当前位置:文档之家› 高中数学 2.3函数的奇偶性与周期性课时提能演练 理 新人教A版

高中数学 2.3函数的奇偶性与周期性课时提能演练 理 新人教A版

高中数学 2.3函数的奇偶性与周期性课时提能演练 理 新人教A版
高中数学 2.3函数的奇偶性与周期性课时提能演练 理 新人教A版

高中数学 2.3函数的奇偶性与周期性课时提能演练 理 新人教A 版

(45分钟 100分)

一、选择题(每小题6分,共36分)

1.下列函数中,在其定义域内既是奇函数又是减函数的是( ) (A)y =-x 3

,x∈R (B)y =sinx ,x∈R (C)y =x ,x∈R (D)y =(12

)x

,x∈R

2.(2012·宿州模拟)已知f(x)满足f(x +4)=f(x)和f(-x)=-f(x),当x∈(0,2)时,f(x)=2x 2

,则f(7)=( )

(A)-2 (B)2 (C)-98 (D)98

3.(2012·深圳模拟)已知f(x)是定义在R 上的奇函数,对任意的x∈R 都有f(x +2)=f(x)+f(1)成立,则f(2 011)等于( )

(A)0 (B)1 (C)2 (D)3 4.函数y =lg(21+x -1)的图象关于( )

(A)x 轴成轴对称图形 (B)y 轴成轴对称图形 (C)直线y =x 成轴对称图形 (D)原点成中心对称图形

5.(预测题)若函数f(x)=(k -1)a x

-a -x

(a>0,a≠1)在R 上既是奇函数,又是减函数,则g(x)=log a (x +k)的图象是( )

6.已知函数f(x)是R 上的偶函数,g(x)是R 上的奇函数,且g(x)=f(x -1),若f(1)=2,则f(2 013)的值为( )

(A)2 (B)0 (C)-2 (D)±2

二、填空题(每小题6分,共18分)

7.(2012·广州模拟)若f(x)=2x+a·2-x为奇函数,则a=.

8.(2011·广东高考)设函数f(x)=x3cosx+1,若f(a)=11,则f(-a)=.

9.(易错题)设f(x)是(-∞,+∞)上的奇函数,且f(x+2)=-f(x),下面关于f(x)的判定:其中正确命题的序号为.

①f(4)=0;

②f(x)是以4为周期的函数;

③f(x)的图象关于x=1对称;

④f(x)的图象关于x=2对称.

三、解答题(每小题15分,共30分)

10.设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m-1)>0,求实数m的取值范围.

11.(2012·珠海模拟)已知函数f(x)=a-1

|2x-b|

是偶函数,a为实常数.

(1)求b的值;

(2)当a=1时,是否存在n>m>0,使得函数y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],若存在,求出m,n的值,否则,说明理由.

(3)若在函数定义域内总存在区间[m,n](m

【探究创新】

(16分)设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数.

(1)如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,求实数m的取值范围.

(2)如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,求实数a的取值范围.

答案解析

1.【解析】选A.在定义域内为奇函数的为A,B,C,又y=sinx在R上不单调,y=x在R上为增函数,故选A.

2.【解析】选A.由已知得f(x)为以4为周期的奇函数, ∴f(7)=f(7-8)=f(-1)=-f(1),

又x ∈(0,2)时,f(x)=2x 2

,∴f(7)=-2×12

=-2. 3.【解析】选A.f(1)=f(-1+2)=f(-1)+f(1)=0, ∴f(x +2)=f(x),∴f(2 011)=f(1)=0.

4. 【解题指南】先确定函数的定义域,再判断函数的奇偶性,从而利用奇偶性判断其图象的对称性. 【解析】选D.函数y =f(x)=lg(21+x -1)=lg 1-x

1+x ,

∴函数y =f(x)的定义域为(-1,1), 又∵f(-x)=lg 1+x

1-x

=-lg 1-x 1+x =-f(x),

∴y =lg(2

1+x -1)为奇函数.

∴其图象关于原点成中心对称图形.

5. 【解析】选A.因为f(x)=(k -1)a x

-a -x

(a>0,a ≠1)为R 上的奇函数, ∴f(0)=(k -1)-1=0,得k =2, ∴f(x)=a x

-a -x

.

又∵f(x)为R 上的减函数,∴0

故g(x)=log a (x +k)=log a (x +2)的图象是由y =log a x(0

又g(x)为R 上的奇函数,∴g(-x)=-g(x). ∴f(-x -1)=-f(x -1), 即f(x -1)=-f(-x -1).

用x +1替换x ,得f(x)=-f(-x -2), 又f(x)是R 上的偶函数, ∴f(x)=-f(x +2).

∴f(x)=f(x +4),即f(x)的周期为4. ∴f(2 013)=f(4×503+1)=f(1)=2.

7.【解析】∵f(x)=2x +a ·2-x

为奇函数, ∴对任意x ∈R ,f(-x)=-f(x), 即2-x

+a ·2x

=-(2x

+a ·2-x

), (1+a)2-x

+(a +1)2x

=0, (1+a)(2x

+2-x

)=0, ∴1+a =0,∴a =-1. 答案:-1

8.【解析】令g(x)=x 3

cosx ,则f(x)=g(x)+1且g(x)为奇函数, 所以g(-a)=-g(a).

由f(a)=11得g(a)+1=11,所以g(a)=10, f(-a)=g(-a)+1=-g(a)+1=-10+1=-9. 答案:-9

9.【解析】∵f(x +2)=-f(x),

∴f(x)=-f(x +2)=-(-f(x +2+2))=f(x +4), 即f(x)的周期为4,②正确.

∴f(4)=f(0)=0(∵f(x)为奇函数),即①正确. 又∵f(x +2)=-f(x)=f(-x), ∴f(x)的图象关于x =1对称,∴③正确,

又∵f(1)=-f(3),当f(1)≠0时,显然f(x)的图象不关于x =2对称,∴④错误. 答案:①②③

10.【解析】由f(m)+f(m -1)>0, 得f(m)>-f(m -1), 即f(1-m)

又∵f(x)在[0,2]上单调递减且f(x)在[-2,2]上为奇函数, ∴f(x)在[-2,2]上为减函数, ∴????

?

-2≤1-m ≤2-2≤m ≤21-m>m

即???

??

-1≤m ≤3-2≤m ≤2m<12

解得-1≤m<12

.

【误区警示】本题易忽视m,1-m ∈[-2,2]而致误.

11.【解析】(1)由已知,可得f(x)=a -1|2x -b|的定义域为D =(-∞,b 2)∪(b

2,+∞).

又y =f(x)是偶函数,故定义域D 关于原点对称. 于是,b =0.

又对任意x ∈D ,有f(x)=f(-x),可得b =0. 因此所求实数b =0. (2)由(1),可知f(x)=a -1

2|x|

(D =(-∞,0)∪(0,+∞)). 考察函数f(x)=a -1

2|x|

的图象,可知:f(x)在区间(0,+∞)上是增函数, 又n>m>0,

∴y =f(x)在区间[m ,n]上是增函数.

因y =f(x)在区间[m ,n]上的函数值组成的集合也是[m ,n]. ∴有?????

1-1

2m =m 1-1

2n =n

即方程1-12x =x ,也就是2x 2

-2x +1=0有两个不相等的正根.

∵Δ=4-8<0, ∴此方程无解.

故不存在正实数m ,n 满足题意. (3)由(1),可知f(x)=a -1

2|x|

(D =(-∞,0)∪(0,+∞)). 考察函数f(x)=a -

1

2|x|

的图象, 可知:f(x)在区间(0,+∞)上是增函数, f(x)在区间(-∞,0)上是减函数.

因y =f(x)在区间[m ,n]上的函数值组成的集合也是[m ,n],故必有m 、n 同号.

①当0

=m a -1

2n =n

,即方程x =a -12x

,也就是2x 2

-2ax

+1=0有两个不相等的正实数根,因此?

????

a>0

Δ=4a 2

-8>0,解得a>2(此时,m 、n(m

-2ax

+1=0的两根即可).

②当m

a +12m

=n a +1

2n =m ,化简得(m -n)a =0,解得a =0(此

时,m 、n(m

2,且m

综上所述,所求实数a 的取值范围是a =0或a> 2.

【变式备选】已知函数f(x)=e x

-e -x

(x ∈R 且e 为自然对数的底数). (1)判断函数f(x)的奇偶性与单调性;

(2)是否存在实数t ,使不等式f(x -t)+f(x 2

-t 2

)≥0对一切x 都成立?若存在,求出t ;若不存在,请说明理由.

【解析】(1)∵f(x)=e x -(1e )x ,且y =e x

是增函数,

y =-(1e )x

是增函数,所以f(x)是增函数.

由于f(x)的定义域为R , 且f(-x)=e -x

-e x

=-f(x), 所以f(x)是奇函数.

(2)由(1)知f(x)是增函数和奇函数, ∴f(x -t)+f(x 2

-t 2

)≥0对一切x ∈R 恒成立

?f(x 2-t 2)≥f(t -x)对一切x ∈R 恒成立 ?x 2-t 2≥t -x 对一切x ∈R 恒成立 ?t 2+t ≤x 2+x 对一切x ∈R 恒成立 ?(t +1

2)2≤(x +1

2)2min

?(t +12)2≤0?t =-1

2.

即存在实数t =-1

2

使不等式f(x -t)+f(x 2

-t 2

)≥0对一切x 都成立. 【探究创新】

【解析】(1)f(x)=x 2

(x ≥-1)的图象如图(1)所示,要使得f(-1+m)≥f(-1),有m ≥2;x ≥-1时,恒有f(x +2)≥f(x),故m ≥2即可.所以实数m 的取值范围为[2,+∞); (2)由f(x)为奇函数及x ≥0时的解析式知f(x)的图象如图(2)所示, ∵f(3a 2

)=a 2

=f(-a 2),

由f(-a 2

+4)≥f(-a 2

)=a 2

=f(3a 2

), 故-a 2

+4≥3a 2

,从而a 2

≤1,

又a 2

≤1时,恒有f(x +4)≥f(x),故a 2

≤1即可. 所以实数a 的取值范围为[-1,1].

高中数学解题方法谈:函数奇偶性的判定方法

函数奇偶性的判定方法 函数奇偶性的判定方法较多,下面把常见的判定方法分类加以研究分析. 1.定义域判定法 例1 判定()(1)2f x x x =-- 的奇偶性. 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称, ∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数的奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-和奇偶性. 解: 函数()f x x a x a =++-的定义域为R ,且 ()()()()f a x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数的奇偶性. 3.等价形式判定法 例3 判定2211 ()11x x f x x x ++-=+++的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =, ∴图象过原点. 又0x ≠ 时,22 22 ()(1)(1)1()(1)(1)f x x x f x x x -+-+==-+--, (1)()f f x ∴-=-. 又(0)0f =,∴()f x 为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,()([])f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数,试判定()()()x f x g x ?= 的奇偶性.

高中数学统计与概率知识点

高中数学统计与概率知识点(文) 第一部分:统计 一、什么是众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。 众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。 3.众数与平均数的区别。 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 二、.中位数的概念。 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。 三.众数、中位数及平均数的求法。 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 四、中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同;(6)众数可能是一个或多个甚至没有;(7)平均数、众数和中位数都是描述一组数据集中趋势的量。

最新【金识源】高中数学 2.1.3 空间中直线与平面之间的位置关系教案 新人教A版必修2

2.1.3 空间中直线与平面之间的位置关系 一、教材分析 空间中直线与平面之间的位置关系是立体几何中最重要的位置关系,直线与平面的相交和平行是本节的重点和难点.空间中直线与平面之间的位置关系是根据交点个数来定义的,要求学生在公理1的基础上会判断直线与平面之间的位置关系.本节重点是结合图形判断空间中直线与平面之间的位置关系. 二、教学目标 1.知识与技能 (1)了解空间中直线与平面的位置关系; (2)培养学生的空间想象能力. 2.过程与方法 (1)学生通过观察与类比加深了对这些位置关系的理解、掌握; (2)让学生利用已有的知识与经验归纳整理本节所学知识. 3.情感、态度与价值 让学生感受到掌握空间直线与平面关系的必要性,提高学生的学习兴趣. 三、教学重点与难点 正确判定直线与平面的位置关系. 四、课时安排 1课时 五、教学设计 (一)导入新课 思路1.(情境导入) 一支笔所在的直线与我们的课桌面所在的平面,可能有几个交点?可能有几种位置关系? 思路2.(事例导入) 观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的六个面所在平面有几种位置关系? 图1 (二)推进新课、新知探究、提出问题 ①什么叫做直线在平面内? ②什么叫做直线与平面相交? ③什么叫做直线与平面平行? ④直线在平面外包括哪几种情况? ⑤用三种语言描述直线与平面之间的位置关系. 活动:教师提示、点拨从直线与平面的交点个数考虑,对回答正确的学生及时表扬. 讨论结果:①如果直线与平面有无数个公共点叫做直线在平面内. ②如果直线与平面有且只有一个公共点叫做直线与平面相交. ③如果直线与平面没有公共点叫做直线与平面平行.

基本初等函数专项训练经典题

一、简答题 1、设. (1)判断函数的奇偶性; (2)求函数的定义域和值域. 2、设函数 (Ⅰ)讨论的单调性; (Ⅱ)求在区间的最大值和最小值. 3、已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数. (1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围; (2)解关于x的方程f(x)=|f′(x)|; (3)设函数g(x)=,求g(x)在x∈[2,4]时的最小值. 4、经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|. (1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式; (2)求该城市旅游日收益的最小值(万元). 5、某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是: P(x)=x(x+1)(41-2x)(x≤12且x∈N*)

(1)写出第x月的需求量f(x)的表达式; (2)若第x月的销售量g(x)= (单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403) 6、已知函数f(x)=x2-(1+2a)x+a ln x(a为常数). (1)当a=-1时,求曲线y=f(x)在x=1处切线的方程; (2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间. 7、某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y=+2是否符合公司要求的奖励函数模型,并说明原因; (2)若该公司采用模型函数y=作为奖励函数模型,试确定最小的正整数a的值. 8、已知函数图象上一点P(2,f(2))处的切线方程为. (Ⅰ)求的值; (Ⅱ)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底,); (Ⅲ)令,如果图象与轴交于,AB中点为,求 证:. 9、已知命题p:函数y=log a(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x 恒成立.若p∨q是真命题,求实数a的取值范围.

第招 如何判断函数的奇偶性

第11招 如何判断函数的奇偶性? 判断函数的奇偶性(有的还牵涉三角函数)是高考中常考的知识点,一般以选择题形式出现. 解法指导与经典范例 (一) 判断函数奇偶性的方法 1. 定义法 这是最常用的方法.其解法步骤如下:(1)确定函数的定义域是否是关于原点的对称区间.若不是,可判断该函数是非奇非偶函数.若是,再按下列步骤继续进行.(2)在定义域内任取x ,以-x 代换f(x)中的x 得f(-x).(3)依据定义得出结论. 注意:(1)既是奇函数又是偶函数的函数只能是f(x)=0. (2)若奇函数f(x)在x=0处有定义,则f(0)=0.(如例6证一) 【例1】函数 ()()是x x x x f +-? +=11( ). A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D0非奇非偶函数 解 (]()() 的奇偶性】判断函数【例原点对称的区间由于这定义域不是关于想)的定义域为函数得?????>+-<+=-≤<-≥+-00)(2. .1,19,1101122x x x x x x x f f x x x 解 当x<0时,-x>0,()()() ().)(22x f x x x x x f -=+-=-+--=-∴ 而当x>0时,-x<0,()()()()x f x x x x x f -=-=-+-=-∴22 ()()()()().,,00,为奇函数故都有对任意x f x f x f x =-+∞∞-∈∴ 【例3】2002.北京文三(22)已知f(x)是定义在R 上的不恒为零的函数,且对于任意的a 、b R ∈都满足:()()().a bf b af b a f +=? (1) 求f(0)、f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论. 解(1)()()()()()()=?==?+?=?=111.00000000f f f f f f ()()1111f f ?+? ()f f ∴=,12(1)=0. (2)f(x)是奇函数.证明如下: ()()()[]()()()()().01.01,1211111=-∴=--=----=-?-=f f f f f f f 而 又 ()()()()()().,11是奇函数x f x f xf x f x f x f ∴-=-+-=?-=- 2. 利用定义的等价命题来判断 ()()()()()().00是偶函数是奇函数;x f x f x f x f x f x f ?=--?=-+ 或:当()()()()()() ().110是偶函数是奇函数;时, x f x f x f x f x f x f x f ?=-?-=-≠

【金识源】2014年秋高中物理 2.6 伽利略对自由落体运动的研究教案 新人教版必修1

2.6:伽利略对自由落体运动的研究 教学设计: 再现亚里士多德和伽利略对自由落体运动的不同认识,通过讨论、交流,让学生了解并学习伽利略研究自由落体运动的科学思维方法和巧妙的实验构思,从而体会“观察现象→实验探索→提出问题→讨论问题→解决问题”的科学探索方式。 在研究自由落体运动的过程中我们还要介绍归谬法,也是理论推导的一种重要方法,导学中重要的是研究解决问题的方法而不是知识本身,知识的结论当然重要,但更重要的是如何获取知识,中学学习的一个非常重要的方面就是如何获取知识、处理知识. 三维目标: 知识与技能: 通过历史回顾,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。 过程与方法: 了解伽利略的实验研究过程,认识伽利略有关实验的科学思想和方法,培养学生探求知识的能力 情感态度与价值观: 从科学研究过程中体验探索自然规律的艰辛和喜悦,培养敢于坚持真理,勇于创新的科学精神和实事求是的科学态度,逐步帮助学生树立起辩证唯物主义的认识论。 教学重点及其教学策略: 重点:让学生了解抽象思维、数学推导和科学实验相结合的科学方法。 教学重点 了解探索过程,明确探索的步骤,同时了解实验及科学的思维方法在探究中的重要作用,从中提炼自己的学习方法. 教学难点 “观念一思考一推理一猜想一验证”是本节的重点思路,也是培养良好思维习惯的重要参考. 教学方法: 学、交、导、练、悟 教学过程 一、绵延两千年的错误 亚里士多智的观点:物体越重,下落越快. 公元前,人们对物体下落的研究很少,凭着观察认为重的物体比轻的物体下落得快.当时,著名的思想家亚里士多德(Aristotle ,前384一前322)经过了观察和总结认为“物体下落的速度与重力成正比”.这一观点正好应和了人们潜意识里的想法,同时,它又是伟大的亚里士多德提出的论断,人们深信不疑.从那以后,人们判断物体下落的快慢.甚至给孩子们上课时一直坚持这一观点,这一观点一直延续了2 000多年,从没有人对它提出异议. 二,逻辑的力量 16世纪末,意大利比萨大学的青年学者佃利略(GalileoGalilei ,1564—1642)对亚里士多德的论断表示了怀疑.后来,他在1638 年出版的《两种新科学的对话,一书中对此作出了

2高一数学函数的奇偶性(1对1)

师:什么是函数的奇偶性呢? 生:回答 师:我们在函数奇偶性的知识点上重点考察的题型有哪些呢? 生:回答 师:我们通过今天的学习一起来回顾一下函数奇偶性的重点题目。 一、函数奇偶性定义 1、图形描述: 函数()f x 的图像关于y 轴对称?()f x 为偶函数; 函数()f x 的图像关于原点轴对称?()f x 为奇函数 定量描述 一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,则称()f x 为偶函数;如果都有()()--f x f x =,则称()f x 为奇函数;如果()()f x f x -= 与 函数的奇偶性

()()--f x f x =同时成立,那么函数()f x 既是奇函数又是偶函数;如果()()f x f x -=与()()--f x f x =都不能成立,那么函数()f x 既不是奇函数又不是偶函数,称为非奇非偶函 数。 如果函数()f x 是奇函数或偶函数,则称函数()y f x =具有奇偶性。 特别提醒: 1、函数具有奇偶性的必要条件是:函数的定义域在数轴上所表示的区间关于原点对称。换言之,若所给函数的定义域不关于原点对称,则这个函数一定不具备奇偶性。2、用函数奇偶性的定义判断函数是否具有奇偶性的一般步骤:(1)考察函数的定义域是否关于原点对称。若不对称,可直接判定该函数不具有奇偶性;若对称,则进入第二步;(2)判断 ()()f x f x -=与()()f x f x -=-这两个等式的成立情况,根据定义来判定该函数的奇偶 性。 二、函数具有奇偶性的几个结论 1、()y f x =是偶函数?()y f x =的图像关于y 轴对称;()y f x =是奇函数? ()y f x =的图像关于原点对称。 2、奇函数()f x 在0x =有定义,必有()00f =。 3、偶函数在定义域内关于原点对称的两个区间上单调性相反;奇函数在定义域内关于原点对称的两个区间上单调性相同。 4、()(),f x g x 是定义域为12,D D 且1 2D D 要关于原点对称,那么就有以下结论: 奇±奇=奇 偶±偶=偶 奇?奇=偶 偶?偶=偶 奇?偶=奇 5、复合函数的奇偶性特点是:“内偶则偶,内奇同外”。 6、多项整式函数1 10()n n n n P x a x a x a --=++ +的奇偶性 多项式函数()P x 是奇函数?()P x 的偶次项的系数和常数项全为零; 多项式函数()P x 是偶函数?()P x 的奇次项的系数全为零。 (20-40分钟) 类型一 函数奇偶性的判断 例1:判断下列函数是否具有奇偶性: (1)f (x )=2x 4+3x 2 ; (2)f (x )=1x +x ; 练习1:判断下列函数的奇偶性: (1)f (x )=x 2 +1; 考点

(完整版)函数奇偶性知识点和经典题型归纳

函数奇偶性 知识梳理 1. 奇函数、偶函数的定义 (1)奇函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=-, 则这个函数叫奇函数. (2)偶函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=, 则这个函数叫做偶函数. (3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性. (4)非奇非偶函数:无奇偶性的函数是非奇非偶函数. 注意:(1)奇函数若在0x =时有定义,则(0)0f =. (2)若()0f x =且()f x 的定义域关于原点对称,则()f x 既是奇函数又是偶函数. 2.奇(偶)函数的基本性质 (1)对称性:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)单调性:奇函数在其对称区间上的单调性相同,偶函数在其对称区间上的单调性相反. 3. 判断函数奇偶性的方法 (1)图像法 (2)定义法 ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f(-x)与f(x)的关系; ○ 3 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例题精讲 【例1】若函数2()f x ax bx =+是偶函数,求b 的值. 解:∵函数 f (x )=ax 2+bx 是偶函数, ∴f (-x )=f (x ).∴ax 2+bx= ax 2-bx. ∴2bx=0. ∴b =0. 【例3】已知函数21()f x x =在y 轴左边的图象如下图所示,画出它右边的图象. 题型一 判断函数的奇偶性 【例4】判断下列函数的奇偶性. (1)2()||(1)f x x x =+; (2)1()f x x x =;

最新函数的奇偶性的经典总结

x x x f 1)(+ =1 )(2+= x x x f x x f 1)(= 函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴ x x x f +=2)(,(2) x x x f -=3)( (3) ()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。

长方体模型在立体几何中的应用

长方体模型在立体几何中的应用 江苏省太仓高级中学 陆红力 立体几何中学生最易掌握的简单几何体是长方体和正方体,其简单的几何性质和直观的几何构造已为广大高中生所熟悉,在长方体中适当添加辅助线,不仅可以构建各种线线关系、线面关系、面面关系,还可以割出像三棱锥、四棱锥、直三棱柱、长方体等,所以在遇到某些点、线、面及空间角和距离的问题时,若能联想并巧妙合理地构造出相关的长方体并加以解决,则能使很多复杂的问题变得更易理解,从而起到事半功倍的效果。 一 构造长方体 判断位置关系 例1 在空间,下列命题正确的是 (1)如果直线a ,b 分别与直线l 平行,那么a //b . (2)如果直线a 与平面β内的一条直线b 平行,那么a //β. (3)如果直线a 与平面β内的两条直线b ,c 都垂直,那么a ⊥β. (4)如果平面β内的一条直线a ⊥平面γ,那么β⊥γ. 说明:如图1,以长方形为模型,使得,,AD a BC b ==平面AC 为β,就可否定(2);再使1,,,AB a AD b BC c ===就可否定(3);所以正确为(1)、(4),因为(1)为平行线公理,(4)为面面垂直判定定理。 例2 已知 m ,l 是直线,α,β是平面,给出下列命题: (1) 若l 垂直α内的两条相交直线,则l α⊥. (2) 若//l α,则l 平行于α内的所有直线. (3) 若,,m l αβ??且,l m ⊥则αβ⊥. (4) 若,l β?且,l α⊥则αβ⊥. (5) 若,,m l αβ??且//αβ,则//m l . 其中正确的是 ,(请将正确命题的序号填上) 说明:如图2,在长方体1111ABCD A B C D -中,选1l AB =,平面1DC β=,但1AB 不平行1DD ,易否定(2);选平面1AC α=,平面1,,,AC AB m AD l β===,否定(3);选平面AC α=,平面1111,,,AC AB m B C l β===,否定(5) ;因为(1)(4)分别为线面垂直、面面垂直判定定理,所以选(1)(4).

高一数学函数奇偶性练习题及答案解析

高一数学函数奇偶性练习题及答案解析 数学函数奇偶性练习题及答案解析 1.下列命题中,真命题是() A.函数y=1x是奇函数,且在定义域内为减函数 B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数 C.函数y=x2是偶函数,且在(-3,0)上为减函数 D.函数y=ax2+c(ac≠0)是偶函数,且在(0,2)上为增函数 解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+c(ac≠0)在(0,2)上为减函数,故选C. 2.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为() A.10 B.-10 C.-15 D.15 解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8, f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15. 3.f(x)=x3+1x的图象关于() A.原点对称 B.y轴对称 C.y=x对称 D.y=-x对称 解析:选A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称. 4.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么 a=________.

解析:∵f(x)是[3-a,5]上的奇函数, ∴区间[3-a,5]关于原点对称, ∴3-a=-5,a=8. 答案:8 1.函数f(x)=x的奇偶性为() A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 解析:选D.定义域为{x|x≥0},不关于原点对称. 2.下列函数为偶函数的是() A.f(x)=|x|+x B.f(x)=x2+1x C.f(x)=x2+x D.f(x)=|x|x2 解析:选D.只有D符合偶函数定义. 3.设f(x)是R上的任意函数,则下列叙述正确的是() A.f(x)f(-x)是奇函数 B.f(x)|f(-x)|是奇函数 C.f(x)-f(-x)是偶函数 D.f(x)+f(-x)是偶函数 解析:选D.设F(x)=f(x)f(-x) 则F(-x)=F(x)为偶函数. 设G(x)=f(x)|f(-x)|, 则G(-x)=f(-x)|f(x)|. ∴G(x)与G(-x)关系不定. 设M(x)=f(x)-f(-x),

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

函数的奇偶性与周期性

函数的奇偶性与周期性 1.函数的奇偶性 2.(1)周期函数 对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×) (3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√) (6)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√) (7)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.(×) (8)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (9)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (10)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√) 考点一 判断函数的奇偶性

金识源专版高中历史 专题一 古代中国经济的基本结构和特点 第2课 古代中国的手工业经济学案 人民版必修2

二古代中国的手工业经济 知识导学 1.学习中国古代的手工业,要认识它是在自给自足的自然经济背景下产生并发展起来的。中国传统社会是建立在小农为经营主体的高度分散的自然经济的基础之上的。农户以耕作为主,兼营副业。在中国传统农耕社会是比较普遍的。手工业的生产规模和经营形式,因此受到限制。 2.理解西汉手工业的“工官”制度及其延续,使得技术水准较高的手工业局限于为帝王贵族服务的经营范畴;技术的发明和革新不能服务于社会;新技术难以广泛推行。在“匠户”制度下,工匠没有人身自由,他们的生产积极性和创造能力因此受到限制。 3.掌握纺织业、冶铸业和陶瓷业在中国古代是当时重要的手工业部门,在世界上产生了重要影响。在中国古代,丝绸制品主要为上层社会所消费,劳动人民在纺织品方面的消费受到经济条件的限制。 中国在新石器时代晚期就已经开始使用铜器。商代的青铜器文明高度发达。春秋时期出现铁器,中国生铁和块炼铁大体同时出现。中国古代的冶铁鼓风技术较早就进入了成熟期。 中国原始时代的彩陶就已经表现出相当高的工艺水平。从商代中期到东汉晚期,是从陶到瓷的过渡阶段。我国古代的制瓷业高度发达,并且分布较广,在世界上影响深远。 【基础自测】见练习册 【课堂导学】 一、中国古代的田庄手工业 1.中国传统社会是建立在以小农为经营主体的高度分散的自然经济基础上的。田庄农户以农业为主,兼营副业,是一个相当完备的微型社会。这种生产模式严重限制了手工业的生产经营规模和经营形式。 2.崔寔的《四民月令》反映了汉代田庄里的生产、生活方式。田庄的生产经营活动主要包括粮食作物、蔬菜、果木及染料作物栽培,蚕桑作业,禽畜养殖,药材采集等。 二、“工官”制度的演变 1.从汉武帝时代起,煮盐、冶铁、铸钱、炼铜等行业都收归官办,由政府垄断。由中央许多机构所属各“工官”主办的皇家工场,专门负责制造官家专用和皇帝私用的物品。“工官”的制作工艺水平代表了当时手工业技术水平的顶峰。 2.“工官”制度使得技术水准较高的手工业局限于为帝王贵族服务,技术工艺的传承也是封闭性的。 3.在一定历史时期,工匠被编入专门的户籍,称为“匠户”。其子孙世代承袭,不得脱籍改业。匠户没有人身自由,他们的生产积极性和创造力受到限制。 三、手工业技术的发展 1.纺织业 (1)在新石器时代的遗址中,发现了陶纺轮和骨梭、骨针等器物。这说明早期纺织技术在当时已经萌芽。纺织原料最初用的是麻和葛。 (2)中国是世界上最早养蚕织绸的国家,通过考古发现了距今四五千年的蚕茧和丝织品残件。甲骨文中出现了关于祭祀蚕神的内容,商代有负责蚕商生产的专职官员。据《周礼·考工记》记载,妇女纺织生产称为“妇功”。从事这种劳作的人与王公、士大夫、百工、商旅及农夫并列,称作“国有六职”。 (3)汉代的丝织品经过丝绸之路远销到以罗马为中心的地中海地区,中国因此被称为“丝国”。丝绸之路开通后,丝绸外销的数量激增。 (4)唐代中期以后,随着城市和商品经济的发展,私营纺织作坊兴起,官营纺织业也有相当大的规模。宋代棉花种植和棉纺织技术已经推广到闽粤等地。明代在一些纺织业发达的地区出现了一定规模的自由劳动力市场。 2.冶金技术 (1)新石器时代晚期已出现小件的青铜器。 (2)商代青铜器的出土地点分布相当广泛,西周青铜器大多作为礼制的象征,代表着权力和秩序。商周时代的青铜器铸造达到了很高的水平。 (3)现在已知的中国最早的人工冶炼的铁器,是春秋晚期的遗物。战国中期以后的铁器在广大地域有大量出土。 (4)汉武帝时推行铁业官营制度。汉代冶铁开始使用煤炭做燃料,竖炉冶铁由起初的自然通风演进到人力皮囊鼓风,然后又有畜力马排鼓风;东汉南阳太守杜诗创造出借用水力作为动力的鼓风装置。 (5)陕西临潼秦始皇陵出土的青铜剑和青铜镞,表面都有一层含铬氧化膜。这是一种相当先进的防锈蚀技术,但没有把生产工艺记录下来,这与中国古代手工业的管理制度有关。 3.陶瓷业 (1)中国陶瓷业有悠久的历史,是世界上最早发明陶器的国家。从商代中期到东汉晚期,是陶发展到瓷的过渡阶段。 (2)东汉时期瓷器生产技术达到成熟阶段。中国古代独特的美术陶制品“唐三彩”曾经风靡一时。唐代诗人陆龟蒙以“九秋风露越窑开,夺得千峰翠色来”的名句赞美青瓷。 (3)唐代形成南青北白两大系统。唐代晚期,长沙铜官窑首创釉下彩绘,并且把绘画和诗文用于瓷器装饰。唐宋时期,涌现出河北定窑、河南钧窑、江西的景德镇窑、浙江龙泉窑、陕西耀州窑等一批名窑。 (4)清代康熙年间,粉彩瓷器工艺的发明进一步推进了生产技术的提高。 疑难突破 1.封建社会手工业经营的基本形态及消长变化 剖析:(1)基本形态 ①官营手工业:由政府直接经营,进行集中的大作坊生产,主要生产武器等军用品和供官府、贵族消费的生活用品。 ②民营手工业:由民间私人经营,主要生产供民间消费的产品。 ③家庭手工业:是农户的一种副业,产品主要供自己消费和交纳赋税,剩余部分才拿到市场上出售。 (2)消长变化 ①官营手工业生产范围广泛,规模庞大,分工细致,直到明代前期一直占据着古代手工业的主导地位。但其原料由政府提供,产品由政府调拨,不计成本,不入市场,缺乏竞争;而且它采取强制劳动和超经济剥削手段,常常引起工匠的反抗,导致产品质量低劣,弊端丛生。所以,官营手工业在发展的过程中日益萎缩。

奇偶性的典型例题

函数的奇偶性 一、关于函数的奇偶性的定义 定义说明:对于函数)(x f 的定义域内任意一个x : ⑴)()(x f x f =- ?)(x f 是偶函数; ⑵)()(x f x f -=-?)(x f 奇函数; 函数的定义域关于原点对称是函数为奇(偶)函数的必要不充分条件。 二、函数的奇偶性的几个性质 ①、对称性:奇(偶)函数的定义域关于原点对称; ②、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③、可逆性: )()(x f x f =- ?)(x f 是偶函数; )()(x f x f -=-?)(x f 奇函数; ④、等价性:)()(x f x f =-?0)()(=--x f x f )()(x f x f -=-?0)()(=+-x f x f ⑤、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称; ⑥、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、 非奇非偶函数。 三、函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①、定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 ⑴、x x x f 2)(3+= ⑵、2 432)(x x x f += ⑶、1 )(2 3--=x x x x f ⑷、2)(x x f = []2,1-∈x

⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-= 解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数 注:教材中的解答过程中对定义域的判断忽略了。 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 .)(),()() ()()()(,0,0) ()()(,0,0) (0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-== 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的几个命题的判定。 命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分 条件。 此命题正确。如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。 命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。 此命题错误。一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如f(x)=x(x ∈〔-1,1〕),g(x)=x(x ∈〔-2,2〕),可以看出函数f(x)与g(x)都是定义域上的函数,它们的差只在区间〔-1,1〕上有定义且f(x)-g(x)=0,而在此区间上函数f(x)-g(x)既是奇函数又是偶函数。 命题3 f(x)是任意函数,那么|f(x)|与f(|x|)都是偶函数。 此命题错误。一方面,对于函数|f(x)|=? ??<-≥),0)((),(0)((),(x f x f x f x f 不能保证f(-x)=f(x)或f(-x)=-f(x);另一方面,对于一个任意函数f(x)而言,不能保证它的定义域关于原点对称。如果所给函数的定义域关于原点对称,那么函数f(|x|)是偶函数。 命题4 如果函数f(x)满足:|f(x)|=|f(-x)|,那么函数f(x)是奇函数或偶 函数。

函数的奇偶性的经典总结

x x x f 1)(+=1 )(2+= x x x f x x f 1)(=函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-,0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及 ) ()(x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2)(,(2)x x x f -=3)( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3)(x x f =,x x f sin )(=, (3)常见的奇函数有:2)(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时,) ()(x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时,) ()(x g x f 是偶函数。

高一数学(必修1)专题复习一函数的单调性和奇偶性

高一数学(必修1)专题复习一 函数的单调性和奇偶性 一.基础知识复习 1.函数单调性的定义: 如果函数)(x f 对定义域内的区间I 内的任意21,x x ,当21x x <时都有 ()()21x f x f <,则()x f 在I 内是增函数;当21x x <时都有()()21x f x f >,则()x f 在I 内时减函数. 2.单调性的定义①的等价形式:设[]b a x x ,,21∈,那么()()()x f x x x f x f ?>--02 121在 [],a b 是增函数; ()()()x f x x x f x f ?<--02 121在[],a b 是减函数;()()()12120x x f x f x --(1x ,I x ∈2). ① 比较函数值的大小; ② 可用来解不等式; ③ 求函数的值域或最值等. 4.证明或判断函数单调性的方法:讨论函数单调性必须在其定义域内进行,因此要研究 函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集. (1)用定义. (2)用已知函数的单调性. (3)图象法. (4)如果()f x 在区间I 上是增(减)函数,那么()f x 在I 的任一非空子区间上也是增(减)函数 (5)复合函数的单调性结论:“同增异减” . (6)奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性. (7)在公共定义域内,增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数;增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数. (8)函数)0,0(>>+ =b a x b ax y 在,??-∞+∞ ? ??? 或上单调递增;在 0???? ?? ??? 或上是单调递减. 5.函数的奇偶性的定义:设()y f x =,x A ∈,如果对于任意x A ∈,都有()()f x f x -=-,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有()()f x f x -=,则称函数()y f x =为偶函数. 6.奇偶函数的性质: (1)函数具有奇偶性的必要条件是其定义域关于原点对称. (2)()f x 是偶函数?()f x 的图象关于y 轴对称;()f x 是奇函数?()f x 的图象关于原点对称.(3)()f x 为偶函数()()(||)f x f x f x ?=-=. (4)若奇函数()f x 的定义域包含0,则(0)0f =.

相关主题
文本预览
相关文档 最新文档