1日 一引入 复习:(5分钟) 1.单作用叶片泵工作原理 2.限压式变量叶片泵工作原理 二正课 第三章液压执行元件 第一节液压马达 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出

液压转动原理

概述 叉车液压系统原理图 液压由于其传动力量大,易于传递及配置,在工业、民用行业应用广泛。液压系统的执行元件液压缸和液压马达的作用是将液体的压力能转换为机械能,而获得需要的直线往复运动或回转运动。 在各部件制造中,对密封性、耐久性有很高的技术要求,目前在液压部件制造中已广泛采用——滚压工艺,很好的解决了圆度、粗糙度的问题。特别是液压缸制造中广泛应用。 液压的定义及组成 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和液压油。动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为压力控制阀、流量控制阀和方向控制阀。压力控制阀又分为溢流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。辅助元件包括油箱、滤油器、油管及管接头、密封圈、压力表、油位油温计等。液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。 液压软管、高压球阀、意图奇的快速接头、卡套式管接头、焊接式管接头、高压软管。 它是由两个大小不同的液缸组成的,在液缸里充满水或油。充水的叫“水压机”;充油的称“油压机”。两个液缸里各有一个可以滑动的活塞,如果在小活塞上加一定值的压力,根据帕斯卡定律,小活塞将这一压力通过液体的压力传递给大活塞,将大活塞顶上去。设小活塞的横截面积是S1,加在小活塞上的向下的压力是F1。于是,小活塞对液体的压强为P=F1/SI,能够大小不变地被液体向各个方向传递”。大活塞所受到的压强必然也等于P。若大活塞的横截面积是S2,压强P在大活塞上所产生的向上的压力F2=PxS2,截面积是小活塞横截面积的倍数。从上式知,在小活塞上加一较小的力,则在大活塞上会得到很大

液压泵、液压缸、液压马达工作原理及应用

液压传动 液压泵、液压马达、液压缸 摘要:液压泵、液压马达、液压缸是液压系统中几个关键的元件,了解它们的工作原理、区别及其应用,对掌握液压传动至关重要。 关键词:液压泵、液压马达、液压缸 Hydraulic Hydraulic pumps, hydraulic motors, hydraulic cylinders SHI Ya-bo(Chongqing Three Gorges University, Chongqing Wanzhou 404000)Abstract:The hydraulic pump, hydraulic motor, hydraulic cylinder is a hydraulic system of several key components, to understand how they work, the difference and its application, to control the hydraulic drive is essential. Keywords: hydraulic pumps, hydraulic motors, hydraulic cylinders 液压系统(英文名称为hydraulic system)以液压油为工作介质,利用液压油的压力能并通过控制阀门等附件操纵液压执行机构工作的整套装置。一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。与机械传动、电气传动相比,液压传动具有①液压传动的各种元件,可以根据需要方便、灵活地来布置;②重量轻、体积小、运动惯性小、反应速度快;③操纵控制方便,可实现大范围的无级调速(调速范围达2000:1);④可自动实现过载保护;⑤一般采用矿物油作为工作介质,相对运动面可自行润滑,使用寿命长;⑥很容易实现直线运动;⑦很容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程度的自动控制过程,而且可以实现遥控等优点。下面主要介绍液压系统中常用的液压泵、液压马达、液压缸的工作原理、区别及应用。 液压泵、液压马达及液压缸的工作原理 1.液压泵 液压泵(hydraulic pump)是一种能量转换装置,它把驱动它的原动机(一般为为电动机)的机械能转换成输出送到系统中去的油液的压力能。 液压泵分类: (1)按其在每转一转所能输出(所需输入)油液体积可否调节分成定量泵和变量泵。 (2)按结构分为齿轮式、叶片式、和柱塞式三大类。 工作原理: 依靠密闭工作容积改变实现吸、压液体,从而将机械能转化为液压能 1.1 分类详述

叶片马达原理

一、液压马达的工作原理 1.叶片式液压马达 由于压力油作用,受力不平衡使转子产生转矩。叶片式液压马达的输出转矩与液压马达的排量和液压马达进出油口之间的压力差有关,其转速由输入液压马达的流量大小来决定。由于液压马达一般都要求能正反转,所以叶片式液压马达的叶片要径向放置。为了使叶片根部始终通有压力油,在回、压油腔通人叶片根部的通路上应设置单向阀,为了确保叶片式液压马达在压力油通人后能正常启动,必须使叶片顶部和定子内表面紧密接触,以保证良好的密封,因此在叶片根部应设置预紧弹簧。叶片式液压马达体积小,转动惯量小,动作灵敏,可适用于换向频率较高的场合,但泄漏量较大,低速工作时不稳定。因此叶片式液压马达一般用于转速高、转矩小和动作要求灵敏的场合。 2.径向柱塞式液压马达 径向柱塞式液压马达工作原理,当压力油经固定的配油轴4的窗口进入缸体内柱塞的底部时,柱塞向外伸出,紧紧顶住定子的内壁,由于定子与缸体存在一偏心距。在柱塞与定子接触处,定子对柱塞的反作用力为。力可分解为和两个分力。当作用在柱塞底部的油液压力为p,柱塞直径为d,力和之间的夹角为X 时,力对缸体产生一转矩,使缸体旋转。缸体再通过端面连接的传动轴向外输出转矩和转速。 以上分析的一个柱塞产生转矩的情况,由于在压油区作用有好几个柱塞,在这些柱塞上所产生的转矩都使缸体旋转,并输出转矩。径向柱塞液压马达多用于低速大转矩的情况下。 3.轴向柱塞马达 轴向柱塞泵除阀式配流外,其它形式原则上都可以作为液压马达用,即轴向柱塞泵和轴向柱塞马达是可逆的。轴向柱塞马达的工作原理为,配油盘和斜盘固定不动,马达轴与缸体相连接一起旋转。当压力油经配油盘的窗口进入缸体的柱塞孔时,柱塞在压力油作用下外伸,紧贴斜盘斜盘对柱塞产生一个法向反力p,此力可分解为轴向分力及和垂直分力Q。Q与柱塞上液压力相平衡,而Q则使柱塞对缸体中心产生一个转矩,带动马达轴逆时针方向旋转。轴向柱塞马达产生的瞬时总转矩是脉动的。若改变马达压力油输入方向,则马达轴按顺时针方向旋转。斜盘倾角a的改变、即排量的变化,不仅影响马达的转矩,而且影响它的转速和转向。斜盘倾角越大,产生转矩越大,转速越低。 4.齿轮液压马达 齿轮马达在结构上为了适应正反转要求,进出油口相等、具有对称性、有单独外泄油口将轴承部分的泄漏油引出壳体外;为了减少启动摩擦力矩,采用滚动轴承;为了减少转矩脉动齿轮液压马达的齿数比泵的齿数要多。 齿轮液压马达由干密封性差,容租效率较低,输入油压力不能过高,不能产生较大转矩。并且瞬间转速和转矩随着啮合点的位置变化而变化,因此齿轮液压马达仅适合于高速小转矩的场合。一般用干工程机械、农业机械以及对转矩均匀性要求不高的机械设备上。 二、容积式液压泵是靠密封容积的变化来实现吸油和压油的,其排油量的大小取决于密封腔的容积变化。

液压马达工作原理

液压马达 液压马达习惯上是指输出旋转运动的,将液压泵提供的液压能转变 为机械能的能量转换装置. 一、液压马达的特点及分类 从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积 和相应的配油机构。 但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。 液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。按液压马达的额定转速分为高速和低速两大类。额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,

便于启动和制动,调节(调速及换向)灵敏度高。通常高速液压马达输出转矩不大所以又称为高速小转矩液压马达。低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大,所以又称为低速大转矩液压马达。 二、液压马达的工作原理 1.叶片式液压马达 由于压力油作用,受力不平衡使转子产生转矩。叶片式液压马达的输出转矩与液压马达的排量和液压马达进出油口之间的压力差有关,其转速由输入液压马达的流量大小来决定。由于液压马达一般都要求能正反转,所以叶片式液压马达的叶片要径向放置。为了使叶片根部始终通有压力油,在回、压油腔通人叶片根部的通路上应设置单向阀,为了确保叶片式液压马达在压力油通人后能正常启动,必须使叶片顶部和定子内表面紧密接触,以保证良好的密封,因此在叶片根部应设置预紧弹簧。叶片式液压马达体积小,转动惯量小,动作灵敏,可适用于换向频率较高的场合,但泄漏量较大,低速工作时不稳

液压马达工作原理(与泵的区别)

从工作原理上讲,液压传动中的液压泵和液压马达都是靠工作积的容积变化而工作的。因此说泵可以作马达用,马达可作泵用。实际上由于两者工作状态不一样,为了更好发挥各自工作性能,在结构上存在差别,所以不能通用。 高速液压马达的主要特点是:转速较高、转动惯量小、便于起动和制动,调节(调速和换向)灵敏度高。通常高速马达的输出转矩不大,仅几十N〃m 到几百N〃m,∴又称高速小转矩液压马达。 低速液压马达的特点:排量大、体积小、转速低,可低到每分钟几转,能直接与工作机构连接,不需减速装置,使传动机构大大简化。低速马达输出转矩较大,可达几千N〃m到几万N〃m,∴又称低速大转矩马达。 3、液压泵与液压马达的异同 ①各种液压泵和液压马达均是利用“密封容积(腔)”的周期性变化来工作的。工作中均需要有配流盘等装置辅助,而且,“密封容积”分为高压区和低压区两个独立部分。 ②二者在工作中均会产生困油现象和径向力不平衡,液压冲击、流量脉动和液体泄漏等一些共同的物理现象。 ③液压泵和马达是机械能和压力能互相转换的动力装置,转换过程中均有能量损失,所以均有容积效率、机械效率和总效率,三者效率之间关系也相同,计算效率时,要清楚输入量与输出量的关系。 ④液压泵和马达工作原理是可逆的,理论上输入与输出量有相同的数学关系;

⑤液压泵和液压马达最重要的结构参数都是排量,排量的大小反映了液压泵和液压马达的性能。 ①动力不同液压马达是靠输入液体压力来启动工作的,而液压泵是由电动机等其他动力装置直接带动的,因此结构上有所不同。马达容积密封必须可靠,为此,叶片式马达叶片根部装有燕尾弹簧,使其始终贴紧定子,以便马达顺利起动。 ②配流机构进出油口的不同液压马达有正、反转要求,所以配流机构是对称的,进出油口孔径相同;而液压泵一般为单向旋转,其配流机构及卸荷槽不对称,进出油口孔径不同。 ③自吸性的差异液压马达依靠压力油工作,不需要有自吸性;而液压泵必须有自吸能力。 ④防止泄漏形式不同液压泵采用内泄漏形式,内部泄漏口直接与液压泵吸油口相通;而马达是双向运转,高低压油口互相变换,所以采用外泄漏式结构。(故泵、马达不能互逆通用) 液压马达容积效率比泵低 ⑥液压马达起动转矩大,为使起动转矩与工作状态尽量接近,要求其转矩脉动要小,内部摩擦要小,齿数、叶片数、柱塞数应比液压泵多,马达的轴向间隙补偿装置的压紧力比泵小,以减小摩擦。 对于液压马达的选用 (单向.双向.定量.变量,根据运动部件的运动要求而定) 1、高速、低转矩时用齿轮马达, (ηv低、转矩脉动性较大); 2、正反向转动变化频率较高,要求动作灵敏、高速、低转矩的场合,一般用叶片马达, (∵其转动惯量小); 3、在高速下,功率和转矩变化范围较大时,用轴向柱塞马达; 4、低速、大转矩,一般用径向柱塞马达。

液压马达分类与原理演示教学

液压马达分类与原理

液压马达分类与原理 (一)液压马达分类 (二)齿轮马达的工作原理 图2-12为外啮合齿轮马达的工作原理图。图中I为输出扭矩的齿轮,B 为空转齿轮,当高压油输入马达高压腔时,处于高压腔的所有齿轮均受到压力油的作用(如中箭头所示,凡是齿轮两侧面受力平衡的部分均未画出),其中互相啮合的两个齿的齿面,只有一部分处于高压腔。设啮合点c到两个齿轮齿根的距离分别为阿a和b,由于a和b均小于齿高h,因此两个齿轮上就各作用一个使它们产生转矩的作用力pB(h—a)和pB(h—b)。这里p代表输入油压力,B代表齿宽。在这两个力的作用下,两个齿轮按图示方向旋转,由扭矩输出轴输出扭矩。随着齿轮的旋转,油液被带到低压腔排出。 图2-12 啮合齿轮马达的工作原理图 齿轮马达的结构与齿轮泵相似,但是内于马达的使用要求与泵不同,二者是有区别的。例如;为适应正反转要求,马达内部结构以及进出油道都具有对称性,并且有单独的泄漏油管,将轴承部分泄漏的油液引到壳体外面去,而不能向泵那样由内部引入低压腔。这是因为马达低压腔油液是由齿轮挤出来的,所以低压腔压力稍高于大气压。若将泄漏油液由仅供学习与交流,如有侵权请联系网站删除谢谢2

马达内部引到低压腔,则所有与泄漏油道相连部分均承受回油压力,而使轴端密封容易损坏。 (三)叶片马达的工作原理 图2-13为叶片马达的工作原理图。当压力为p的油液从进油口进入叶片1和叶片3之间时,叶片2因两面均受液压油的作用,所以不产生转矩。叶片1和叶片3的一侧作用高压油,另一侧作用低压油.并且叶片3伸出的面积大于叶片1伸出的面积,因此使转子产生顺时针方向的转矩。同样,当压力油进入叶片5和叶片7之间时,叶片7伸出面积大于叶片5伸出的面积,也产生顺时针方向的转矩,从而把油液的压力能转换成机械能,这就是叶片马达的工作原理。为保证叶片在转子转动前就要紧密地与定子内表面接触,通常是在叶片根部加装弹簧,完弹簧的作用力使叶片压紧在定子内表面上。叶片马达一般均设置单向阀为叶片根部配油。为适应正反转的要求,叶片沿转子径向安置。 图2-13为叶片马达的工作原理图 (四)轴向柱塞马达的工作原理 轴向柱塞马达包括斜盘式和斜轴式两类。由于轴向柱塞马达和轴向柱塞泵的结构基本相同,工作原理是可逆的,所以大部分产品既可作为泵使用。图2-14所示轴向柱塞式液压马达的工作原理。斜盘l和配油盘4仅供学习与交流,如有侵权请联系网站删除谢谢3

8液压马达的工作原理

一引入 复习:(5分钟) 1.单作用叶片泵工作原理 2.限压式变量叶片泵工作原理 二正课 第三章液压执行元件 第一节液压马达 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出

相关主题
文本预览
相关文档 最新文档