当前位置:文档之家› 太阳能电池和光伏组件的质量标准

太阳能电池和光伏组件的质量标准

太阳能电池和光伏组件的质量标准
太阳能电池和光伏组件的质量标准

太阳能板制作工艺

太阳能电池板(组件)生产工艺 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 流程: 1、电池检测—— 2、正面焊接—检验— 3、背面串接—检验— 4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)—— 5、层压—— 6、去毛边(去边、清洗)—— 7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)—— 8、焊接接线盒—— 9、高压测试——10、组件测试—外观检验—11、包装入库 组件高效和高寿命如何保证: 1、高转换效率、高质量的电池片; 2、高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 3、合理的封装工艺 4、员工严谨的工作作风; 由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 太阳电池组装工艺简介: 工艺简介:在这里只简单的介绍一下工艺的作用,给大家一个感性的认识. 1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 2、正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连 3、背面串接:背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。 4、层压敷设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。 5、组件层压:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA 时,层压循环时间约为25分钟。固化温度为150℃。 6、修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应

太阳能电池组件封装工艺大全

太阳能电池组件封装工艺大全 一、太阳能电池组件封装简介 组件线又叫封装线,封装是太阳能电池板生产中的关键步骤,没有良好的封装工艺,多好的电池片也做不出好的组件板。良好的电池封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以太阳能电池板的封装工艺至关重要。 太阳能电池组件封装工艺流程图如下: 太阳能电池组件封装结构图 如何保证太阳能电池组件的高效和高寿命? 1、高转换效率、高质量的电池片

下图是电池的结构示意图: (1)金属电极主栅线;(2)金属上电极细栅线;(3)金属底电极;(4)减反射膜;(5)顶区层(扩散层);(6)体区层(基区层); 2、高质量的封装材料 高耐候性、低水蒸汽透过率、良好电绝缘性等性能优异的太阳能电池背板; 交联度高、耐黄变性能好、热稳定性好、粘接力强等性能优异的EVA胶膜; 高粘结强度、密封性好的封装剂(中性硅酮树脂胶); 高透光率、高强度的钢化玻璃等

3、严谨的工作态度 由于太阳电池组件属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应戴手套而不戴、应均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 二、太阳能电池组件组装工艺介绍 1、电池分选 由于电池片制作条件的随机性,生产出来的电池片性能不尽相同,所以为了有效的将性能一致或相近的电池片组合在一起,应根据其性能参数进行分类;电池测试即通过测试电池片的输出参数(电流和电压)的大小对其进行分类。以提高电池片的利用率,做出质量合格的太阳能电池组件。 2、单焊 是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,焊带的长度约为电池片边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连(如下图)。 3、串焊 背面焊接是将N张片电池串接在一起形成一个组件串,电池的定位主要靠一个膜具板,操作者使用电烙铁和焊锡丝将单片焊接好的电池的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将N张电池片串接在一起并在组件串的正负极焊接出引线。 4、叠层 背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、太阳能电池背板按照一定的层次敷设好,准备层压。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池处、EVA、玻璃纤维、背板)。 5、组件层压 将敷设好的电池组件放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA 熔化将电池、玻璃和太阳能电池背板粘接在一起;最后冷却取出组件。层压工艺是太阳能电池组件生产的关键一步,层压温度和层压时间根据EVA的性质决定。我们使用普通的EVA 时,层压循环时间约为21分钟,固化温度为138-140℃。 6、修边 层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。 7、装框 类似与给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组

太阳能电池分类

太阳能电池分类 太阳能电池按结晶状态可分为结晶系薄膜式和非结晶系薄膜式(以下表示为a-)两大类,而前者又分为单结晶形和多结晶形。 按材料可分为硅薄膜形、化合物半导体薄膜形和有机膜形,而化合物半导体薄膜形又分为非结晶形(a-Si:H,a-Si:H:F,a-SixGel-x:H等)、ⅢV族(GaAs,InP等)、ⅡⅥ族(Cds 系)和磷化锌 (Zn 3 p 2 )等。 太阳能电池根所用材料的不同,太阳能电池可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池是发展最成熟的,在应用中居主导地位。 1、太阳能电池硅太阳能 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜作为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%(截止2011,为17%)。因此,多晶硅薄膜电池不久将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。 2、太阳能电池多晶体薄膜 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电

太阳能电池组件的封装(精华)

太阳能电池组件的封装(精华) 导读:单件电池片由于输出功率太小,难以满足常规用电需求,因此需要将其封装为组件以提高其输出功率。封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,再好的电池也生产不出好的组件。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以组件的封装质量非常重要。 具有外部封装及内部连接、能单独提供直流电输出的最小不可分割的太阳能电池组合装置,叫太阳能电池组件,即多个单体太阳能电池互联封装后成为组件。太阳能电池组件是太阳能发电系统中的核心部分,也是太阳能发电系统中最重要的部分。 1.防止太阳能电池破损。晶体硅太阳能电池易破损的原因:晶体硅呈脆性;硅太阳能电池面积大;硅太阳能电池厚度小。 2.防止太阳能电池被腐蚀失效。太阳能电池的自然抗性差:太阳电池长期暴露在空气中会出现效率的衰减;太阳电池对紫外线的抵抗能力较差;太阳电池不能抵御冰雹等外力引起的过度机械应力所造成的破坏;太阳电池表面的金属化层容易受到腐蚀;太阳电池表面堆积灰尘后难以清除。 3.满足负载要求,串联或并联成一个能够独立作为电源使用的最小单元。由于单件太阳电池输出功率难以满足常规用电需求,需要将它们串联或者并联后接入用电器进行供电。 太阳能电池组件的种类较多,根据太阳能电池片的类型不同可分为晶体硅(单、多晶硅)太阳能电池组件、非晶硅薄膜太阳能电池组件及砷化镓电池组件等;按照封装材料和工艺的不同可分为环氧树脂封装电池板和层压封装电池组件;按照用途的不同可分为普通型太阳能电池组件和建材型

太阳能电池组件。其中建材型太阳能电池组件又分为单面玻璃透光型电池组件、双面夹胶玻璃电池组件和双面中空玻璃电池组件。由于用晶体硅太阳能电池片制作的电池组件应用占到市场份额的85%以上,在此就主要介绍用晶体硅太阳能电池片制作的电池组件。 单晶硅组件 多晶硅组件 非晶硅组件 第一代室温硫化硅橡胶封装 第二代聚乙烯醇缩丁醛 (PVB )封装 第三代乙烯-醋酸乙烯共聚物(EVA )封

太阳能电池组件生产的主要工艺流程

太阳能电池组件生产的主要工艺流程:测试分选T单片焊接T串联焊接T叠层T中间测试T层压T装框注胶T清洗T最终测试 (1)测试分选 电池片分选主要是为了检出不合格的电池片,同时,电池片的颜色一般呈蓝褐色、蓝紫色、蓝色、浅兰色等几种不同档次的蓝色,对电池片进行颜色分选并分档放置,保证单个组件所用到的电池片为同档次的颜色,从而使单个组件生产出来后颜色外观美观,各电池单片之间无明显色差现象。若电池片不经过色差分选就直接做组件,做出来的组件外表颜色“参差不齐” ,不美观。因此,为了保证电池片的质量、外观和生产顺利高效率的运行,通过初选将缺角、栅线印刷不良、裂片、色差等电池片筛选出来。 在标准测试环境(温度25 ±2 C、湿度w 60%RH、光强1000 士 50W )下,绘制I-V曲线图,根据电池片的开路电压Voc、短路电流Isc、工作最佳功率Pm、工作最佳电压Vm、工作最佳电流Im、填充因子FF、转换效率n等指标把电池电性参数相近的电池分到一类,之后根据生产、工艺的数据分析要求,和客户的分档要求,对电池片进行测试并分档。 (2)单片焊接单片焊接将汇流带焊接到电池正面(负极)的主栅线上,从上至 下,匀速焊接。单片焊接的目的是将连接带(锡铜合金带)平直地焊接到电池片的主栅线上,要求保证电气和机械连接良好,外观光亮;焊带

的长度约为电池边长的2倍,多出的焊带在串联焊接时与后面的电池片的背面电极相连。 ⑶串联焊接 背面焊接是将电池片接在一起形成一个电池片的串组,电池的定位主要靠一个膜具板,上面有放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经是设计好的,不同规格的组件使用不同的模板,操作者使用电烙铁和连接带(锡铜合金带)将单片焊接好的电池片的正面电极(负极)焊接到另一片的背面电极(正极)上,以此类推,依次将电池片串接在一起,并在组件串的正负极焊接出为叠层时准备的引线。 串接结构示意图 (4)叠层 背面串接好且经过检验合格后,将电池片串、钢化玻璃和切割好的EVA、背板(TPT)按照一定的层次敷设好,玻璃事先涂一层试剂(primer )以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:钢化玻璃、EVA、电池片、EVA、背板)。叠层 是将电池片串按照所设计的方案进行排列,为下面的工序层压做准备,叠层的主要目的还是在于对组件中电池片位置的控制(假设在层压过程中电池片不发生移动)。

光伏组件(太阳能电池板)规格表

光伏组件(太阳能电池板)规格表如本页不能正常显示,请点击刷新 型号材料 峰值 功率 Pm (watt) 峰值 电压 Vmp (V) 峰值 电流 Imp (A) 开路 电压 Voc (V) 短路 电流 Isc (A) 尺寸 (mm) APM18M5W27x27单晶 硅 5 8.75 0.57 10.5 0.6 6 265*265*25 APM36M5W27x27单晶 硅 5 17.5 0.29 21.5 0.32 265*265*25 APM18P5W27x27多晶 硅 5 8.75 0.57 10.5 0.6 6 265*265*25 APM36P5W27x27多晶 硅 5 17.5 0.29 21.5 0.32 265*265*25 APM36M8W36x30单晶 硅 8 17.5 0.46 21.5 0.52 301*356*25 APM36P8W36x30多晶 硅 8 17.5 0.46 21.5 0.52 301*356*25 APM36M10W36x30单晶 硅 10 17.5 0.57 21.5 0.65 301*356*25 APM36P10W36x30多晶 硅 10 17.5 0.57 21.5 0.65 301*356*25 APM36M15W49x29单晶 硅 15 17.5 0.86 21.5 0.97 287*487*25 APM36P15W43x36多晶15 17.5 0.86 21.5 0.97 356*426*28

APM36M20W63x28单晶 硅 20 17.5 1.14 21.5 1.29 281*627*25 APM36P20W58x36多晶 硅 20 17.5 1.14 21.5 1.29 356*576*28 APM36M25W48x54单晶 硅 25 17.5 1.43 21.5 1.61 536*477*28 APM36P25W68x36多晶 硅 25 17.5 1.43 21.5 1.61 356*676*28 APM36M30W48x54单晶 硅 30 17.5 1.71 21.5 1.94 536*477*28 APM36P30W82x36多晶 硅 30 17.5 1.71 21.5 1.94 356*816*28 APM36M35W62x54单晶 硅 35 17.5 2.00 21.5 2.26 537*617*40 APM36P35W82x36多晶 硅 35 17.5 2.00 21.5 2.26 356*816*28 APM36M40W62x54单晶 硅 40 17.5 2.29 21.5 2.58 537*617*40 APM36P40W67x58多晶 硅 40 17.5 2.29 21.5 2.58 576*670*40 APM36M45W76x54单晶 硅 45 17.5 2.57 21.5 2.91 537*758*40 APM36P45W67x58多晶 硅 45 17.5 2.57 21.5 2.91 576*670*40 APM36M50W76x54单晶 硅 50 17.5 2.86 21.5 3.23 537*758*40 APM36P50W88x51多晶 硅 50 17.5 2.86 21.5 3.23 510*880*40 APM36M55W76x54单晶 硅 55 17.5 3.14 21.5 3.55 537*758*40 APM36P55W88x51多晶 硅 55 17.5 3.14 21.5 3.55 510*880*40 APM36M60W90x54单晶 硅 60 17.5 3.43 21.5 3.88 537*899*40 APM36P60W82x67多晶 硅 60 17.5 3.43 21.5 3.88 670*816*40 APM36M65W90x54单晶65 17.5 3.71 21.5 4.20 537*899*40

晶体硅太阳能电池组件清理工艺规范

电池组件生产工艺 目录 太阳能电池组件生产工艺介绍 (1) 晶体硅太阳能电池片分选工艺规范 (3) 晶体硅太阳能电池片激光划片工艺规范 (4) 晶体硅太阳能电池片单焊工艺规范 (6) 晶体硅太阳能电池片串焊工艺规范 (8) 晶体硅太阳能电池片串焊工艺规范 (9) 晶体硅太阳能电池片叠层工艺规范 (10) 晶体硅太阳能电池组件层压工艺规范 (12) 晶体硅太阳能电池组件装框规范 (14) 晶体硅太阳能电池组件测试工艺规范 (15) 晶体硅太阳能电池组件安装接线盒工艺规范 (16) 晶体硅太阳能电池组件清理工艺规范 (17)

太阳能电池组件生产工艺介绍 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 1流程图: 电池检测——正面焊接—检验—背面串接—检验—敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试—外观检验—包装入库; 2组件高效和高寿命如何保证: 2.1高转换效率、高质量的电池片 2.2高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装剂(中性硅酮树脂胶)、 高透光率高强度的钢化玻璃等; 2.3合理的封装工艺; 2.4员工严谨的工作作风; 由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 3太阳电池组装工艺简介: 3.1工艺简介: 在这里只简单的介绍一下工艺的作用,给大家一个感性的认识,具体内容后面再详细介绍: 3.1.1电池测试: 由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 3.1.2正面焊接: 是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。 3.1.3背面串接: 背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相

太阳能电池板的生产工艺流程

太阳能电池板的生产工艺流程 太阳能电池板的生产工艺流程 封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的太阳能电池板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以太阳能电池板的封装质量非常重要。 (1)流程 电池检测——正面焊接——检验——背面串接——检验——敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试——外观检验——包装入库。 (2)组件高效和高寿命的保证措施高转换效率、高质量的电池片;高质量的 原材料,例如,高的交联度的 EVA高黏结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 合理的封装工艺,严谨的工作作风, 由于太阳电池属于高科技产品,生产过程中一些细节问题,如应该戴手套而不戴、应该均匀地涂刷试剂却潦草完事等都会严重地影响产品质量,所以除了制定合理的工艺外,员工的认真和严谨是非常重要的。 (3)太阳能电池组装工艺简介 ①电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效地将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的太阳能电池组件。如果把一片或者几片低功率的电池片装在太阳电池单体中,将会使整个组件的输出功率降低。因此,为了最大限度地降低电池串并联的损失,必须将性能相近的单体电池组合成组件。 ②焊接:一般将6?12个太阳能电池串联起来形成太阳能电池串。传统 上,一般采用银扁线构成电池的接头,然后利用点焊或焊接(用红外灯,利用红外线的热效应)等方法连接起来。现在一般使用60%的Sn、38%的Pb、2%的Ag 电镀后的铜扁丝(厚度约为100?200卩m)。接头需要经过火烧、红外、热风、激光处理。由于铅有毒,因此现在越来越多地采用 96.5 %的铜和 3.5 %的银合金。但是

(整理)薄膜太阳能电池种类

薄膜太阳能电池种类 为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。 砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。 磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。 GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LPE技术,其中 MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术异质外延方法制造GaAs电池是降用低成本很有希望的方法。已研究的砷化镓系列太阳电池有单晶砷化镓,多晶砷化镓,镓铝砷--砷化镓异质结,金属-半导体砷化镓,金属--绝缘体--半导体砷化镓太阳电池等。 砷化镓材料的制备类似硅半导体材料的制备,有晶体生长法,直接拉制法,气相生长法,液相外延法等。由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池的发展受到影响。除GaAs外,其它III-V化合物如Gasb,GaInP等电池材料也得到了开发。 1998年德国费莱堡太阳能系统研究所制得的GaAs太阳能电池转换效率为 24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%。另外,该研

太阳能电池分类知识总结

太阳能电池分类知识总结太阳能电池,也称为光伏电池,是将太阳光辐射能直接转换为电能的器件。由这种器件封装成太阳能电池组件,再按需要将一定数量的组件组合成一定功率的太阳电池方阵,经与储能装置、测量控制装置及直流—交流变换装置等相配套,即构成太阳电池发电系统,也称为光伏发电系统。更多资讯请关注光伏英才网,最权威专业的光伏人才招聘太阳能求职网。 太阳能光伏发电最核心的器件是太阳能电池。而太阳能电池的发展历史已经经过了160多年的漫长的发展历史。从总的发展来看,基础研究和技术进步都起到了积极推进的作用,至今为止,太阳能电池的基本结构和机理没有发生改变。 1.按结构分类:同质节太阳能电池、异质节太阳能电池、肖特基太阳能电池 2.按材料分类:硅太阳能电池、多元化合物薄膜太阳能电池、有机化合物太阳能电池、敏化纳米晶太阳能电池、聚合物多层修饰电极型太阳能电池 3.按工作方式分类:平板太阳能电池、聚光太阳能电池、分光太阳能电池 第一代:单晶硅和多晶硅两种,大约占太阳能电池产品市场的89.9%。第一代太阳能电池基于硅晶片基础之上,主要采用单晶体硅、多晶体硅为材料。其中,单晶硅电池转换效率最高,可达到18-20%,但生产成本高。 第二代:薄膜太阳能电池,占太阳能电池产品市场的9.9%,第二代太阳能电池基于薄膜技术基础之上,主要采用非晶硅及氧化物等为材料。效率比第一代低,最高的的转化效率为13%,但生产成本最低。 第三代:铜铟硒(CIS)等化合物薄膜太阳能电池及薄膜Si系太阳能电池。主要

处于实验室生产状态,由于其的高效率,低成本而存在潜在庞大的经济效应。 1.硅太阳能电池可分为:单晶硅太阳能电池、多晶硅薄膜太阳能电池、非晶硅薄膜太阳能电池 单晶硅太阳能电池,是以高纯的单晶硅棒为原料的太阳能电池,其转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的热加工处理工艺基础上。 非晶硅薄膜太阳能电池所采用的硅为a-Si。其基本结构不是pn结而是pin结。掺硼形成p区,掺磷形成n区,i为非杂质或轻掺杂的本征层。 突出特点:材料和制造工艺成本低、制作工艺为低温工艺(100-300℃),耗能较低、易于形成大规模生产能力,生产可全流程自动化、品种多,用途广。 存在问题:光学带隙为1.7eV→对长波区域不敏感→转换效率低。光致衰退效

太阳能电池组件的封装

太阳能电池组件的封装

太阳能电池组件的封装 (二)组件的封装结构 (三)组件的封装材料 1上盖板2黏结剂3底板4边框(四)组件封装的工艺流程 不同结构的组件有不同的封装工艺。平板式硅太阳能电池组件的封装工艺流程,如图17所示。可将这一工艺流程概述为:组件的中间是通过金属导电带焊接在一起的单体电池,电池上卞两侧均为EVA膜,最上面是低铁钢化白玻璃,背面是PVF复合膜。将各层材料按顺序叠好后,放人真空层压机内进行热压封装。最上层的玻璃为低铁钢化白玻璃,透光率高,而且经紫外线长期照射也不会变色。EVA膜中加有抗紫外剂和固化剂,在热压处理过程中固化形成具有一定弹性的保护层,并保证电池与钢化玻璃紧密接触。PVF复合膜具有良好的耐光、防潮、防腐蚀性能。经层压封装后,再于四周加上密封条,装上经过阳极氧化的铝合金边框以及接线盒,即成为成品组件。最后,要对成品组件进行检验测试,测试内容主要包括开路电压、短路电流、填充因

子以及最大输出功率等。 硅片划片切割工艺概况 1用激光来划片切割硅片是目前最为先进的,它使用精度高、而且重复精度也高、工作稳定、速度快、操作简单、维修方便。 2激光最大输出≧50W(可调)、激光波长为1.064μm、 切割厚度≦1.2mm、光源是用Nd:YAG晶体组成激光器、是单氪灯连续泵浦、声光调Q、并用计算机控制二维工作台可预先设定的图形轨迹作各种精确运动。 ± 部件分析: 1操作可分为外控与内控。 2计算机操作系统-有专用软件设立工作台划片步骤实现划片目标。 3电源控制盒-供应激光电源、Q电源驱动、水冷系统的输入电源进行分配及自控,当循环水冷系统出现故障时,自动断开激光电源及Q电源驱动盒的供电。 4激光电源盒-点燃氪灯的自动引燃恒流电源。 5 Q电源驱动盒-产生射频信号并施加到Q开

太阳能电池组件规定

太阳能电池组件规定 1、电池组件方阵概况 1.1电站容量20MW,均采用多晶硅太阳能电池组件,为固定式17°倾角安装。 1.2太阳能方阵由太阳能组件经串联、并联组成。光伏电池组件串联的数量由并网逆变器的最高输入电压、最低工作电压、太阳能电池组件的最大系统电压以及当地气候等条件确定;组串并联的数量由逆变器的额定容量确定。 1.3 组件方阵:每22块电池组件串为一个支路,12条支路进入一个汇流箱,每8或9个汇流箱进入一个直流柜,由两台直流柜分别分配电能到两台500kW的逆变器,2个逆变器(500kW)和1台1000KV A箱变组成一个发电单元(1MW),共20个发电单元;每10MW的联合单元进入一个进线柜,2个10MW联合单元构成总容量为:20MW。

2 、太阳能电池组件型号及参数 序号名称 单 位 型号备注1 太阳电池种类多晶硅 2 光伏组件尺寸 结构1650mm×992mm×40mm 3 光伏组件重量kg 19.0 4 组件效率% 14.98 5 最大输出功率Wp 255 6 最大功率偏差% ±3% 7 开路电压 (V oc) V 38.1 8 短路电流 (Isc) A 8.78 9 最佳工作电压V 31.5 10 最佳工作电流 A 8.13

序号名称 位 型号备注11 最大系统电压V 1000 序号名称 单 位 型号备注1 太阳电池种类多晶硅 2 光伏组件尺寸 结构1650mm×992mm×40mm 3 光伏组件重量kg 19.0 4 组件效率% 14.98 5 最大输出功率Wp 250 6 最大功率偏差% ±3% 7 开路电压 (V oc) V 37.8 8 短路电流 (Isc) A 8.72

晶硅太阳能电池的特点和种类

晶体硅太阳能电池的种类及特点 太阳能电池已经有30多年的发展历史。目前世界各国研制的硅太阳能电池种类繁多,;主要系列有单晶、多晶、非晶硅几种。其中单晶硅太阳能电池占50%,多晶硅电池占20%、非晶占30%。我国光伏发电发展需解决的关键问题。太阳能光伏发电发展的瓶颈 是成本高。为此,需加大研发力度,集中在降低成本和提高效率的关键技术上有所突破,主要包括:a)晶体硅电池技术。降低太阳硅材料的制备成本:开发专门用于晶体硅太阳 能电池的硅材料,是生产高效和低成本太阳电池的基本条件;同时实现硅材料国产化和 提高性能,从产业链的源头,抓好降低成本工作。提高电池/组件转换效率:高效钝化 技术,高效陷光技术,选择性发射区,背表面场,细栅或者单面技术,封装材料的最佳 折射率等高效封装技术等。光伏技术的发展以薄膜电池为方向,高效率、高稳定性、低 成本是光伏电池发展的基本原则。 单晶硅在太阳能的有效利用当中,太阳能光电利用是近些年来发展最快,也是最具 活力的研究领域。而硅材料太阳能电池无疑是市场的主体,硅基(多晶硅、单晶硅)太阳 能电池占80%以上,每年全世界需消费硅材料3000t左右。生产太阳能电池用单晶硅, 虽然利润比较低,但是市场需求量大,供不应求,如果进行规模化生产,其利润仍然很 可观。目前,中国拟建和在建的太阳能电池生产线每年将需要680多吨的太阳能电池用 多晶硅和单晶硅材料,其中单晶硅400多吨,而且,需求量还以每年15%~20%的增长 率快速增长。硅系列太阳能电池中,单晶硅太阳能电池在实验室里最高的转换效率为23%,而规模生产的单晶硅太阳能电池,其效率为15%,技术也最为成熟。高性能单晶 硅电池是建立在高质量单晶硅材料和相关的成熟的加工处理工艺基础上的。现在单晶硅 的电池工艺已近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂 等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率 主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳 能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制 成倒金字塔结构。通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得 的电池转化效率超过23%。单晶硅具有完整的金刚石结构。通过掺杂得到n,P型单晶硅,进而制备出p/n结、二极管及晶体管,从而使硅材料有了真正的用途。单晶硅太阳能电 池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶 硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度 降低其成本是非常困难的。 多晶硅众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但 目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光 电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过 程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合 1

详解太阳能电池组件中逆变器的工作原理

太阳能电池组件中逆变器的工作原理逆变器的概念通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。

1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz 到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。 3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导 通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。

太阳能电池的分类及其工作原理

1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改 进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面 积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,

现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350-450μm的高质量硅片 上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬 底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来 制备多晶硅薄膜电池。 化学气相沉积主要是以SiH2Cl2、SiHCl3、Sicl4或SiH4,为反 应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO2、Si3N4等。但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。解决这一问题办 法是先用 LPCVD在衬底上沉炽一层较薄的非晶硅层,再将这层非晶 硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主

太阳能电池组件生产工序中英文

中文:太阳能电池组件生产工艺 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 工艺流程如下: 1、电池检测—— 2、正面焊接—检验— 3、背面串接—检验— 4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)—— 5、层压—— 6、去毛边(去边、清洗)—— 7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)—— 8、焊接接线盒—— 9、高压测试——10、组件测试—外观检验—11、包装入库; 1.2工艺简介: 在这里只简单的介绍一下工艺的作用,给大家一个感性的认识,具体内容后面再详细介绍:1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 2、正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。(我们公司采用的是手工焊接) 3、背面串接:背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。 4、层压敷设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。 5、组件层压:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA时,层压循环时间约为25分钟。固化温度为150℃。 6、修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。 7、装框:类似与给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组件,延长电池的使用寿命。边框和玻璃组件的缝隙用硅酮树脂填充。各边框间用角键连接。 8、焊接接线盒:在组件背面引线处焊接一个盒子,以利于电池与其他设备或电池间的连接。 9、高压测试:高压测试是指在组件边框和电极引线间施加一定的电压,测试组件的耐压性和绝缘强度,以保证组件在恶劣的自然条件(雷击等)下不被损坏。

太阳能电池(组件)生产工艺

太阳能电池(组件)生产工艺 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 流程: 1、电池检测—— 2、正面焊接—检验— 3、背面串接—检验— 4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)—— 5、层压—— 6、去毛边(去边、清洗)—— 7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)—— 8、焊接接线盒—— 9、高压测试——10、组件测试—外观检验—11、包装入库 组件高效和高寿命如何保证: 1、高转换效率、高质量的电池片; 2、高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装剂(中性硅酮树脂 胶)、高透光率高强度的钢化玻璃等;

3、合理的封装工艺; 4、员工严谨的工作作风; 由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 太阳电池组装工艺简介: 工艺简介:在这里只简单的介绍一下工艺的作用,给大家一个感性的认识。 1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 2、正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。

相关主题
文本预览
相关文档 最新文档