当前位置:文档之家› 2016_2017学年高中数学2.2.1平面向量基本定理学案

2016_2017学年高中数学2.2.1平面向量基本定理学案

2016_2017学年高中数学2.2.1平面向量基本定理学案
2016_2017学年高中数学2.2.1平面向量基本定理学案

2.2.1 平面向量基本定理

1.了解平面向量的基本定理及其意义,会用平面向量基本定理和向量的线性运算进行向量之间的相互表示.(重点)

2.理解直线的向量参数方程式,尤其是线段中点的向量表达式.(难点)

[基础·初探]

教材整理1 平面向量基本定理

阅读教材P96~P97“例1”以上内容,完成下列问题.

1.平面向量基本定理:

如果e1和e2是一平面内的两个不平行的向量,那么该平面内的任一向量a,存在唯一的一对实数a1,a2,使a=a1e1+a2e2.

2.基底:

把不共线向量e1,e2叫做表示这一平面内所有向量的一组基底,记为{e1,e2}.a1e1+a2e2叫做向量a关于基底{e1,e2}的分解式.

判断(正确的打“√”,错误的打“×”)

(1)一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底.( )

(2)若e1,e2是同一平面内两个不共线向量,则λ1e1+λ2e2(λ1,λ2为实数)可以表示该平面内所有向量.( )

(3)若a e1+b e2=c e1+d e2(a,b,c,d∈R),则a=c,b=d.( )

【解析】(1)错误.根据基底的概念可知,平面内不共线的向量都可以作为该平面内向量的基底.

(2)正确.根据平面向量基本定理知对平面内任意向量都可以由向量e1,e2线性表示.

(3)错误.当e1与e2共线时,结论不一定成立.

【答案】(1)×(2)√(3)×

教材整理2 直线的向量参数方程式

阅读教材P97“例2”~P98以上内容,完成下列问题.

1.向量参数方程式:

已知A,B是直线l上任意两点,O是l外一点(如图2-2-1所示),对直线l上任意一

点P ,一定存在唯一的实数t 满足向量等式OP →=(1-t )OA →+tOB →

;反之,对每一个实数t ,在直线l 上都有唯一的一个点P 与之对应.向量等式OP →=(1-t )OA →+tOB →

叫做直线l 的向量参数方程式,其中实数t 叫做参变数,简称参数.

图2-2-1

2.线段中点的向量表达式:

在向量等式OP →=(1-t )OA →+tOB →中,令t =12,点M 是AB 的中点,则OM →=1

2(OA →+OB →

).这

是线段AB 的中点的向量表达式.

已知AD 为△ABC 的边BC 上的中线,则AD →

等于( ) A.AB →+AC →

B.AB →-AC →

C.12AB →-1

2

AC → D.12AB →+12

AC → 【解析】 根据线段BC 的中点向量表达式可知AD →=12(AB →+AC →)=12AB →+1

2AC →

,故选D.

【答案】 D

[质疑·手记]

预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:

疑问1:_________________________________________________________ 解惑:_________________________________________________________ 疑问2:_________________________________________________________ 解惑:_________________________________________________________ 疑问3:_________________________________________________________ 解惑:_________________________________________________________ 疑问4:_________________________________________________________ 解惑:_________________________________________________________

[小组合作型]

如图2-2-2,设点P ,Q 是线段AB 的三等分点,若OA →=a ,OB →=b ,则OP

=________,OQ →

=________.(用a ,b 表示)

图2-2-2

【精彩点拨】 用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则.

【自主解答】 OP →=AP →-AO →=1

3AB →+OA →

=1

3(OB →-OA →)+OA → =23OA →+13OB →=23a +1

3b , OQ →

=AQ →-AO →=23AB →+OA →=2

3(OB →-OA →)+OA →

=13OA →+23OB →

=13a +23b . 【答案】 23a +13b 13a +23

b

平面向量基本定理的作用以及注意点:

(1)根据平面向量基本定理,任何一组基底都可以表示任意向量.用基底表示向量,实质上主要是利用三角形法则或平行四边形法则,进行向量的加减法运算.

(2)要注意适当选择向量所在的三角形或平行四边形,利用已知向量表示未知向量,或找到已知向量与未知向量的关系,用方程的观点求出未知向量.

[再练一题]

1.已知△ABC 中,D 为BC 的中点,E ,F 为BC 的三等分点,若AB →=a ,AC →

=b 用a ,b 表示AD →,AE →,AF →.

图2-2-3

【解】 AD →

=AB →+BD →=AB →+1

2BC →

=a +12(b -a )=12a +1

2b ;

AE →

=AB →+BE →

=a +13(b -a )=23a +1

3b ;

AF →

=AB →+BF →=AB →+23BC →=a +23(b -a )=13a +2

3b .

已知平面内两定点A ,B ,对该平面内任一动点C ,总有OC →=3λOA →+(1

-3λ)OB →

(λ∈R ,点O 为直线AB 外一点),则点C 的轨迹是什么图形?并说明理由.

【导学号:72010054】

【精彩点拨】 将所给向量式与直线的向量参数方程式比较易得答案,也可以考虑将所给向量式化简后再观察特点.

【自主解答】 将已知向量等式两边同时减去OA →,得OC →-OA →=(3λ-1)OA →+(1-3λ)OB → =(1-3λ)(OB →-OA →) =(1-3λ)AB →

即AC →=(1-3λ)AB →,λ∈R ,又AC →,AB →

共始点,

∴A ,B ,C 三点共线, 即点C 的轨迹是直线AB .

理解直线的向量参数方程式时要注意OP →=(1-t )OA →+tOB →

中三向量共始点,左边向量的系数是1,右边两向量的系数之和为1,也可以结合向量加法的平行四边形法则进行理解.

[再练一题]

2.如图2-2-4,设一直线上三点A ,B ,P 满足AP →=λPB →

(λ≠-1),O 是平面上任意一点,则( )

A.OP →

=OA →+λOB →1+λ

B.OP →

=OA →+λOB →1-λ

C.OP →

=OA →-λOB →1+λ

D.OP →

=OA →-2λOB →1-λ

图2-2-4

【解析】 ∵P ,A ,B 三点共线, ∴一定存在实数t , 使得OP →=(1-t )OA →+tOB →, 则t 满足(1-t )+t =1,

只有选项A :11+λ+λ1+λ=1+λ

1+λ=1符合.

【答案】 A

[探究共研型]

探究1 在向量等式OP →=xOA →+yOB →

中,若x +y =1,则三点P ,A ,B 具有什么样的位置关系?

【提示】 三点P ,A ,B 在同一直线上.在向量等式OP →=xOA →+yOB →

中,若x +y =1,则P ,

A ,

B 三点共线;若P ,A ,B 三点共线,则x +y =1.

探究2 如图2-2-5所示,有点O ,A ,D ,B ,以OA 和OB 为邻边作一平行四边形ADBO ,将此平行四边形的各边所在直线延长,将平面分成9部分,对于平面上任一向量OC →

,存在唯一有序实数对(x ,y ),使OC →=xOA →+yOB →

成立.

图2-2-5

对于点C 的位置与实数x ,y 的取值情况需分几种讨论? 【提示】 需分12种情况. (1)点C 与点O 重合,则x =y =0. (2)点C 与点A 重合,则x =1,y =0. (3)点C 与D 重合,则x =y =1. (4)点C 与点B 重合,则x =0,y =1. (5)点C 在直线OA 上,则x ∈R ,y =0. (6)点C 在直线AD 上,则x =1,y ∈R . (7)点C 在直线BD 上,则x ∈R ,y =1. (8)点C 在直线OB 上,则x =0,y ∈R . (9)点C 在直线OD 上,则x =y . (10)点C 在直线AB 上,则x +y =1.

(11)点C 在①②③区域上,则x >1;点C 在④⑤⑥区域上,则0

(12)点C 在①④⑦区域上,则y <0;点C 在②⑤⑧区域上,则01.

如图2-2-6所示,在△OAB 中,OA →=a ,OB →

=b ,点M 是AB 的靠近B 的

一个三等分点,点N 是OA 的靠近A 的一个四等分点.若OM 与BN 相交于点P ,求OP →

.

图2-2-6

【精彩点拨】 可利用OP →=tOM →及OP →=ON →+NP →=ON →+sNB →两种形式来表示OP →

,并都转化为以a ,b 为基底的表达式.根据任一向量基底表示的唯一性求得s ,t ,进而求得OP →.

【自主解答】 OM →=OA →+A M →=OA →+2

3AB →

=OA →+23(OB →-OA →

)=13a +23b .

因为OP →与OM →

共线, 故可设OP →=tOM →

=t 3a +2t

3

b .

又NP →与NB →共线,可设NP →=sNB →,OP →=ON →+sNB →=34OA →+s (OB →-ON →

)=3

4(1-s )a +s b ,

所以?????

34 1-s =t

3

,s =2

3t ,解得?????

t =910,s =3

5,

所以OP →=310a +3

5

b .

1.任意一向量基底表示的唯一性的理解:

2.平面向量基本定理指出了平面内任一向量都可以表示为同一平面内两个不共线向量e 1,

e 2的线性组合λ1e 1+λ2e 2.在具体求λ1,λ2时有两种方法:

(1)直接利用三角形法则、平行四边形法则及向量共线定理;

(2)利用待定系数法,即利用定理中λ1,λ2的唯一性列方程组求解. [再练一题]

3.如图2-2-7所示,在△ABC 中,点M 是AB 的中点,且AN →=1

2NC →

,BN 与CM 相交于E ,

设AB →=a ,AC →=b ,试用基底a ,b 表示向量AE →.

图2-2-7

【解】 易得AN →=13AC →=13b ,AM →=12AB →

=1

2a ,

由N ,E ,B 三点共线,设存在实数m , 满足AE →=mAN →+(1-m )AB →

=1

3m b +(1-m )a .

由C ,E ,M 三点共线,设存在实数n 满足: AE →

=nAM →+(1-n )AC →

=1

2n a +(1-n )b .

所以13m b +(1-m )a =1

2n a +(1-n )b ,

由于a ,b 为基底,所以?????

1-m =1

2

n ,1

3m =1-n ,

解之得?????

m =3

5

,n =4

5,

所以AE →

=25a +1

5

b .

1.(2016·黄石高一检测)已知平行四边形ABCD ,则下列各组向量中,是该平面内所有向量基底的是( )

A.AB →,DC →

B.AD →,BC →

C.BC →,CB →

D.AB →,DA →

【解析】 由于AB →,DA →

不共线,所以是一组基底. 【答案】 D

2.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )

A.不共线

B.共线

C.相等

D.不确定

【解析】 ∵a +b =3e 1-e 2, ∴c =2(a +b ), ∴a +b 与c 共线. 【答案】 B

3.如图2-2-8,在矩形ABCD 中,若BC →=5e 1,DC →=3e 2,则OC →

=( )

图2-2-8

A.1

2

(5e 1+3e 2) B.1

2

(5e 1-3e 2)

C.1

2

(3e 2-5e 1) D.1

2

(5e 2-3e 1) 【解析】 OC →=12AC →=1

2(BC →+AB →

)

=12(BC →+DC →

)=1

2(5e 1+3e 2). 【答案】 A

4.(2016·福州市八县一中高一联考)已知A ,B ,D 三点共线,且对任意一点C ,有CD →

=4

3

CA →+λCB →,则λ=________. 【解析】 ∵A ,B ,D 三点共线,

∴存在实数t ,使AD →=tAB →,则CD →-CA →=t (CB →-CA →),即CD →=CA →+t (CB →-CA →)=(1-t )CA →

+tCB →,∴???

??

1-t =43,

t =λ,

即λ=-1

3

.

【答案】 -1

3

5.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .

【导学号:72010055】

【解】 ∵a ,b 不共线, ∴可设c =x a +y b ,

则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又∵e 1,e 2不共线,

∴?

??

??

3x -2y =7,-2x +y =-4,解得?

??

??

x =1,

y =-2,

∴c =a -2b .

我还有这些不足:

(1)_________________________________________________________ (2)_________________________________________________________ 我的课下提升方案:

(1)_________________________________________________________ (2)_________________________________________________________

学业分层测评(十八) (建议用时:45分钟)

[学业达标]

一、选择题

1.(2016·衡水高一检测)设e 1,e 2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( )

A.e 1+e 2和e 1-e 2

B.3e 1-4e 2和6e 1-8e 2

C.e 1+2e 2和2e 1+e 2

D.e 1和e 1+e 2

【解析】 B 中,∵6e 1-8e 2=2(3e 1-4e 2), ∴(6e 1-8e 2)∥(3e 1-4e 2), ∴3e 1-4e 2和6e 1-8e 2不能作为基底. 【答案】 B

2.(2016·合肥高一检测)如图2-2-9,向量a -b 等于( )

图2-2-9

A.-4e 1-2e 2

B.-2e 1-4e 2

C.e 1-3e 2

D.3e 1-e 2

【解析】 不妨令a =CA →

, b =CB →,

则a -b =CA →-CB →=BA →

由平行四边形法则可知BA →

=e 1-3e 2.

【答案】 C

3.(2016·大连高一检测)如图2-2-10,已知E ,F 分别是矩形ABCD 的边BC ,CD 的中点,EF 与AC 交于点G ,若AB →=a ,AD →=b ,用a 、b 表示AG →

=( )

图2-2-10

A.14a +14b

B.13a +13b

C.34a -14

b D.34a +34

b 【解析】 易知CF →=12CD →,CE →=1

2

CB →

.

设CG →=λCA →,则由平行四边形法则可得CG →=λ(CB →+CD →)=2λCE →+2λCF →

, 由于E ,G ,F 三点共线, 则2λ+2λ=1, 即λ=14,从而CG →=1

4CA →

从而AG →=34AC →=3

4(a +b ).

【答案】 D

4.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →

,则3r +s 的值为( ) A.165

B.125

C.85

D.45

【解析】 ∵CD →=4DB →=rAB →+sAC →

, ∴CD →=45CB →=4

5

(AB →-AC →)=rAB →+sAC →

∴r =45,s =-45,

∴3r +s =125-45=85.

【答案】 C

5.如果e 1,e 2是平面α内所有向量的一组基底,那么下列命题正确的是( ) A.若实数λ1,λ2,使λ1e 1+λ2e 2=0,则λ1=λ2=0

B.空间任一向量a 可以表示为a =λ1e 1+λ2e 2,其中λ1,λ2∈R

C.对实数λ1,λ2,λ1e 1+λ2e 2不一定在平面α内

D.对平面α中的任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对

【解析】 选项B 错误,这样的a 只能与e 1,e 2在同一平面内,不能是空间任一向量;选项C 错误,在平面α内任一向量都可表示为λ1e 1+λ2e 2的形式,故λ1e 1+λ2e 2一定在平面α内;选项D 错误,这样的λ1,λ2是唯一的,而不是有无数对.

【答案】 A 二、填空题

6.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________. 【解析】 由题意可以设a +λb =λ1(-b +3a )=3λ1a -λ1b , 因为a 与b 不共线,

所以有?

??

??

1=3λ1,λ=-λ1,解得?????

λ1

=1

3,λ=-1

3

.

【答案】 -1

3

7.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________.

【解析】 因为a =e 1+2e 2 ①,

b =-e 1+e 2 ②,

显然a 与b 不共线,

①+②得a +b =3e 2,

所以e 2=

a +b

3

代入②得 e 1=e 2-b =a +b 3-b =13a -2

3

b ,

故有e 1+e 2=13a -23b +13a +13b =23a -13

b .

【答案】 23a -13

b 三、解答题

8.如图2-2-11,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →

的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →

(λ,μ∈R ),求λ+μ的值.

图2-2-11

【导学号:72010056】

【解】 如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →

+OE →,在Rt △OCD 中,因为|OC →|=23,∠COD =30°,∠OCD =90°,所以|OD →|=4,|CD →|=2,故OD →=4OA →,OE →=2OB →

,即λ=4,μ=2,所以λ+μ=6.

9.(2016·马鞍山二中期末)如图2-2-12所示,在?ABCD 中,E ,F 分别是BC ,DC 的中点,BF 与DE 交于点G ,设AB →=a ,AD →

=b .

图2-2-12

(1)用a ,b 表示DE →

(2)试用向量方法证明:A ,G ,C 三点共线. 【解】 (1)DE →=AE →-AD →=AB →+BE →-AD →

=a +12b -b =a -12

b.

(2)证明:连接AC ,BD 交于O , 则CO →=1

2

CA →

∵E ,F 分别是BC ,DC 的中点,

∴G 是△CBD 的重心,

∴GO →=13CO →=13×? ????-12AC →=-1

6AC →

又C 为公共点,∴A ,G ,C 三点共线.

[能力提升]

1.已知点O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ? ????AB →|AB →|+AC →|AC →|(λ∈[0,+∞)),则点P 的轨迹一定通过△ABC 的( ) A.外心 B.内心 C.重心

D.垂心

【解析】

AB

|AB →|

为AB →

上的单位向量,

AC →

|AC →|为AC →上的单位向量,则AB →|AB →|+AC →

|AC →|的方向为∠BAC 的角平分线AD →的方向.又λ∈[0,+∞),

∴λ? ????AB →|AB →|+AC →|AC →|的方向与AB →|AB →|+AC

|AC →|的方向相同.而OP →=OA →+λ? ????AB →|AB →|+AC →|AC →|, ∴点P 在AD →

上移动,

∴点P 的轨迹一定通过△ABC 的内心. 【答案】 B

2.如图2-2-13所示,OM ∥AB ,点P 在由射线OM ,线段OB 及AB 的延长线围成的阴影区域内(不含边界)运动,且OP →=xOA →+yOB →

.

图2-2-13

(1)求x 的取值范围;

(2)当x =-1

2

时,求y 的取值范围.

【解】 (1)因为OP →=xOA →+yOB →

,以OB 和OA 的反向延长线为两邻边作平行四边形,由向量加法的平行四边形法则可知OP 为此平行四边形的对角线,当OP 长度增大且靠近OM 时,

x 趋向负无穷大,所以x 的取值范围是(-∞,0).

(2)如图所示,当x =-12时,在OA 的反向延长线取点C ,使OC =1

2OA ,过C 作CE ∥OB ,

分别交OM 和AB 的延长线于点D ,E ,

则CD =12OB ,CE =3

2

OB ,

要使P 点落在指定区域内,则P 点应落在DE 上,当点P 在点D 处时OP →=-12OA →+1

2OB →

当点P 在点E 处时OP →=-12OA →+3

2

OB →

所以y 的取值范围是? ??

??12,32.

平面向量基本定理教案(区公开课)

仁爱/诚信/勤奋/创新 授课教师:蒋金凤 课程名称:平面向量基本定理授课地点:高一(12)班

授课日期: 3 月 15 日星期四序号课题 2.3.1平面向量基本定理共 1 课时第 1 课时 教学目标1.了解平面向量基本定理,会运用它来解决一些简单的问题. 2.通过观察、猜想、验证、概括得到平面向量基本定理,使学生体会研究问题的过程与方法. 3.通过定理的推导使学生感受到数学思维的严谨性,体会化归转化的方法和数与形的完美结合. 重 点 平面向量基本定理 难点在平面向量基本定理探究过程中“不共线”和 “任意性”的验证 突破 方法 通过实例画图和类比平面直角 坐标系的象限归纳总结 教学模式讲授式、探究式 板书设计 平面向量基本定理 平面向量基本定理例题:定理说明:多媒体投影 小结: 教学过程 教学活动学生活动设计意图一、情景引入 两个小朋友在荡秋千,那么在所有条件都相同 的前提条件下,哪个秋千的绳子更容易断掉? 二、新课探究 1.给定向量 2 1 e,e请根据平面坐标的线性运算 (1)作出向量) e ( ) e ( 2 1 3 2+ 下面我们把刚刚的作图痕迹擦去,给定向量 2 1 e,e和 1 OC,你能将 1 OC用 2 1 e,e表示成 2 2 1 1 e eλ λ+的形式吗? 看图观察并 思考,说出自己 的判断和依据 学生口述,作图 过程得结果 独立完成,个别 展示 从实际生活 问题入手,贴近 学生的日常生 活,能很好地激 发学生的求知欲 望 复习向量的 线性运算和共线 向量定理,为后 续的向量的分解 和唯一性作铺垫 进入向量分解的 探究,刚刚作图 的过程还记忆犹 新,按照来的痕 迹寻找构造平行 四边形的方法

2.3.1平面向量基本定理(教学设计)

2.3.1平面向量基本定理(教学设计) [教学目标] 一、知识与能力: 1.掌握平面向量基本定理; 2.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 二、过程与方法: 体会数形结合的数学思想方法;培养学生转化问题的能力. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. 教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算 教学难点:平面向量基本定理. 一、复习回顾: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、师生互动,新课讲解: 思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?. 在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式. 1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得

高中数学第二章平面向量章末小结导学案无答案新人教A版必修

第二章平面向量章末小结 【本章知识体系】 - 1 -

2 【题型归纳】 专题一、平面向量的概念及运算 包含向量的有关概念、加法、减法、数乘。向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线. 1、1.AB →+AC →-BC →+BA →化简后等于( ) A .3A B → B.AB → C.BA → D.CA → 2、在平行四边形ABCD 中,OA →=a ,OB →=b ,OC →=c ,OD →=d ,则下列运算正确的是( ) A .a +b +c +d =0 B .a -b +c -d =0 C .a +b -c -d =0 D .a -b -c +d =0 3、已知圆O 的半径为3,直径AB 上一点D 使AB →=3AD →,E 、F 为另一直径的两个端点, 则DE →·DF →=( ) A .-3 B .-4 C .-8 D .-6 4、如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则在以a , b 为基底时,AC →可表示为________,在以a , c 为基底时,AC →可表示为 ________. 5、下列说法正确的是( ) A .两个单位向量的数量积为1 B .若a ·b =a ·c ,且a ≠0,则b =c C .AB →=OA →-OB → D .若b⊥c ,则(a +c )·b =a ·b 专题二、平面向量的坐标表示及坐标运算 向量的坐标表示及运算强化了向量的代数意义。若已知有向线段两端点的坐标,则应先求向量的坐标,解题过程中,常利用向量相等,则其坐标相同这一原则。 6、已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .1 B. 2 C .2 D .4 7、设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相接能构成四边形,则d =( ) A .(2,6) B .(-2,6) C .(2,-6) D .(-2,-6) 8、已知a =(1,1),b =(1,0),c 满足a ·c =0,且|a |=|c |,b ·c >0,则c =________. 专题三、平面向量的基本定理 平面向量的基本定理解决了所有向量之间的相互关系,为我们研究向量提供了依据。 9、已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( ) A.43a +23b B.23a +43 b C.23a -43b D .-23a +43 b

2.3.1平面向量基本定理教案(人教A必修4)

2.3平面向量的基本定理及坐标表示 第4课时 §2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决 实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时 λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b = λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内 的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;

(4) 基底给定时,分解形式惟一. λ1,λ 2是被a ,1e ,2e 唯一确定的数量 三、讲解范例: 例1 已知向量1e ,2e 求作向量-2.51e +32e . 例 2 如图 ABCD 的两条对角线交于点M ,且=a ,=b ,用a ,b 表示,,和 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任 意一点,求证:+++=4 例4(1)如图,,不共线,=t (t ∈R)用, 表示. (2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且 (1)()OP t OA tOB t R =-+∈ .求证:A 、B 、P 三点共线. 例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实 数,d a b λμλμ=+ 、使与c 共线. 四、课堂练习: 1.设e 1、e 2是同一平面内的两个向量,则有( ) A.e 1、e 2一定平行 B .e 1、e 2的模相等 C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R ) D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系 A.不共线 B .共线 C.相等 D.无法确定 3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A.3 B .-3 C.0 D.2 4.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= . 5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填 共线或不共线). 五、小结(略)

2.3.1平面向量基本定理(教、学案)

2. 3.1 平面向量基本定理 教学目标: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量 解决实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ 2使 a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被 a ,1e ,2e 唯一确定的数量 三、讲解范例:

例1 已知向量1e ,2e 求作向量-2.51e +32e . 例2 如图 ABCD 的两条对角线交于点M ,且=a , =b ,用a ,b 表示,,和 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任意一点,求证:+++=4 例4(1)如图,,不共线,=t (t ∈R)用,表示. (2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且 (1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线. 例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数,d a b λμλμ=+、使与c 共线. 四、课堂练习:见教材 五、小结(略) 六、课后作业(略): 七、板书设计(略) 八、教学反思

【人教A版】2020高中数学必修四导学案:第二章平面向量_含答案

第二章 平面向量 1 向量和差作图全攻略 两个非零向量的和差作图,对同学们是一个难点,这里对其作图方法作出细致分析,以求尽快掌握. 一、向量a 、b 共线 例1 如图,已知共线向量a 、b ,求作a +b . (1)a 、b 同向; (2)a 、b 反向,且|a |>|b |; (3)a 、b 反向,且|a |<|b |. 作法 在与a 平行的同一条直线上作出三个向量OA →=a ,AB →=b ,OB → =a +b ,具体作法是:当 a 与 b 方向相同时,a +b 与a 、b 的方向相同,长度为|a |+|b |;当a 与b 方向相反时,a +b 与a 、b 中长度长的向量方向相同,长度为||a |-|b ||.为了直观,将三个向量中绝对值最 大的向量沿与a 垂直的方向稍加平移,然后分别标上a ,b ,a +b .作图如下: 例2 如图,已知共线向量a 、b ,求作a -b . (1)a 、b 同向,且|a |>|b |; (2)a 、b 同向,且|a |<|b |; (3)a 、b 反向. 作法 在平面上任取一点O ,作OA →=a ,OB →=b ,则BA → =a -b .事实上a -b 可看作是a +(- b ),按照这个理解和a +b 的作图方法不难作出a -b ,作图如下: 二、向量a 、b 不共线 如果向量不共线,可以应用三角形法则或平行四边形法则作图.

例3 如图,已知向量a 、b . 求作:(1)a +b ;(2)a -b . 作法1 (应用三角形法则) (1)一般情况下,应在两已知向量所在的位置之外任取一点O . 第一步:作OA → =a ,方法是将一个三角板的直角边与a 重合,再将直尺一边与三角板的另一直角边重合,最后将三角板拿开,放到一直角边过点O ,一直角边与直尺的一边重合的位置,在此基础上取|OA →|=|a |,并使OA → 与a 同向. 第二步:同第一步方法作出AB →=b ,一定要保证方向相同且长度相等.(此处最易错的是把AB → 作成与b 的方向相反.) 第三步:作OB →,即连接OB ,在B 处打上箭头,OB → 即为a +b . 作图如下: (2)第一步:在平面上a ,b 位置之外任取一点O ; 第二步:依照前面方法过O 作OA →=a ,OB → =b ; 第三步:连接AB ,在A 处加上箭头,向量BA → 即为a -b . 作图如下: 点评 向量加法作图的特点是“首尾相接,首尾连”;向量减法作图的特点是“共起点,连终点,箭头指被减”. 作法2 (应用平行四边形法则) 在平面上任取一点A ,以点A 为起点作AB → =a , AD → =b ,以AB ,AD 为邻边作?ABCD ,则AC →=a +b ,DB → =a -b .作图如下:

(完整版)平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB u u u r =3a, CD u u u r =-5a ,且||||AD BC =u u u r u u u r ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =13CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB u u u r =a +2b ,BC u u u r = -5a +6b ,CD u u u r =7a -2b ,则一定共线的三点是 ( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、 D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD u u u r =x AB u u u r ,AE u u u r =y AC u u u r ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB u u u r =2AC u u u r ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB u u u r =(sin α,cos β), α,β∈(-2π,2 π),则α+β= *11.已知 a =(1,2) , b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

(新课程)高中数学 第18课时(向量的加法)导学案 苏教版必修4

总 课 题 平面向量 总课时 第18课时 分 课 题 向量的加法 分课时 第 1 课时 教学目标 理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作两个向量的和,掌握加法的交换律和结合律,并会用它们进行向量的运算。 重点难点 向量加法的三角形法则和平行四边形法则。向量加法的交换律和结合律。 引入新课 问题1、利用向量的表示,从景点O 到景点A 的位移为OA ,从景点A 到景点B 的位移为AB ,那么经过这两次位移后游艇的合位移是OB (如图) 这里,向量OA ,AB ,OB 三者之间有什么关系? 1、向量加法的定义________________________________________________________ 2、向量加法的三角形法则___________________________________________________ 具体步骤: (1)把两个向量平移后,使两个向量的一个起点与另一个起点相连。 (2)将剩下的起点与终点相连,并指向终点,则该向量为两个向量的和。 简记为“首尾相连,首是首,尾是尾” 3、向量加法的平行四边形法则_______________________________________ 4、对于零向量和任一向量a 有 a a a =+=+00,对于相反向量有()()0 =+-=-+a a a a 5、向量加法的运算律 交换律____________________________ 结合律______________________________ 6、如果平面内有n 个向量依次首尾连接组成一条封闭折线,那么这n 个向量的和是什么? 例题剖析 例1、作出下列向量的和: O B A a b b b a a (1) (2) (3)

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

2.3.1平面向量基本定理教案

2.3.1 平面向量的基本定理 教学目的: 要求学生掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量. 教学重点: 平面向量的基本定理及其应用. 教学难点: 平面向量的基本定理. 教学过程: 一、复习提问: 1.向量的加法运算(平行四边形法则); 2.向量的减法运算; 3.实数与向量的积; 4.向量共线定理。 二、新课: 1.提出问题:由平行四边形想到: (1)是不是每一个向量都可以分解成两个不共线向量?且分解是唯一? (2)对于平面上两个不共线向量1e ,2e 是不是平面上的所有向量都可以用它们来表示? 2.新课 1e ,2e 是不共线向量,a 是平面内任一向量, =1e ,=λ1 2e ,=a =+=λ1 1e +λ2 2e , =2e ,=λ 2 2e . 1e 2e a C

得平面向量基本定理: 如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ 1 ,λ2使a =λ 1 1e +λ2 2e . 注意几个问题: (1)1e ,2e 必须不共线,且它是这一平面内所有向量的一组基底; (2)这个定理也叫共面向量定理; (3)λ1,λ2是被a ,1e ,2e 唯一确定的数量. 例1 已知向量1e ,2e ,求作向量-2.51e +32e . 作法:(1)取点O ,作=-2.51e ,=32e , (2)作平行四边形OACB ,即为所求. 已知两个非零向量a 、b ,作OA = a ,OB = b ,则∠AOB =θ(0°≤θ≤180°),叫做向量a 与b 的夹角. 当θ=0°,a 与b 同向;当θ=180°时,a 与b 反向,如果a 与b 的夹角为90°,我们说a 与b 垂直,记作:a ⊥b . 三、小结: 平面向量基本定理,其实质在于:同一平面内任一向量都可以表示为两个不共线向量的线性组合. 1 e 2e

高中数学《平面向量基本定理》导学案

2.3.1平面向量基本定理 1.平面向量基本定理 2.向量的夹角

1.判一判(正确的打“√”,错误的打“×”) (1)平面向量的一组基底e 1,e 2一定都是非零向量.( ) (2)在平面向量基本定理中,若a =0,则λ1=λ2=0.( ) (3)在平面向量基本定理中,若a ∥e 1,则λ2=0;若a ∥e 2,则λ1 =0.( ) (4)表示同一平面内所有向量的基底是唯一的.( ) 答案 (1)√ (2)√ (3)√ (4)× 2.做一做 (1)设e 1,e 2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是( ) A .e 1,e 2 B .e 1+e 2,3e 1+3e 2 C .e 1,5e 2 D .e 1,e 1+e 2 答案 B 解析 ∵3e 1+3e 2=3(e 1+e 2), ∴两个向量共线,不能作为基底. (2)(教材改编P 94向量夹角的定义)在锐角三角形ABC 中,关于向量夹角的说法正确的是( ) A.AB →与BC → 的夹角是锐角 B.AC →与AB → 的夹角是锐角 C.AC →与BC → 的夹角是钝角 D.AC →与CB → 的夹角是锐角 答案 B 解析 AB →与BC →的夹角是钝角,AC →与AB →的夹角是锐角,AC →与BC →

的夹角是锐角,AC →与CB → 的夹角是钝角.故选B. (3)若向量a ,b 的夹角为30°,则向量-a ,-b 的夹角为( ) A .60° B .30° C .120° D .150° 答案 B 解析 将向量移至共同起点,则由对顶角相等可得向量-a ,-b 的夹角也是30°. (4)在等腰直角三角形ABC 中,∠A =90°,则向量AB →,BC → 的夹角为________. 答案 135° 解析 将向量移至共同起点,由向量的夹角的定义知AB →,BC → 夹角为135°. 探究1 正确理解基底的概念 例1 设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB → ,其中可作为这个平行四边形所在平面的一组基底的是( ) A .①② B .①③ C .①④ D .③④ 解析 ①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA → 与DC →不共线;④OD →=-OB →,则OD →与OB → 共线. 由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.

高中数学导学案

§3.1.2 空间向量的数乘运算(一) 班级:二年级 组名:数学 设计人: 审核人: 领导审批: 学习目标 1. 掌握空间向量的数乘运算律,能进行简单的代数式化简; 2. 理解共线向量定理和共面向量定理及它们的推论; 3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题. P 86~ P 87,找出疑惑之处) 复习1:化简:⑴ 5(32a b - )+4(23b a - ); ⑵ ()()63a b c a b c -+--+- . 2:在平面上,什么叫做两个向量平行? 在平面上有两个向量,a b ,若b 是非零向量,则a 与b 平行的充要条件 学习探究(由学生完成) 问题:空间任意两个向量有几种位置关系?如何判定它们的位置关 系? 新知:空间向量的共线: 1. 如果表示空间向量的 所在的直线互相 或 ,则这些向量叫共线向量,也叫平行向量. 2. 空间向量共线: 定理:对空间任意两个向量,a b (0b ≠ ), //a b 的充要条件是存在唯一 实数λ,使得 推论:如图,l 为经过已知点A 且平行于已知非零向量的直线,对空间的任意一点O ,点P 在直线l 上的充要条件是 反思:充分理解两个向量,a b 共线向量的充要条件中的0b ≠ ,注意零向 量与任何向量共线. 知识应用:已知5,28,AB a b BC a b =+=-+ ()3CD a b =- ,求证: A,B,C 三点共线. 精讲例题 例1 已知直线AB ,点O 是直线AB 外一点,若O P xO A yO B =+ ,且x +y =1, 试判断A,B,P 三点是否共线?

变式:已知A,B,P 三点共线,点O 是直线AB 外一点,若12 O P O A tO B =+ , 那么t = 例2 已知平行六面体''''ABC D A B C D -,点M 是棱AA ' 的中点,点G 在 对角线A ' C 上,且CG:GA ' =2:1,设CD =a ,' ,CB b CC c == ,试用向量,,a b c 表示向量' ,,,C A C A C M C G . 变式1:已知长方体''''ABC D A B C D -,M 是对角线AC ' 中点,化简下列 表达式:⑴ ' AA CB - ;⑵ '''''AB B C C D ++ ⑶ ' 111222 AD AB A A +- 变式2:如图,已知,,A B C 不共线,从平面ABC 外任一点O ,作出点,,,P Q R S ,使得: ⑴22OP OA AB AC =++ ⑵32O Q O A AB AC =-- ⑶32OR OA AB AC =+- ⑷ 23OS OA AB AC =+- . 小结(由学生完成)空间向量的化简与平面向量的化简一样,加法注意向量的首尾相接,减法注意向量要共起点,并且要注意向量的方向. ※ 动手试试(由学生完成) 练1. 下列说法正确的是( ) A. 向量a 与非零向量b 共线,b 与c 共线,则a 与c 共线; B. 任意两个共线向量不一定是共线向量; C. 任意两个共线向量相等; D. 若向量a 与b 共线,则a b λ= . 2. 已知32,(1)8a m n b x m n =-=++ ,0a ≠ ,若//a b ,求实数.x 三、总结提升 ※ 学习小结 1. 空间向量的数乘运算法则及它们的运算律; 2. 空间两个向量共线的充要条件及推论. 知识拓展 平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.

高中数学优质课比赛 平面向量基本定理教案

《平面向量基本定理》教学教案 ----新余一中蒋小林 一、背景分析 1.教材分析 函向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。此前的教学内容主要研究了向量的的概念和线性运算,集中反映了向量的几何特征。本节课要讲解“平面向量基本定理”的概念和应用,是研究向量的正交分解和向量的坐标运算基础,向量的坐标运算正是向量的代数形态。通过平面向量基本定理,平面中的向量与它的坐标建立起了一一对应的关系,即“数”的运算处理“形”的问题完美结合,在整个向量知识体系中处于承上启下的核心地位。本节课教学重点是“平面向量基本定理探究过程和利用平面向量基本定理进行向量的分解”。 2.学情分析 从学生知识层面看:本节课之前已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的认识。 从学生能力层面看:通过以前的学习,已经初步具备类比归纳概括的能力,能在教师的引导下解决问题。 教学中引入生活实例类比出向量的分解,让学生通过课件的直观感受和动手探索总结归纳出平面向量基本定理,尤其是将图形语言转化为文字语言,对学生的能力要求比较高.因此,我认为平面向量的分解及对这种分解唯一性的理解是本节课的教学难点. 二.学习目标 1)知识与技能目标 1、了解平面向量基本定理及其意义,会选择基底来表示平面中的任一向量。 2、能用平面向量基本定理进行简单的应用。 2)过程与方法目标 1、通过平面向量基本定理的探究,让学生体验数学定理的产生、形成过程,培

养学生观察发现问题、由特殊到一般的归纳总结问题能力。 2、通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生 进一步体会向量是处理几何问题强有力的工具之一。 3)情感、态度与价值观目标 1、用现实的实例,激发学生的学习兴趣,培养学生不断发现、探索新知的精神, 发展学生的数学应用意识; 2、经历定理的产生过程,让学生体验由特殊到一般的数学思想方法,在探究活 动中形成锲而不舍的钻研精神和科学态度。 [设计意图]:这样设计目标,可操作性强,容易检测目标的达成度,同时也体现 了培养学生核心素养的要求. 三.教学过程设计 教学过程 1.创设问题、引出新课 (一)通过击鼓传花游戏复习的向量的运算及平行向量基本定理,我们知道可以用(0)a a λ≠表示任意和a 共线的向量,那么再随便画一个方向的向量b ,你还可以用a 表示出来吗?一个向量不够那么需要几个向量来表示呢?za 此问题激发了学生的学习兴趣,蕴含着本节课设计主线,即从共线定理的一维关系转向研究平面向量基本定理的二维关系。(二)情景1:火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度;情景2:斜坡上物体所受的重力G ,课分解为力沿斜坡向下的力和垂直于斜坡的力;让学生对数学中的任意向量也可以用两个不共线的向量表示,有了充分的事实根据和感性认识。总之,整个引入,是从学生熟知的数学基础知识和物理基础知识为入手点,让学生轻松接受本节课的内容,让本节课的内容新而不新,难而不难了。 [设计意图]:两个生活常景抓住学生的兴趣,完成从生活到数学的建模过程,培养了学生,在生活中感知和发现数学,即知识问题化,问题情景化,情景生活化,生活学科化。体现了数学与生活密不可分的关系,为探究定理作好铺垫。 2.问题驱动、探究新知 问题(1)给定平面内任意两个向量21,e e 请你做出2121223e e e e -+和两个向量。 [设计意图]:利用向量的加减法和数乘向量,利用平行四边形法则可以表示

平面向量基本定理导学案

§2.3.1平面向量基本定理 高一( )班 姓名: 上课时间: 【目标与导入】 1、学习平面向量基本定理及其应用; 2、学会在具体问题中适当选取基底,使其他向量能够用基底来表达。 【预习与检测】 1、点C 在线段AB 上,且35 AC AB --→ --→ = ,AC BC λ--→--→=,则λ等于( ) A 、23 B 、32 C 、-23 D 、-32 2、设两非零向量12,e e →→不共线,且12k e e →→+与12e k e →→ +共线,则k 的值为( )。 .1.1.1.0A B C D -± 3、已知向量12,e e → → ,作出向量1223OA e e → → =+与 122(3)OB e e → →=+-。 两个向量相加与物理学中的两个力合成相似,如果与力的分解类比,上述所作的OA 分解成两个向量:在1e → 方向上的____与在2e → 方向上的______,OB 则分解成_____与_____。 4、阅读课本P93—94,了解平面向量基本定理:如果 12 ,e e →→ 是同一平面内的两个_______ 向量,那么对于这一平面内的______向量a → ,有且只有一对实数12,λλ, 使_____________, 其中不共线的向量 12 ,e e → →叫做表示这一平面内所有向量的一组__________。 5、已知两个非零向量,a b →→,作,O A a O B b →→→→==,则()0180A O B θθ∠=?≤≤?叫做向量a → 与 b → 的__________,若0θ=?,则a →与b →_______;若180θ=?,则a →与b → __________;若 90θ=?,则a → 与b → _______,记作______。 【精讲与点拨】 如图所示,在平等四边形ABCD 中,AH=HD ,MC= 1 4 BC ,设,AB a AD b →→→→==,以,a b →→ 为基底表示,,AM MH MD →→ 。 C 2 e → 1 e → A B

人教版-高一数学必修4全套导学案

第二章平面向量 2.1 向量的概念及表示 【学习目标】 1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量的概念;并会区分平行向量、相等向量和共线向量; 2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别; 3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。【学习重难点】 重点:平行向量的概念和向量的几何表示; 难点:区分平行向量、相等向量和共线向量; 【自主学习】 1.向量的定义:__________________________________________________________; 2.向量的表示: (1)图形表示: (2)字母表示: 3.向量的相关概念: (1)向量的长度(向量的模):_______________________记作:______________ (2)零向量:___________________,记作:_____________________ (3)单位向量:________________________________ (4)平行向量:________________________________ (5)共线向量:________________________________ (6)相等向量与相反向量:_________________________ 思考: (1)平面直角坐标系中,起点是原点的单位向量,它们的终点的轨迹是什么图形?____ (2)平行向量与共线向量的关系:____________________________________________ (3)向量“共线”与几何中“共线”有何区别:__________________________________ 【典型例题】 例1.判断下例说法是否正确,若不正确请改正: (1)零向量是唯一没有方向的向量; (2)平面内的向量单位只有一个; (3)方向相反的向量是共线向量,共线向量不一定是相反向量; b c,则a和c是方向相同的向量; (4)向量a和b是共线向量,//

平面向量基本定理03913

2.3.1平面向量基本定理 学习目标: 1. 了解基底的含义,理解平面向量基本定理,会用基底表示平面内任一向量. 2. 掌握两个向量夹角的定义以及两向量垂直的定义. 3. 两个向量的夹角与两条直线所成的角. 学习重点:平面向量基本定理 学习难点:两个向量的夹角与两条直线所成的角. 课上导学: [基础初探] 教材整理1平面向量基本定理 阅读教材P93至P94第六行以上内容,完成下列问题. 1. ____________ 定理:如果e i, e是同一平面内的两个向量,那么对于这一平面内的____________ 向量a, ______________ 实数入,入2,使a= _________________________ 2. ____________ 基底:___________________________ 的向量e1, e2叫做表示这一平面内______________________________ 向量的一

组基底. 判断(正确的打“,错误的打“X” ) (1) 一个平面内只有一对不共线的向量可作为表示该平面内所 有向量的基底.() (2) 若e i, e是同一平面内两个不共线向量,则入& + 说 k, 入2为实数)可以表示该平面内所有向量.() (3) 若ae i + be2=ce i + de2(a, b, c, d€ R),则a = c, b = d.( ) 教材整理2两向量的夹角与垂直 阅读教材P94第六行以下至例1内容,完成下列问题. 1. __________________ 夹角:已知两个_________________ a 和b,作OA= a, OB= b,则__ = B叫做向量a与b的夹角.

平面向量基本定理教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

§2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解 决实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使 b =λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面 内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量 三、讲解范例:

高中数学必修4优质学案(第三辑)平面向量基本定理 Word版含解析

§平面向量的基本定理及坐标表示 .平面向量基本定理 【课时目标】 .理解并掌握平面向量基本定理. .掌握向量之间的夹角与垂直. 【知识梳理】 .平面向量基本定理 ()定理:如果,是同一平面内的两个向量,那么对于这一平面内的向量,实数λ,λ,使=. ()基底:把的向量,叫做表示这一平面内向量的一组基底. . 两向量的夹角与垂直 ()夹角:已知两个和,作=,=,则=θ (°≤θ≤°),叫做向量与的夹角. ①范围:向量与的夹角的范围是. ②当θ=°时,与. ③当θ=°时,与. ()垂直:如果与的夹角是,则称与垂直,记作. 【作业反馈】 一、选择题 .若,是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( ) .-,-.+,+ .--.+,- .等边△中,与的夹角是( ) .°.°.°.° .下面三种说法中,正确的是( ) ①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;② 一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③ 零向量不可作为基底中的向量. .①②.②③.①③.①②③ .若=,=,=λ(λ≠-),则等于( ) .+λ.λ+(-λ) .λ++ .如果、是平面α内两个不共线的向量,那么在下列各命题中不正确的有( ) ①λ+μ(λ、μ∈)可以表示平面α内的所有向量; ②对于平面α中的任一向量,使=λ+μ的实数λ、μ有无数多对; ③若向量λ+μ与λ+μ共线,则有且只有一个实数λ,使λ+μ=λ(λ+μ); ④若实数λ、μ使λ+μ=,则λ=μ=. .①②.②③.③④.② .如图,在△中,是边上的中线,是上的一点,且=,连结并延长交于,则 等于( )

相关主题
文本预览
相关文档 最新文档