当前位置:文档之家› 有限元习题册-2010

有限元习题册-2010

有限元习题册-2010
有限元习题册-2010

有限元法基础及应用

习题集

一、填空

1. 有限元法是求解连续场力学和物理问题的一种 方法。用有限元法求解连续

体或结构的力学问题的三个主要步骤是:① ;② ;

③ 。

2. 离散化就是把连续体或结构分割成若干个在 处相互连接,尺寸有限的

结合体来代替原来的连续结构。

3. 单元分析阶段导出的单元刚度方程建立了 和 之间的关系。

单元刚度方程的核心是 矩阵。该矩阵具有 性和 性,且主

对角元素 。

4. 建立实体单元(一维杆单元、三节点三角形平面单元等)的刚度方程时,须应用

作为平衡条件。

5. 弹性力学几何方程反映弹性体变形时 和 之间的关系。

6. 单元位移模式[]{}e N v u δ=?

????? 中[]N 称为 矩阵。该方程的含义

是 。

7. 单元某节点i 的形函数N i 在该点的值为 ,在其它节点的值均为 。一个

单元所有节点形函数之和等于 。

8. 作用在单元上的载荷须按 的原则移置到节点上,因

为 。

9. 单元刚度矩阵奇异性的力学意义

是: 。

10. 结构有限元平衡方程[]{}{}Q K =δ建立了有限元离散结构中节点的 和

之间的关系。该方程的力学意义是有限元离散结构中节点的 和 之间的平衡。

11. 整体刚度矩阵具有如下性质:① ② ③

④ 。

12. 对一定的有限元网格,整体刚度矩阵的半带宽与 有关。半带宽越小,求解

时占用计算机资源 。

13. 为保证有限元解的收敛性,单元位移模式应满足 和 。

14. 建立任意形状和方位平面四边形单元和空间六面体单元时,需要采用与单元位移模式

中相同的用局部坐标表示的节点形函数对节点坐标进行插值以获得一种坐标变换,这种变换称为,采用等参变换的单元称为。

15.节点数越多的单元,其位移模式多项式,单元

的能力越强,所以精度。

16.弹性力学几何方程反映弹性体变形时和之间的关系。

17.弹性力学边界条件包括和。

18.弹性体的虚位移是假想在弹性体上发生的满足条件的微小位移场。弹性体

的虚功原理可以概括为等于。

19.弹性力学物理方程反映弹性体变形时和之间的关系。

20.平面应力问题的典型例子是、平面应变问题的典型例子

是。

21.建立平面问题或空间问题的单元特性方程(单元分析)阶段,需要用到弹性力学的

方程和方程。

二、简答题

1.简述弹性力学平面问题有限元法中单元特性分析的过程。

2.简述建立整体有限元平衡方程的过程。

3.平面三节点三角形单元中位移、应变和应力具有什么特征?有何优缺点?

4.四节点矩形单元中位移、应变和应力具有什么特征?有何优缺点?

5.简单三角形单元刚度矩阵元素的大小与哪些因素有关?与哪些因素无关?

6.画出三节点三角形单元形函数的图形,并分析其在边界上的分布特点。

7.对一个给定的弹性力学问题,有那些途径可以提高有限元法求解精度?

8.按位移求解的有限元法中:(1)应用了哪些弹性力学的基本方程?(2)应力边界条件及位移边界条件是如何反映的?(3)力的平衡条件是如何满足的?(4)变形协调条件是如何满足的?

9.有限元的收敛条件是什么?证明三节点三角形单元满足收敛条件。

10.平面应力三角形单元和空间轴对称三角形单元分别代表物理空间中什么样的物体?

11. 试述所学各类单元节点数、节点位移分量、单元自由度数目。

12. 位移函数应满足哪些要求?写出梁单元的位移函数。

13. 空间轴对称问题的位移分量、应变分量、应力分量有哪些?

14. 简单(纯弯)梁单元的节点位移分量、单元自由度?

2

15. 平面梁单元的节点有几个自由度?其在局部坐标系下节点位移分量有哪些?

16. 弹性力学的基本假设?弹性力学有哪些基本方程和边界条件?

17. 一维杆单元、三节点三角形平面单元、三节点三角形空间轴对称单元的形函数矩阵、

应变矩阵、单元刚度矩阵的行数和列数分别是多少?

18.对于平面问题简单三角形单元,为什么单元刚度矩阵是常数矩阵?

19.什么是等参变换?等参变换的基本条件是什么?哪些情况使等参变换不成立?划分等参单元时应注意哪些问题?

20.应用等参单元时,为什么要采用高斯积分?高斯积分的数目如何确定?

21.弹性力学平面问题求解时应用的三角形单元是等参单元吗?为什么?

21.什么是等参单元,等参单元的主要优点是什么?

22.写出平面四节点等参元的坐标变换的雅克比(Jacobian)矩阵。

23.非节点载荷为什么要等效变换成节点载荷,如何变换?作变换时应注意什么问题?24.结构原始平衡方程式为什么要做约束处理?

25.试述平面应力问题和平面应变问题的几何、受力和变形特征。

26.平面应力问题和平面应变问题有什么区别?

27.举例说明,在什么样情况下可以将工程问题转化成平面应力问题?在什么情况下可以将工程问题转化为平面应变问题?

28.为什么说平面三节点三角形单元为常应力单元,如何解决由于这种单元的特点所引起的计算精度不高的问题?

29.用示意图画出空间结构常用的单元类型。

30.简单四面体单元为什么说是一种常应变单元?

31.轴对称结构有什么特点?轴对称结构如何简化处理?

三、计算与分析

1.如图所示,根据弹簧单元的刚度方程推导出系统的平衡方程。

2.根据弹簧单元的刚度方程,导出下列系统的整体刚度平衡方程。并代入边界条件,得出

3

节点位移求解方程,并得出节点3的位移和节点1的支反力。

3. 对图示弹簧系统,k1=300N/mm,k2=k3=200N/mm,k4=200N/mm,F1=600N,F2=400N。求:(1)其总刚度矩阵;

(2)节点1、2、3的位移;

(3)节点4、5的反力;

(4)弹簧1、2、3、4中的力。

4.如下图所示,5个弹簧连接在一起,各弹簧的刚度系数如图上标出。

1235

k k2k3k

k

2

求:(1)系统刚度矩阵;

(2)节点3处作用F力后,各节点的位移{}δ,固定节点1、6处的反作用力。5.如图所示一维杆系由两个材料相同截面不同的直杆单元(1)与(2)组成,弹性模量E。

在节点1、2、3上作用有轴向集中载荷Q

1

、Q

2

、Q

3

而平衡。试求解下列各问题:(1)建立结构的有限元平衡方程;

(2)如果节点1被固定(u

1

=0),Q

2

=P,Q

3

=0,通过建立的平衡方程求各节点位移、节点1约束反力。

4

(3)如果Q

2=0,Q

3

=P,其他条件不变,试根据问题(2)的解答和有关力学概念直接

给出节点2、3的位移。

6. 图示杆-弹簧系统,材料弹性模量为E。试列出其有限元平衡方程,并进行约束处理。

7. 如图所示一维杆系由两个材料相同截面不同的直杆单元(1)与(2)组成,弹性模量E,节点1,3固定,节点2受集中力P。试求解下列各问题:

(4)建立结构的有限元平衡方程。

(5)求解节点2的位移和各杆的应力。

(6)如果P=0,且所有杆上受沿x方向作用的均匀线分布力q,求未知节点位移和固定端反力。

8.平面桁架由2根相同的杆组成(E,A,L)。求:

(1)节点2位移;

(2)每根杆应力。

5

6

9.如图所示三杆钢桁架,节点1、节点3处固定,节点2处受力2x F ,2y F ,所有杆件材料

相同,弹性模量为E ,截面积均为A ,求各杆受力。

10.如图所示2杆结构,每根杆的弹性模量均为E ,横截面积均为A 。建立坐标系和节点系

统如图所示,在节点1处作用x 方向的力F ,求1u ,1v 。

11.证明杆单元变换矩阵[][]T 1T T -=。

7

12.如图所示刚架由两根等截面工字型钢构成,两端固支,系统所受载荷如图所示。梁截

面积A =0.006m 2,截面惯性距546.8710m I -=?,弹性模量822.110kN/m E =?,每根梁长5m L =。

求:每根梁所示内力。

kN

23=Q 2=Q .0=M 1Q 13.试推导梁单元的坐标变换矩阵

[]000000000010000

000000000000

1T λμμλλμμλ????-????=??????-????

其中,cos λ?=,sin μ?=。

14.如图所示刚架结构,所有梁材料和截面尺寸相同,截面积为A ,惯性距为I ,材料弹性

模量为E 。试写出每根梁单元的刚度矩阵和结构的总体刚度矩阵。

15.有一正方形板,沿对角承受压力作用,板厚1m t =,载荷20kN P =,如图所示。为简

8

化计算,设泊松比0μ=,材料弹性模量为E ,求它的应力分布。

16.试证明三角形单元形状函数

()()1,1,2,32i i i i N x y a b x c y i =++=?

满足下列性质:()0,,1,i i j N x y i j

≠?=?=?

17.如下图(a )所示悬臂深梁,自由端有垂向均布载荷F ,梁的厚度为t ,设材料弹性模

量为E ,泊松比13μ

=,若采用(b )所示的简单网格系统,求各节点的位移。

)

(a

)

(b 3

2

18.正方形板如图所示,边长为a ,厚度为t ,弹性模量为E ,泊松比0.15,节点1作用集

中力F ,节点2、3、4被固定,若采用图示坐标系统和单元节点结构,求各节点位移和应力。

9

19.如图所示,用近似法取,r r z z ==计算两个轴对称单元a 、b 的单元刚度矩阵e K ,设

材料的弹性模量为E ,泊松比0.15。

20.试写出如图所示5节点等参元形状函数,并求出其雅克比矩阵的表达式和单元刚度矩

阵。 4

21.图示悬臂梁为平面应力问题,试写出边界条件。

10

22.如图平面问题,以单元④为例,通过实算,讨论单元点号按顺序轮换时单元刚度矩阵K ④ 及其变化规律。

23.如图所示平面三角形桁架,终点坐标为:1(0,0),2(L L ,3,0),E 、

A 为弹性模量及截面积。用有限元法求:

(1)节点位移;

(2)单元内力;

(3)支座反力。

24.平面桁架如图所示,62210kg/cm E =?,21.0cm A =。求节点位移和单元内力,并利用

节点1的平衡检验计算结果。

11

25.下图中结构分别采用(b )、(c )两种编节点号方式,分别求其刚度矩阵带宽。

26.教材P20练习题1-9中,求下列2种情况下节点位移、节点1约束反力。

(1)节点1位移为0,Q 2= Q 3=P

(2)节点1位移为0,Q 2= Q 3=0,整个杆受到沿轴线的均匀线分布力q ,方向向右。

27.根据材料力学知识和单元刚度矩阵物理意义推导出简单梁单元刚度矩阵的第三列和第

四列元素。

???

???????????????????????=

??????????????4321444342413433323124232221141312114321u u u u a a a a a a a a a a a a a a a a s s s s 28.对图示有限元模型,用符号“△”标出总刚度矩阵中非零子块的分布,并计算半带宽。

29.对图示平面问题,考虑到对称性,试用图形表示出其有限元模型,要求:(1)划分单元,单元数目适当;

(2)给出节点编号方案;

(3)标出节点载荷和位移约束。

30. 对图示平面问题,考虑到对称性,试用图形表示出其有限元模型,要求:

(1)划分单元,单元数目适当;

(2)给出节点编号方案;

(3)标出节点载荷和位移约束。

31.根据单元刚度矩阵元素的物理意义求弹簧单元和杆单元的刚度矩阵。

32. 通过对节点位移插值建立三节点三角形单元的位移模式和形函数。

33. 用虚功原理推导出三节点三角形单元刚度方程。

12

13

34. 对三节点三角形单元证明其形函数满足:1=++n m l N N N

35.图示三角形单元:①按公式求形函数和形函数矩阵;②求该单元的应变矩阵。

x

b

36.计算图示平面三角形单元的等效节点载荷列阵。设单元厚度为h 。

x 0

37.如图所示,两个形状相似的三节点三角形平面单元,对应边长比为2:1,材料、厚度

相同,方位相同。约束左边上2个节点x ,y 方向位移,自由节点N 1 ,N 2均受铅直向

下集中力P 。两个模型分别用有限元软件计算后,发现计算结果有下列关系:1)节点N 1 和节点N 2的位移相等;2)单元①的应力是单元②应力的二分之一。试对上述现象

进行解释。

P x y

单单 单

N 2

P

14 38. 计算图示平面三角形单元的等效节点载荷列阵。设单元厚度为h 。

m

39. 将图示水坝作为平面应变问题,试用图形表示出你的有限元模型,要求:

(1) 用三角形单元离散,建议单元边长1m 左右或小于1m

(2) 给出节点编号方案

(3) 写出节点载荷和位移边界条件

40.函数()u x 如图所示,求其在1u 和2u 之间有效的一维线性插值多项式。

15 41.如图所示正方形桁架,周边长a ,桁架由五条杆单元组成,弹性模量为E ,截面积为A ,求P 载荷作用下2、3点的位移。

42.如图所示二节点杆单元ij ,沿杆轴线分别作用一均布载荷0q (如图(a ))和分布载荷(如图(b ))。分别求两种情况下的等效节点载荷。

0q

q )(a )(b

43.采用杆单元的方法,求解如图所示结构的所有节点的位移、三个杆单元的应力、支座

反力。相关的材料参量和尺寸为

, 。

1F 33,A E

16

44

.如图所示的结构,各杆的弹性模量和横截面积都为

,

试求解该结构的节点位移、单元应力以及支反力。

45.如图所示的等剖面梁,弯曲刚度为EI,承受分布载荷

q(x)

作用,求:

(1)各梁的等效结构载荷;

(2)节点位移;

(3)单元的节点力。

3

46.一悬臂梁的一端由弹簧支持,弹簧的刚度系数为k ,在载荷P 作用下,求端点2的位移及转角。

3

47.如图所示桁架结构,各元件的E,A,L均相同,1-4杆做短了。试求(1)节点位移;

(2)1-4杆应力。

48.利用对称条件,处理以下结构(要求画出简化图以及给出其边界条件)。

49.如图所示杆结构,杆剖面面积为A,材料的弹性模量都为E.求2点作用载荷为P时节点的位移。

17

50.如图所示的自由体结构,在平衡力系作用下,用有限元分析问题时边界条件如何处理?

P

51.如图所示杆板结构,按下列情况划分,选取单元:

(1)结构由10个两节点杆单元和8个三节点三角形板单元集合而成;

(2)结构由5个节点杆单元和2个六节点三角形板单元集合而成

试分析:两种分单元情况下,采用相同的节点编号,

(1)总刚度矩阵大小是否相同?

(2)半带宽是否一样?

(3)杆板单元间位是否协调?

(4)单元中内力特点是否一样?

52.试求如图所示结构的节点位移。已知:各杆元E,A,L均相同。

2

18

有限元分析与应用详细例题

《有限元分析与应用》详细例题 试题1:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比 较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 一.问题描述及数学建模 无限长的刚性地基上的三角形大坝受齐顶的水压作用可看作一个平面问题,简化为平面三角形受力问题,把无限长的地基看着平面三角形的底边受固定支座约束的作用,受力面的受力简化为受均布载荷的作用。 二.建模及计算过程 1. 分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算 下面简述三节点常应变单元有限元建模过程(其他类型的建模过程类似): 1.1进入ANSYS 【开始】→【程序】→ANSYS 10.0→ANSYS Product Launcher →change the working directory →Job Name: shiti1→Run 1.2设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 1.3选择单元类型 单元是三节点常应变单元,可以用4节点退化表示。 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4 node 42 →OK (back to Element Types window)→Options… →select K3: Plane Strain→OK→Close (the Element Type window) 1.4定义材料参数

北京科技大学有限元试题及答案

一 判断题(20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (√)10一维变带宽存储通常比二维等带宽存储更节省存储量。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内; 后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。 4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。 5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。 6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为 {}{} [][]e D B σδ=。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u ,v ,w 9.变形体基本变量有位移应变应力 基本方程 平衡方程 物理方程 几何方程 10.实现有限元分析标准化和规范化的载体就是单元

华科大有限元分析题及大作业题答案——船海专业(DOC)

姓名:学号:班级:

有限元分析及应用作业报告 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。 1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数 4)生成几何模 a. 生成特征点 b.生成坝体截面 5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。 6)模型施加约束: 约束采用的是对底面BC全约束。 大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L AB上,方向水平向右,载荷大小沿L AB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: ρ(1) = gh P- =ρ g = - 10 {* } 98000 98000 (Y ) y

西工大-有限元试题(附答案)

1.针对下图所示的3个三角形元,写出用完整多项式描述的位移模式表达式。 2.如下图所示,求下列情况的带宽: a)4结点四边形元; b)2结点线性杆元。 3.对上题图诸结点制定一种结点编号的方法,使所得带宽更小。图左下角的四边形在两种不同编号方式下,单元的带宽分别是多大 4.下图所示,若单元是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。系统的带宽是多大按一右一左重新编号(即6变成3等)后,重复以上运算。

5.设杆件1-2受轴向力作用,截面积为A,长度为L,弹性模量为E,试写出 杆端力F 1,F 2 与杆端位移 2 1 ,u u之间的关系式,并求出杆件的单元刚度矩阵)(] [e k 6.设阶梯形杆件由两个等截面杆件○1与○2所组成,试写出三个结点1、2、3的 结点轴向力F 1,F 2 ,F 3 与结点轴向位移 3 2 1 , ,u u u之间的整体刚度矩阵[K]。 7.在上题的阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F 1 =P,求各结点的轴向位移和各杆的轴力。

8. 下图所示为平面桁架中的任一单元,y x ,为局部坐标系,x ,y 为总体坐标系,x 轴与x 轴的夹角为θ。 (1) 求在局部坐标系中的单元刚度矩阵 )(][e k (2) 求单元的坐标转换矩阵 [T]; (3) 求在总体坐标系中的单元刚度矩阵 )(][e k 9.如图所示一个直角三角形桁架,已知27/103cm N E ?=,两个直角边长度 cm l 100=,各杆截面面积210cm A =,求整体刚度矩阵[K]。

10.设上题中的桁架的支承情况和载荷情况如下图所示,按有限元素法求出各结点的位移与各杆的力。 11.进行结点编号时,如果把所有固定端处的结点编在最后,那么在引入边界条件时是否会更简便些 12.针对下图所示的3结点三角形单元,同一网格的两种不同的编号方式,单元的带宽分别是多大

西工大-有限元试题(附答案)汇总

1.针对下图所示的 3 个三角形元,写出用完整多项式描述的位移模式表达式 2.如下图所示,求下列情况的带宽 a) 4 结点四边形元; b) 2 结点线性杆元。 3.对上题图诸结点制定一种结点编号的方法,使所得带宽更小。图左下角的四 边形在两种不同编号方式下,单元的带宽分别是多大? 4.下图所示,若单元是 2结点线性杆单元, 勾画出组装总刚后总刚空间轮廓线。 系统的带宽是多大?按一右一左重新编号(即 6变成 3等)后,重复以上运算

5.设杆件1-2 受轴向力作用,截面积为A,长度为L,弹性模量为E,试写出杆端力F1,F2与杆端位移u1, u2之间的关系式,并求出杆件的单元刚度矩阵[k](e) 6.设阶梯形杆件由两个等截面杆件○ 1 与○2 所组成,试写出三个结点1、2、3 的结点轴向力F1,F2,F3与结点轴向位移u1, u2, u3之间的整体刚度矩阵[K] 。 7.在上题的阶梯形杆件中,设结点3 为固定端,结点1作用轴向载荷 F1=P,求各结点的轴向位移和各杆的轴力。 8.下图所示为平面桁架中的任一单元, x, y 为局部坐标系,x,y 为总

体坐标系, x 轴与x 轴的夹角为。 1) 求在局部坐标系中的单元刚度矩 阵 [k]( e) 2) 求单元的坐标转换矩阵[T] ; 3) 求在总体坐标系中的单元刚度矩 阵[k] (e)

9.如图所示一个直角三角形桁架,已知E 3 107N / cm2,两个直角边长度 2 l 100cm ,各杆截面面积 A 10cm2,求整体刚度矩阵[K] 。 10.设上题中的桁架的支承情况和载荷情况如下图所示,按有限元素法求出各结点的位移与各杆的内力。

有限元复习题答案

1、何为有限元法?其基本思想是什么? 有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法,该方法以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。 基本思想是化整为零集零为整。 2、为什么说有限元法是近似的方法,体现在哪里? 有两点:用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。 3、单元、节点的概念? 节点:表达实际结构几何对象之间相互连接方式的概念 单元:网格划分中的每一个小部分称为单元,网格间相互联结点称为节点 4、有限元法分析过程可归纳为几个步骤? 结构离散化、单元分析、整体分析 5、有限元方法分几种?本课程讲授的是哪一种? 位移法、力法、混合法本课程讲授位移法 6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点? 弹性力学变量:外力、应力、应变和位移。 描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。 弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。 7、何为平面应力问题和平面应变问题? 平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。b载荷条件:作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。 平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题。 1、何为结构的离散化?离散化的目的?何为有限元模型? ①离散化:把连续的结构看成由有限个单元组成的集合体。②目的:建立有限元计算模型③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型

有限元试题及答案

有限元试题及答案

一判断题(20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小(√)10一维变带宽存储通常比二维等带宽存储更节省存储量。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内; 后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量:σx,σy,τxy ,三个独立的应变分量:εx,εy,γxy,但对应的弹性体几何形状前者为薄板,后者为长柱体。3.位移模式需反映刚体位移,反映常变形,满足单元边界上位移连续。 4.单元刚度矩阵的特点有:对称性,奇异性,还可按节点分块。

5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为二维问题处理。6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是节点位移,单元应力可由它求得,其计算公式为。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u,v,w 9.变形体基本变量有位移应变应力基本方程平衡方程物理方程几何方程 10.实现有限元分析标准化和规范化的载体就是单元

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

有限元试题总结

一、简答题(40分,每小题5分) 1、 分别写出板弯类单元和平面应力膜单元上一个有限元节点的位移自由度 及其相对应的节点力列阵? (1)薄板弯曲问题单元每节点三自由度,即每个结点有三个位移分量: 挠度w ,绕x 、y 轴转角 ??? ??? ?y x y x w θ θ轴转角绕轴转角绕挠度,即结点i 的位移 {}i yi xi i i x w y w w w d ?? ??? ? ??????????-??=??????????????=θθ ()4,1K =i 同理,相应的结点力 {})轴力偶(上节中的绕)轴力偶(上节中的 绕竖向力 x y M y M x ??? ???????????=yi xi i i M M f F (2)平面应力膜单元每个节点两自由度,{},T i i u v ,对应节点力{},T xi yi f f 2、 欲求解在ay by cx R '''++=约束下的泛函(;,)b a I F x y y dx '=?极值,新泛函应 如何构造? 答:* {(;,)()}b a I F x y y ay by cx R dx λ''''=+++-? 3、 欲求解在()(),,R P x y dx Q x y dy =+??约束下的泛函(;,)b a I F x y y dx '=?极 值,新泛函应如何构造? 答:()()* {(;,)[,,']}b a I F x y y P x y Q x y y R dx λ'=++-? 4、 满足()f g g f ds L ''+=??条件下的泛函(;,)b a I F x y y dx '=?极值求解应如何构造新泛函?

有限元分析案例

有限元分析案例 图1 钢铸件及其砂模的横截面尺寸 砂模的热物理性能如下表所示: 铸钢的热物理性能如下表所示: 一、初始条件:铸钢的温度为2875o F,砂模的温度为80o F;砂模外边界的对流边界条件:对流系数0.014Btu/hr.in2.o F,空气温度80o F;求3个小时后铸钢及砂模的温度分布。 二、菜单操作: 1.Utility Menu>File>Change Title, 输入Casting Solidification; 2.定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete, Add, Quad 4node 55; 3.定义砂模热性能:Main Menu>Preprocessor>Material Props>Isotropic,默认材料编号1, 在Density(DENS)框中输入0.054,在Thermal conductivity (KXX)框中输入0.025,在S pecific heat(C)框中输入0.28; 4.定义铸钢热性能温度表:Main Menu>Preprocessor>Material Props>-Temp Dependent->Temp Table,输入T1=0,T2=2643, T3=2750, T4=2875; 5.定义铸钢热性能:Main Menu>Preprocessor>Material Props>-Temp Dependent ->Prop Table, 选择Th Conductivity,选择KXX, 输入材料编号2,输入C1=1.44, C2=1.54, C3=1.22, C4=1.22,选择Apply,选择Enthalpy,输入C1=0, C2=128.1, C3=163.8, C4=174.2; 6.创建关键点:Main Menu>Preprocessor>-Modeling->Create>Keypoints>In Active

有限单元法部分课后题答案

1.1 有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的? (1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。 (2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。 (3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。 1.3 单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别?单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。整体刚度矩阵的性质:对称性、奇异性、稀疏性。单元 Kij 物理意义 Kij 即单元节点位移向量中第 j 个自由度发生单位位移而其他位移分量为零时,在第 j 个自由度方向引起的节点力。整体刚度矩阵 K 中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。 2.2 什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件? (1)在外力作用下,物体内部将产生应力σ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。 (2)外力势能就是外力功的负值。 (3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零 δ∏p=δ Uε+δV=0 此即变分方程。对于线性弹性体,势能取最小值,即 δ2∏P=δ2Uε+δ2V≥0 此时的势能变分原理就是著名的最小势能原理。 势能变分原理代表平衡方程、本构方程和应力边界条件,其中附加了几何方程和位移边界条件。 2.3 什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么? 等效积分形式通过分部积分,称式 ∫ΩCT(v)D(u)dΩ+∫ΓET(v)F(u)dΓ 为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。 区别:弱形式得不到解析解。建立弱形式的关键步骤:对场函数要求较低阶的连续性。2.4 为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么? 只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。 2.6 为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?Ritz 法收敛的条件是什么? (1)在 Ritz 法中,N 决定了试探函数的基本形态,待定参数使得场函数具有一定的任意性。如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试探函数取自完全的函数序列,则当项数不断增加时,近似解将趋近于精确解。然而,通常情况下试探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。因此,试探函数只能是真实场函数的近似。可见,变分法就是在某个假定的范围内找出最佳解答,近似性就源于此。 (2)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。通常情况下这是不可能的,因而变分法的应用受到了限制。 (3)Ritz 法的收敛条件是要求试探函数具有完备性和连续性,也就是说,如果试探函数满足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则 Ritz 法的近似解将趋近于数学微分方程的精确解。 3.1 构造单元形函数有哪些基本原则? 形函数是定义于单元内坐标的连续函数。单元位移函数通常采用多项式,其中的待定常数应该与单元节点自由度数相等。为满足完备性要求,位移函数中必须包括常函数和一次式,即完全一次多项式。多项式的选取应由低阶到高阶,尽量选择完全多项式以提高单元的精度。若由于项数限制而不能选取完全多项式时,也应使完全多项式具有坐标的对称性,并且一

最新有限元法基础试题

有限元法基础试题(A ) 一、填空题(5×2分) 1.1单元刚度矩阵e T k B DBd Ω = Ω? 中,矩阵B 为__________,矩阵D 为___________。 1.2边界条件通常有两类。通常发生在位置完全固定不能转动的情况为_______边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为_______边界。 1.3内部微元体上外力总虚功: ()(),,,,e x x xy y bx xy x y y by d W F u F v dxdy δστδτσδ??=+++++??+(),,,,x x y y xy y x u v u u dxdy σδσδτδδ??+++??的表达式中,第一项为____________________的虚功,第二项为____________________的虚功。 1.4弹簧单元的位移函数1N +2N =_________。 1.5 ij k 数学表达式:令j d =_____,k d =_____,k j ≠,则力i ij F k =。 二、判断题(5×2分) 2.1位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。( ) 2.2变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。 ( ) 2.3变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。 ( ) 2.4常应变三角单元中变形矩阵是x 或y 的函数。 ( ) 2.5 对称单元中变形矩阵是x 或y 的函数。 ( ) 三、简答题(26分) 3.1列举有限元法的优点。(8分) 3.2写出有限单元法的分析过程。(8分) 3.3列出3种普通的有限元单元类型。(6分) 3.4简要阐述变形体虚位移原理。(4分) 四、计算题(54分) 4.1对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m ,单元②的弹簧常数为20000N/m ,单元③的弹簧常数为10000N/m ,确定各节点位移、反力以及单元②的单元力。(10分) 4.2对于如图所示的杆组装,弹性模量E 为10GPa ,杆单元长L 均为2m ,横截面面积A 均为2×10-4m 2,弹簧常数为2000kN/m ,所受荷载如图。采用直接刚度法确定节点位移、作用力和单元②的应力。(10分)

有限元分析课后习题

3.1“强”形式相关的场变量要求强的连续性。定义这些场变量的所有函数必须可微,而可微的次数必须等于存在于强形式的系统方程中的偏微分方程的次数。“弱”形式通常是积分形式,且对场变量要求较弱的连续性,弱形式通常能得到更精确的解。 3.2 (a) 协调性方程 (b )本质边界条件或运动边界条件 (c )在初始刻和末时刻的条件 3.3 (a )域的离散 (b )位移插值 (c )构造形函数 (d )坐标变换 (e )整体有限元方程的组装 (f )位移约束的施加 (g )求解整体有限元方程 3.4 理论上不用必须离散所求解问题的区域。把问题划分成单元的目的是更容易地假设位移场的模式。 3.5证明: (1)方程的左边为 []2 0120020120 23 012()d ()d [()()()]d 11 ()()()23l l l f x x a a x a x x a a x a x x a l a l a l δδδδδδδδ=++=++=++??? 方程的右边为 2012002301223012()d ()d 11 [] 23 11 [()()()] 23l l f x x a a x a x x a l a l a l a l a l a l δδδδδδ??=++???? =++=++?? 很显然方程的左右两边相等。 (2)方程的左边为 1212d () (2)d ()()2f x a a x x a a x δ δδδ=+=+ 方程的右边为 []201212d d ()()d d ()()2f x a a x a x x x a a x δδδδδδ=++=+ 很显然方程的左右两边相等。 3.6再生性和连续性

ansys有限元分析作业经典案例

有 限 元 分 析 作 业 作业名称 输气管道有限元建模分析 姓 名 陈腾飞 学 号 3070611062 班 级 07机制(2)班 宁波理工学院

题目描述: 输气管道的有限元建模与分析 计算分析模型如图1所示 承受内压:1.0e8 Pa R1=0.3 R2=0.5 管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。 图1受均匀内压的输气管道计算分析模型(截面图) 题目分析: 由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。然后根据结构的对称性,只要分析其中1/4即可。此外,需注意分析过程中的单位统一。 操作步骤 1.定义工作文件名和工作标题 1.定义工作文件名。执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。 2.定义工作标题。执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。 3.更改目录。执行Utility Menu-File→change the working directory –D/chen 2.定义单元类型和材料属性 1.设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK

2.选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →apply Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。 图2 3.设置材料属性。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,如图3所示,选择OK并关闭对话框。 图3 3.创建几何模型 1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK

有限元考试试题及答案

一、 简答题(共40分,每题10分) 1. 论述单元划分应遵循的原则。 2. 说明形函数应满足的条件。 3. 说明四边形等参数单元中“等参数”的含义,即为什么要引入等参数单元。 4. 阐述边界元法的主要优缺点。 二、 计算题(共60分,每题20分) 1. 一杆件如图3所示,杆件上方固定后,在下方受垂直向下的集中力作用,已 知:杆件材料的杨氏模量2 721/100.3in lbf E E ?==,截面积2125.5in A =, 2275.3in A =,长度in L L 1221==,集中力lbf P 100=,用有限元方法求解B 点 和C 点位移。备注:(1)1 lbf (磅力,libra force ) = N 。(2)杨氏模量、弹性 模量、Young 氏弹性模量具有相同含义(10分) 2. 如图2 所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷 F=20KN/m ,设泊松比μ=0,材料的弹性模量为E ,试求它的应力分布。(15分) 学院 专业 学号 姓名 y 图1

图2 3. 图示结点三角形单元的124边作用有均布侧压力q,单元厚度为t,求单元的等效结点荷载。 图3

一、简答题 1. 答: 1)合理安排单元网格的疏密分布 2)为突出重要部位的单元二次划分 3)划分单元的个数 4)单元形状的合理性 5)不同材料界面处及荷载突变点、支承点的单元划分 6)曲线边界的处理,应尽可能减小几何误差 7)充分利用结构及载荷的对称性,以减少计算量 2. 答: 形函数应满足的三个条件: a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由 其它单元形变所引起的位移。 b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所 有点都具有相同的应变。当单元尺寸取小时,则单元中各点的应变趋于相 等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。 c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元 位移协调。 3. 答: 含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。 意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。 4. 答: 有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。有限单元法中所利用的主要是伽辽金(Galerkin)法。它可以用于已经知道问题的微分方程和

有限元第二章课后题答案

2 弹性力学问题的有限单元法 思考题 2.1 有限元法离散结构时为什么要在应力变化复杂的地方采用较密网格,而在其他地方采用较稀疏网格? 答:在应力变化复杂的地方每一结点与相邻结点的应力都变化较大,若网格划分较稀疏,则在应力突变处没有设置结点,而使得所求解的误差很大,若网格划分较密时,则应力变化复杂的地方可以设置更多的结点,从而使得所求解的精度更高一些。 2.2 因为应力边界条件就是边界上的平衡方程,所以引用虚功原理必然满足应力边界条件,对吗? 答:对。 2.3 为什么有限元只能求解位移边值问题和混合边值问题?弹性力学中受内压和外压作用的圆环能用有限元方法求解吗?为什么?答:有限元法是一种位移解法,故只能求解位移边值问题和混合边值问题。而应力边值问题没有确定的位移约束,不能用位移法求解,所以也不能用有限元法求解。 2.4 矩形单元旋转一个角度后还能够保持在单元边界上的位移协调吗? 答:能。矩形单元的插值函数满足单元内部和单元边界上的连续性要求,是一个协调元。矩形的插值函数只与坐标差有关,旋转一个角度后各个结点的坐标差保持不变,所以插值函数保持不变。因此矩形单

元旋转一个角度后还能够保持在单元边界上的位移协调。 2.5 总体刚度矩阵呈带状分布,与哪些因素有关?如何计算半带宽? 答:因素:总体刚度矩阵呈带状分布与单元内最大结点号与最小结点号的差有关。 计算:设半带宽为B ,每个结点的自由度为n ,各单元中结点整体码的最大差值为D ,则B=n(D+1),在平面问题中n=2。 2.6 为什么单元尺寸不要相差太大,如果这样,会导致什么结果? 答:由于实际工程是一个二维或三维的连续体,将其分为具有简单而规则的几何单元,这样便于网格计算,还可以通过增加结点数提高单元精度。在几何形状上等于或近似与原来形状,减小由于形状差异过大带来的误差。若形状相差过大,使结构应力分析困难加大,误差同时也加大。 2.7 剖分网格时,在边界出现突变和有集中力作用的地方要设置结点或单元边界,试说明理由。 答:有限元处于弹性力学问题的方法是离散法。它将一个受外力作用的连续弹性体离散成一定数量的有限小的单元集合体,单元之间只在结点上相互联系,即只有结点才能传递力。所以在边界出现突变和有集中力作用的地方要设置结点和单元边界。 2.8 为什么说三角形三结点单元是常应变单元,如果在每边中点增加一个结点,那么单元内应力如何分布? 答:(1)应变矩阵[B]中的参数m j i m j i c c c b b b 、、、、、由坐标变量x 、y 之差确定。当单元的坐标差确定之后,这些参数与坐标变量x 、y 无关,

有限元考试试题及答案第一组

有限元考试试题及答案 一、简答题(5道,共计25分)。 1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分) 答:(1)选择适当的单元类型将弹性体离散化; (2)建立单元体的位移插值函数; (3)推导单元刚度矩阵; (4)将单元刚度矩阵组装成整体刚度矩阵; (5)代入边界条件和求解。 2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分) 答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。 3.轴对称单元与平面单元有哪些区别?(5分) 答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。 4.有限元空间问题有哪些特征?(5分) 答:(1)单元为块体形状。常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。(2)结点位移3个分量。(3)基本方程比平面问题多。3个平衡方程,6个几何方程,6个物理方程。 5.简述四节点四边形等参数单元的平面问题分析过程。(5)分) 答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元, 并选取单元的唯一模式; (2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;

(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参 数单元的应力矩阵; (4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。 二、论述题(3道,共计30分)。 1. 简述四节点四边形等参数单元的平面问题分析过程。(10分) 答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式; (2) 通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式; (3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参 数单元的应力矩阵; (4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。 2.轴对称问题的简单三角形单元是否是常应力,常应变?为什么?(10分) 答:不是常应力和常应变。 因为应变与位移分量的关系式为: ? ?????????????? ? ?????????????? ???? =????????????????????????+??????=??? ???????????=w u 010r r u r u }{rz z r r z z r r w z u z w γεεεεθ,这里除含有微分算符外,还包含了r 的倒数项1/r ,则即使位移模式为线性的,但由于该项的存在,使得应变与坐标有关, 即不会是常应变。应力应变的物理关系为{ }[]{}εσD = ,由于应变不是常应变,则所求得的应力也不会是常应力。

有限元考试试题及答案

江西理工大学研究生考试试卷 一、 简答题(共4 0分, 每题10分) 1. 论述单元划分应遵循的原则。 2. 说明形函数应满足的条件。 3. 说明四边形等参数单元中“等参数”的含义,即为什么要引入等参数单元。 4. 阐述边界元法的主要优缺点。 二、 计算题(共60分,每题20分) 1.一杆件如图3所示,杆件上方固定后,在下方受垂直向下的集中力作用,已知:杆件材 料的杨氏模量2721/100.3in lbf E E ?==,截面积2125.5in A =,2 275.3in A =,长度 in L L 1221==,集中力lbf P 100=,用有限元方法求解B 点和C 点位移。备注:(1)1lbf (磅力,libraforce )=。(2)杨氏模量、弹性模量、Young 氏弹性模量具有相同含义(10 分) 2.如图2 t=1m ,载荷F=20KN/m ,设泊松比μ=015分) 3.图示结点三角形单元的q ,单元厚度为t ,求单元的等效结点荷载。 学院专业学号姓名 y

图3

一、简答题 1.答: 1)合理安排单元网格的疏密分布 2)为突出重要部位的单元二次划分 3)划分单元的个数 4)单元形状的合理性 5)不同材料界面处及荷载突变点、支承点的单元划分 6)曲线边界的处理,应尽可能减小几何误差 7)充分利用结构及载荷的对称性,以减少计算量 2.答: 形函数应满足的三个条件: a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形 变所引起的位移。 b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有 相同的应变。当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。 c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。 3.答: 含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。 意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。 4.答: 有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。有限单元法中所利用的主要是伽辽金(Galerkin)法。它可以用于已经知道问题的微分方程和边界条件,但变分的泛函尚未找到或者根本不存在的情况,因而进一步扩大了有限单元法的应用领域。 三十多年来,有限单元法的应用已由弹性力学平面问题扩展到空间问题、板壳问题,由

相关主题
文本预览
相关文档 最新文档