2019年数学中考试题带答案
一、选择题
1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A .2.3×109 B .0.23×109 C .2.3×108 D .23×107
2.定义一种新运算:1
a
n n n b
n x
dx a b -?=-?,例如:222k
h
xdx k h ?=-?,若
m
252m
x dx --=-?
,则m =( )
A .-2
B .25
-
C .2
D .
25
3.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )
A .15°
B .22.5°
C .30°
D .45°
4.已知二次函数y =ax 2+bx +c ,且a>b>c ,a +b +c =0,有以下四个命题,则一定正确命题的序号是( )
①x=1是二次方程ax 2
+bx +c=0的一个实数根; ②二次函数y =ax 2+bx +c 的开口向下;
③二次函数y =ax 2
+bx +c 的对称轴在y 轴的左侧; ④不等式4a+2b+c>0一定成立. A .①②
B .①③
C .①④
D .③④
5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )
A 14
B .4cm
C 15
D .3cm
6.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )
A .0a b +>
B .0a c +>
C .0b c +>
D . 0ac <
7.下列计算正确的是( )
A .a 2?a=a 2
B .a 6÷a 2=a 3
C .a 2b ﹣2ba 2=﹣a 2b
D .(﹣
32a )3=﹣39
8a
8.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )
A .110°
B .125°
C .135°
D .140°
9.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( ) A .a =1
B .a =0
C .a =﹣1﹣k (k 为实数)
D .a =﹣1
﹣k 2(k 为实数)
10.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( ) A .甲
B .乙
C .丙
D .一样
11.如图,正比例函数1y=k x 与反比例函数2
k y=x
的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )
A .(1,2)
B .(-2,1)
C .(-1,-2)
D .(-2,-1)
12.一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根
D .没有实数根
二、填空题
13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x
=
(0x >)及22k
y x =(0x >)
的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ?的面积为4,则
12k k =﹣________.
14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________
15.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=
2
x
的图像上,则菱形的面积为_______.
16.计算:82-=_______________.
17.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.
18.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.
19.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=4,BC=10,CD=6,则tanC=________.
20.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是
三、解答题
21.计算:1
03212sin45(2π)--+-o .
22.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整 (收集数据)
甲班15名学生测试成绩统计如下:(满分100分)
68,72,89,85,82,85,74,92,80,85,78,85,69,76,80 乙班15名学生测试成绩统计如下:(满分100分)
86,89,83,76,73,78,67,80,80,79,80,84,82,80,83 (整理数据)
按如下分数段整理、描述这两组样本数据 组别 班级 65.6~70.5 70.5~75.5 75.5~80.5 80.5~85.5 85.5~90.5 90.5~95.5 甲班 2 2 4 5 1 1 乙班
1
1
a
b
2
在表中,a = ,b = . (分析数据)
(1)两组样本数据的平均数、众数、中位数、方差如下表所示: 班级 平均数 众数 中位数 方差 甲班 80 x 80 47.6 乙班
80
80
y
26.2
在表中:x = ,y = .
(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有 人
(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.
23.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法
如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 项部M 的仰角为37°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M 的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E .请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)
24.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角
45CAB ∠=?,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=?,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).
(参考数据:2 1.414≈,3 1.732≈)
25.已知:如图,△ABC 为等腰直角三角形∠ACB =90°,过点C 作直线CM ,D 为直线CM 上一点,如果CE =CD 且EC ⊥CD . (1)求证:△ADC ≌△BEC ; (2)如果EC ⊥BE ,证明:AD ∥EC .
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C
【解析】230000000= 2.3×108 ,故选C.
2.B
解析:B 【解析】 【分析】
根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,
5211m
11(5
)25m x dx m m m m
---?-=-=
-=-, 则25
m =-
, 经检验,2
5
m =-是方程的解, 故选B. 【点睛】
此题考查了解分式方程,弄清题中的新定义是解本题的关键.
3.A
解析:A 【解析】
试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .
考点:平行线的性质.
4.C
解析:C 【解析】
试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确; 根据二次函数的对称轴为x =-
2b
a
,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确. 故选:C.
5.A
【解析】
运用直角三角形的勾股定理,设正方形D 的边长为x ,则
22222(65)(5)10x +++=,14x cm =(负值已舍),故选A
6.A
解析:A 【解析】 【分析】
根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】 解:a b =Q ,
∴原点在a ,b 的中间,
如图,
由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=, 故选项A 错误, 故选A . 【点睛】
本题考查了实数与数轴,解决本题的关键是确定原点的位置.
7.C
解析:C 【解析】 【分析】
根据同底数幂的乘法运算可判断A ;根据同底数幂的除法运算可判断B ;根据合并同类项可判断选项C ;根据分式的乘方可判断选项D. 【详解】
A 、原式=a 3,不符合题意;
B 、原式=a 4,不符合题意;
C 、原式=-a 2b ,符合题意;
D 、原式=-27
8a
,不符合题意, 故选C . 【点睛】
此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.
8.B
解析:B
【分析】
由AB∥CD,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.
【详解】
∵AB∥CD,
∴∠BAC+∠C=180°,
∵∠C=70°,
∴∠CAB=180°-70°=110°,
又∵AE平分∠BAC,
∴∠CAE=55°,
∴∠AED=∠C+∠CAE=125°,
故选B.
【点睛】
本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.
9.D
解析:D
【解析】
【分析】
a
=可确定a的范围,排除掉在范围内的选项即可.
【详解】
解:当a≥0a
=,
当a<0a
=-,
∵a=1>0,故选项A不符合题意,
∵a=0,故选项B不符合题意,
∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,
∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,
故选:D.
【点睛】
a a
a
a a
≥
?
==?
-≤
?
,正确理解该性质是解题的关键. 10.C
解析:C
【解析】
试题分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解:设商品原价为x,
甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;
乙超市售价为:x (1﹣15%)2=0.7225x ; 丙超市售价为:x (1﹣30%)=70%x=0.7x ; 故到丙超市合算. 故选C . 考点:列代数式.
11.D
解析:D 【解析】 【分析】 【详解】
解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数
2
k y=
x
的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1). 故选:D
12.A
解析:A 【解析】 【分析】
先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】
解:原方程可化为:2240x x --=,
1a \=,2b =-,4c =-,
2(2)41(4)200∴?=--??-=>, ∴方程由两个不相等的实数根.
故选:A . 【点睛】
本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.
二、填空题
13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比
解析:【解析】 【分析】
根据反比例函数k 的几何意义可知:AOP ?的面积为
112k ,BOP ?的面积为21
2
k ,然后
两个三角形面积作差即可求出结果. 【详解】
解:根据反比例函数k 的几何意义可知:AOP ?的面积为112k ,BOP ?的面积为21
2
k , ∴AOB ?的面积为121122
k k -,∴1211
422k k -=,∴128k k -=.
故答案为8. 【点睛】
本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型.
14. 解析:9 4 -