当前位置:文档之家› 晶体硅太阳电池的基本原理和制造工艺流程

晶体硅太阳电池的基本原理和制造工艺流程

晶体硅太阳电池的基本原理和制造工艺流程
晶体硅太阳电池的基本原理和制造工艺流程

第一章晶体硅太阳电池的基本原理和制造工艺流程

晶体硅太阳电池已经成为当今光伏工业的主流,随着单晶硅、多晶硅太阳电池工厂的新近投资,这种作用还将持续下去[1]。从1954年Chapin,Fuller和Pearson研制成功硅PN结太阳电池以来,这一利用p-n结光伏效应工作的器件经过半个世纪的改进和演变,发展成为具有多种几何结构和相应的制造流程的一类太阳电池产品。到目前为止,尽管被称为“第二代光伏器件”的薄膜太阳(CdTe、CIS、非晶硅、微晶硅、多晶硅、硅-锗合金)电池也取得了进展,但在短期内仍然无法替代晶体硅太阳电池。

关于太阳电池的基本特性,Hovel已作出了全面的论述[2]。我们按照太阳电池的器件结构、硅p-n 结太阳电池的基本工作原理到一般的制造工艺流程的顺序进行介绍。

1. 晶体硅太阳电池的器件结构

晶体硅太阳电池的基本结构见图1.,它由扩散法在表面形成的浅PN结,正面欧姆接触栅格电极,覆盖于整个背面的欧姆接触电极以及正面减反射膜构成。

图1. 硅PN结太阳电池基本结构图2. PERT太阳电池结构

高效率晶体硅太阳电池则有着更为复杂的结构和制造流程,如钝化发射极太阳电池PESC (passivated emitter solar cell) ,钝化发射极和背面太阳电池PERC (passivated emitter and rear cell),钝化发射结背面点接触太阳电池PERL (passivated emitter, rear locally-diffused) cells,钝化发射极背面全扩散太阳电池PERT (passivated emitter, rear totally-diffused) cells,具有本征层的(a-Si)/ (c-Si)异质结太阳电池(HIT TM电池),倾斜蒸发电极MIS-n+p 太阳电池OECO(obliquely-evaporated-contact),V型机械刻槽埋栅电极太阳电池(Buried Contact Solar Cell with V-grooved surface),背面接触电极太阳电池(Backside Contact Solar Cell)等等。这些高效率晶体硅太阳电池,主要特点是充分考虑到引起光电转换效率损失的因素,在器件结构上进行了仔细的设计。图2.、图3.所示分别为PERT太阳电池、 PERL太阳电池结构。

图3. PERL太阳电池结构图4.丝网印刷电极太阳电池结构

目前商业化生产的大多数晶体硅太阳电池,采用1970年代开发出的丝网印刷电极结构,见图4。这种结构的太阳电池具有制造过程简单,设备产能较高的优点。缺点是采用丝网印刷的正面电极在解决金属—半导体接触电阻和PN 结的光电特性以及遮光问题之间不能令人满意。

激光刻槽埋栅电极太阳电池,见图5,是澳大利亚新南威尔士大学光伏研究中心Martin A. Green 教授及其研究团组,在1980年代将实验室高效晶体硅太阳电池技术低成本应用于商业生产的一个范例。这种太阳电池的优点是正面兼有轻掺杂的受光区域和重掺杂的电极接触区域(激光刻槽),因此,在改善金属—半导体接触电阻时,不必牺牲正面受光区域的PN 结光电特性,同时可以最大限度地减小电极的遮光面积。缺点是设备产能较低。

图3. 激光刻槽埋栅电极太阳电池结构 图4. 丝网印刷选择性发射极示意

丝网印刷选择性发射极太阳电池,在器件结构上与激光刻槽埋栅电极太阳电池相似,在制造工艺上更加简化,电极接触的“重”掺杂区和接收光照的“轻”掺杂区使用丝网印刷磷浆在一次扩散步骤中形成,见图4.。

2.硅PN 结太阳电池的基本工作原理

2.2.1 太阳辐射[3]

太阳发出的辐射能来自核聚变反应。每秒钟约有6×1011kg 的H2转变为He ,净质量损失约为4×103kg ,这一质量损失通过爱因斯坦关系(E =mc 2)转变为4×1012J 的能量。此能量主要作为从紫外到红外和无线电频段(0.2至3μm )的电磁辐射发射出去。太阳的总质量目前约为2×1030kg ,估计有近乎恒定辐射能输出的相当稳定的寿命要超过100亿年。

在日—地平均距离的自由空间内的同样辐射强度定义为太阳常数,其值[4][5]为1353W/m 2。当阳光到达地表时,大气层要使阳光减弱,主要原因是在红外波段的水汽吸收,紫外波段的臭氧层吸收,以及受飞尘和悬浮微粒的散射。大气层对地表处接收到的阳光的影响程度定义为“大气质量”。太阳与天顶夹角的正割(sec θ)称为大气质量,用以度量大气层路程与太阳正当顶时最短路程的相对值。

图5.示出了与太阳光谱辐照度[5](单位波长单位面积的功率)相关的四条曲线。上部的曲线代表地球大气层以外的太阳光谱,是大气质量为零的状态(AM0)。此状态可用5800K 的黑体近似。AM0谱是与人造卫星和宇宙飞船应用相关的光谱。AM1谱代表太阳位于天顶时地表的阳光;入射功率约为925W/m 2。AM2谱是对于θ=60而言的,其入射功率约为691W/m 2。

大气质量1.5的状态(太阳与地平线成45°角)代表地面应用的满意的加权能量平均值。AM1.5情形单位时间单位面积的单位能量光子数[6]示于图6.,图中还一并示出AM0的情形。为了将波长转变成光子能量,我们应用了下述关系

m eV h C

μνν

λ)

(24.1=

=

(1)

AM1.5情形的总入射功率为844 W/m2。

图5. 与太阳光谱相关的四条曲线(引自Thekaekara 的参考文献[5])

图6. 在AM0和AM1.5状态的太阳光谱与光子能量的关系及相关半

导体材料的带隙、理论光电转换效率(引自Henry的参考文献[6])

要进行太阳能发电,还必须了解在不同地点预计全年有多少太阳能。 2.2.2 光谱响应[3]

当波长为λ的单色光入射到太阳电池正面时,光电流和光谱响应(在各波长下每个入射光子所收集的载流子数)可推导如下。在距半导体表面x 处的电子—空穴对产生率示于图8.(a ),表达式可以写成:

])(exp[)](1)[()(),(x R F x G λαλλλαλ--= (2)

图8. (a )对于长波和短波光,电子—空穴对产生率与到半导体表面距离的关系。(b )太阳电池尺寸和少数载流子扩散长度。(c )太阳电池的假设突变掺杂分布。

式中)(λα为吸收系数,)(λF 为单位带宽每cm 2每s 的入射光子数,)(λR 为这些光子的表面反射率[2]。硅的光吸收系数见图9.。

图9. 晶体硅的光吸收系数

在小注入条件下,对p 型半导体中的电子,一维稳态连续性方程为

010

=+

--

dx

dJ q n n G n

n

p p n τ (3)

对n 型半导体中的空穴,为

010

=+--

dx

dJ q p p G p p

n n p τ (4) 电流密度方程为

dx dn qD

E n q J p

p n n +=μ (5)

dx

dp

qD E p q J n n p p +=μ (6)

对于结每侧为恒定掺杂的突变p —n 结太阳电池,在图8.(b )和(c )耗尽区以外没有电场,在有n 型正面和p 型底面的p-n 结的情形,可将方程(2)、(4)、(6)联立解得到接上侧的表达式:

0)exp()1(022=----+p n n p p p x R F dx

p

d D ταα (7)

此方程的一般解为

()())exp(1

)1(2

2

0x L R F L x Bsh L x Ach p p p

p p p n n αατα----

+=- (8)

式中,()

21

p

p p D L τ=,为扩散长度。

有两个边界条件。在表面,有复合速度为p S 的表面复合:

)()

(00n n p n n p

p p S dx

p p d D -=- (9)

在耗尽层边缘,因受耗尽区电场的作用,过剩载流子密度很低:

00≈-n n p p 在j x x =处 (10) 在方程(8)中代入这些边界条件,得到空穴密度为

??????

???

?????-+?

???

??++???? ??-???? ??+?--=---x p j p j p p p p p p p p x p j p p p p p p n n e L x ch L x sh D L S L x ch L x sh D L S e L x x sh L D L S L R F p p j αααατα)/()/()/(1)1(2

20

(11)

最终得到耗尽区边缘的空穴光电流密度为

??????

????????-+?

???

??++???? ??+?--=?

??

??=--j j j

x p j p j p p p p j p j p p p x p p p p p p x n p p e L x ch L x sh D L S L x ch L x sh D L S e L D L S L R F q dx dp qD J αααατα)/()/()/(1)1(2

2

(12)

假定该p-n 结太阳电池的正面区域在寿命、迁移率和掺杂浓度等方面都是均匀的,在给定波长下,这一光电流就可以从电池的正面被收集到。

为了求得从电池底面收集到的电子光电流,要采用方程式(2)、(3)、(5),其边界条件为:

00?-p p n n 在W x x j +=处 (13)

dx

dn D n n S p n

p p n -=-)(0 在H x =处 (14)

式中,W 为耗尽层宽度,H 为整个电池的宽度。

方程(13)说明,在耗尽层边缘,过剩少数载流子密度接近于零,而方程(14)说明,背表面复合在欧姆接触处发生。

引用这些边界条件后,在均匀掺杂p 型底面的电子分布为

[]???

????

???

??

?????? ??--??

??

? ??+???? ?????? ??+???? ??+??????-???? ?????? ??--???

? ??--+---=

------n j n n n n n H n n H n n

n n W x x n j j n n

p p L W x x sh L H ch L H sh D L S e L L H sh e L H ch D L S e L W x x ch W x L R F n n j '

'')(2

20')(exp 1

)1(αααααατα (15) 在耗尽区边缘W x x j +=处被收集到的电子所产生的光电流为

[]

???

????

???

???????? ??+???? ?????? ??+???? ??+??????-???? ?????? ??-

?+---=???? ?

?=--+n n n n n H n n H n n n n n j n n W

x p

n n L H ch L H sh D L S e

L L H sh e L H ch D L S L W x L R F q dx

dn qD J j '''22'

)(exp 1)1(αααααατα (16) 式中'H 为图8.(b )所示的p 型底面中性区。

方程(16)是在假定底面区域在寿命、迁移率和掺杂浓度都是均匀分布的情况下推导出来的。若这些量是距离的函数,就必须应用数值分析。

在耗尽区内也产生一些光电流。该区内的电场通常很高,光生载流子在能够复合之前就受到加速而被扫出耗进区。单位带宽的光电流等于被吸收的光子数。

[]

()[]W x R F q J j dr ααα----=exp 1exp )1( (17)

于是,在给定波长下的总光电流为方程(15)、(16)、(17)之和:

)()()()(λλλλdr n p J J J J ++= (18)

对于从外部观察到的光谱响应,此光谱响应(SR )等于方程(18)除以qF ;对于内部光谱响应,光谱响应等于方程(18)除以qF (1-R )。

)]()()([)]

(1)[(1

)(λλλλλλdr n p J J J R qF SR ++-=

(19)

对于能隙为Eg 的半导体,理想的内部响应是一阶跃函数,在Eg h <ν时等于零,在Eg h >ν时等于1(如图9.(a )的点划线所示)。对于Si n/p 太阳电池,计算得到的逼真的内部光谱响应示于图9.(a ),此光谱响应在高光子能量下大大偏离理想化阶跃函数[2]。此图还示出了三个区域各自对光谱响应的贡献。器件参数为N D =5×1019cm -3,N A =1.5×1016cm -3,τp =0.4μs ,τn =10μs ,x j =0.5μm ,

H =450μm ,S (正面)=104cm/s 和S (背面)=∞。当光子能量低时,由于硅的吸收系数低,在底面区域产生大部分载流子,当光子能量增加到2.5eV 以上,正面区域的载流子产生占优势,超出3.5eV 时,α变得大于106cm -1,光谱响应完全来自正面区域,因为假设S p 很高,在正面区域的表面复合导致与理想光谱响应的很大偏离。当1>>p L α并且1>>j x α时,光谱响应趋近于渐近值(即从方程(12)正面光电流得到的值):

()()()

p j p j p p p p

p L x ch L x sh D L S D S SR ++=

α1 (20)

表面复合速度S p 在光子能量高时对光谱响应尤有显著的影响,对于与图9.(a )有同样参数(只是S p 从102变化到106cm/s )的器件,表面复合速度效应示于图9.(b )。随着S p 的增加,光谱响应剧烈下降。方程(20)还表明,当Sp 给定时,可通过增加扩散长度L p 来改善光谱响应。一般来说,为了增加有用波段的SR 值,应同时增加L p 和L n 并同时降低S p 和S n 。

图9.(a) Si p-n 结太阳电池经计算得到的内部光谱响应,图中示出了三个区域各自的贡献(点划线是对于理想响应而言的)。(b )Si p-n 结太阳电池当有不同的表面复合速度时经计算得到的内部光谱响应(引自Hovel 的参考文献[2])

一旦得知光谱响应,从图5.所示的太阳光谱分布F (λ)得到的总光电流密度为

λλλλλd SR R F q J m

L )()](1[)(0

-=? (21)

式中m λ为对应于半导体带隙的最长波长。

为了得到最大的J L 值,应使m λλ<<0波段的R (λ)值增至最大。

2.2.3 I-V 特性

晶体硅太阳电池的等效电路可以表示成图10.所示的形式。R se 表示来自电极接触、基体材料等欧姆损耗的串联电阻,R sh 表示来自泄漏电流的旁路电阻,R L 表示负载电阻,I D 表示二极管电流,I L 表示光生电流。

图10. 晶体硅太阳电池的等效电路

根据等效电路,可以写出p —n 结太阳电池的I —V 特性方程如下:

sh

se

D L R IR V I I I ++

+= (22) 将p -n 结二极管电流方程

?

??

?

??-=10nkT qV D e I I (23) 代入方程(22)可以得到输出电流为:

sh se

nkT IR V q L R IR V e I I I se +-???

? ??--=+1)

(0 (24)

式中q 为电子电量, k 为波尔兹曼常数,T 为绝对温度,n 为二极管质量因子。对于实际的太阳电

池,二极管正向电流的数值由中性区的扩散电流和耗尽区内的复合电流组成。

当复合电流占优势时,因子n =2,当扩散电流占优势时,n =1,当两种电流可以比拟时,n 介于1到2之间。

当R sh 足够大,并联电阻引起的旁路电流可以忽略不记时。输出功率可以表示为:

??

????-????

??+-==se L IR I I I q nkT I IV P 1ln 0 (25) 图11所示为丝网印刷电极晶体硅太阳电池典型的I —V 曲线和P —V 曲线。短路电流I sc 表示太阳

电池输出端短路情况下能够输出的电流,开路电压V oc 表示输出端负载电阻无穷大—即输出端开路状况下的输出电压,最大功率P m 表示输出的最大功率,V pm 和I pm 分别表示与最大功率点对应的输出电压和输出电流。填充因子FF 定义为

oc

sc pm pm V I V I FF ≡

(26)

光电转换效率定义为

in

oc

sc in m P V I FF P P Eff ?=

=

(27) 式中P in 为输入太阳电池的光功率。要获得最高的转换效率,应使FF 、I sc 和V oc 都最大。提高FF

和V oc 的途径是减小复合电流;改善电极欧姆接触,减小串联电阻R se ;提高并联电阻,减小旁路漏电

流。提高I sc的途径是提高太阳电池对阳光的吸收效率,提高非平衡少数载流子寿命,减小复合电流损失。

图11. 实际测量的丝网印刷电极晶体硅太阳电池典型I—V曲线和P—V曲线。

3. 晶体硅太阳电池的制造工艺流程

印刷电极晶体硅太阳电池的制造工艺流程如图12.所示。大体上可以划分为硅材料制造和硅晶体生长、硅片制造、太阳电池片制造、组件封装等4部分。

图12. 印刷电极晶体硅太阳电池的制造工艺流程

参考文献

[1]

Martin A. Green ,Present and Future of Crystalline Silicon Solar Cells , Technical Digest of the International PVSEC-14, Bangkok, Thailand, 2004 PL-4 [2]

H. J. Hovel, Solar Cells, in R. K. Willardson and A. C. Beer, Eds., Semiconductors and Semimetals. Vol. 11. Academic, New York, 1975: “Photovoltaic Materials and Devices for Terrestrial Applications.” IEEE Tech. Dig. Int. Electron Device Meet.,1979. p. 3. [3]

施敏. 著,黄振岗 译,半导体器件物理,电子工业出版社,1987年12月第一版。 [4]

C. E. Backus, Ed., Solar Cells, IEEE Press, New York, 1976. [5]

M. P. Thekaekara, “Date on Incident Solar Energy.” Suppl. Proc. 20th Annu. Meet. Inst. Environ. Sci., 1974. p.21. [6]

C.H.Henry, “Limiting Efficiency of Ideal Single and Multiple Energy Gap Terrestrial Solar Cells,” J. Appl. Phvs.51 4494 (1980)

非晶硅薄膜太阳能电池的优点

非晶硅薄膜太阳能电池的优点: 2009-01-13 20:29 非晶硅太阳能电池之所以受到人们的关注和重视,是因为它具有如下诸多的优点: 1.非晶硅具有较高的光吸收系数.特别是在0.3-0.75um 的可见光波段,它的吸收系 数比单晶硅要高出一个数量级.因而它比单晶硅对太阳能辐射的吸收率要高40倍左右, 用很薄的非晶硅膜(约1um厚)就能吸收90%有用的太阳能.这是非晶硅材料最重要的特点,也是它能够成为低价格太阳能电池的最主要因素. 2. 非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5-2.0 eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高. 3.制备非晶硅的工艺和设备简单,淀积温度低,时间短,适于大批生产.制作单晶硅电池一般需要1000度以上的高温,而非晶硅电池的制作仅需200度左右. 4.由于非晶硅没有晶体硅所需要的周期性原子排列,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题.因而它几乎可以淀积在任何衬底上,包括廉价的玻璃衬底,并且易于实现大面积化. 5.制备非晶硅太阳能电池能耗少,约100千瓦小时,能耗的回收年数比单晶硅电池短很多:

中国电子报:薄膜技术日趋成熟非晶硅电池主导市场 来源:中国电子报发稿时间: 2009-02-10 15:52 薄膜电池技术具有提供最低的每瓦组件成本的优势,将有望成为第一个达到电网等价点的太阳能技术。由于原材料短缺,在单晶硅和多晶硅太阳能电池的发展速度受到限制的情况下,新型薄膜太阳能电池发展尤为迅速。有资料显示,美国薄膜电池的产量已经超过了多晶硅和单晶硅电池的产量。薄膜技术会越来越成熟,在未来的市场份额中将大比例提升。据行业分析公司NanoMarkets预测,薄膜太阳能电池2015年的发电量将达到26GW,销售额将超过200亿美元,太阳能电池发电量的一半以上将来自薄膜太阳能电池。预计在未来薄膜电池市场中非晶硅(a-Si)、碲化镉(CdTe)、铜铟镓硒(CIGS)三种电池将分别占到薄膜光伏市场的60%、20%和20%。 非晶硅/微晶硅电池是产业化方向沉积设备至关重要

非晶硅太阳能电池研究毕业论文

非晶硅太阳能电池 赵准 (吉首大学物理与机电工程学院,湖南吉首 416000) 摘要:随着煤炭、石油等现有能源的频频告急和生态环境的恶化.使得人类不得不尽快寻找新的清洁能源和可再生资源。其中包括水能、风能和太阳能,而太阳能以其储量巨大、安全、清洁等优势使其必将成为21世纪的最主要能源之一。太阳是一个巨大的能源,其辐射出来的功率约为其中有被地球截取,这部分能量约有的能量闯过大气层到达地面,在正对太阳的每一平方米地球表面上能接受到1kw左右的能量。 目前分为光热发电和光伏发电两种形式。太阳能热发电是利用聚光集热器把太阳能聚集起来,将一定的工质加热到较高的温度(通常为几百摄氏度到上千摄氏度),然后通过常规的热机动发电机发电或通过其他发电技术将其转换成电能。光伏发电是利用界面的而将光能直接转变为电能的一种技术。目前光—电转换器有两种:一种是光—伽伐尼电池,另一种是光伏效应。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件,将光伏组件串联起来再配合上功率控制器等部件就形成了光伏发电装置。因为光伏发电规模大小随意、能独立发电、建设时间短、维护起来也简单.所以从70年代开始光伏发电技术得到迅速发展,日本、德国、美国都大力发展光伏产业,他们走在了世界的前列,我国在光伏研究和产业方面也奋起直追,现在以每年20%的速度迅速发展。 关键词:光伏发电;太阳能电池;硅基太阳能电池;非晶硅太阳能电池

1.引言 1976年卡尔松和路昂斯基报告了无定形硅(简称a一Si)薄膜太阳电他的诞生。当时、面积样品的光电转换效率为2.4%。时隔20多年,a一Si太阳电池现在已发展成为最实用廉价的太阳电池品种之一。非晶硅科技已转化为一个大规模的产业,世界上总组件生产能力每年在50MW以上,组件及相关产品销售额在10亿美元以上。应用范围小到手表、计算器电源大到10Mw级的独立电站。涉及诸多品种的电子消费品、照明和家用电源、农牧业抽水、广播通讯台站电源及中小型联网电站等。a一Si太阳电池成了光伏能源中的一支生力军,对整个洁净可再生能源发展起了巨大的推动作用。非晶硅太阳电他的诞生、发展过程是生动、复杂和曲折的,全面总结其中的经验教训对于进一步推动薄膜非晶硅太阳电池领域的科技进步和相关高新技术产业的发展有着重要意义。况且,由于从非晶硅材料及其太阳电池研究到有关新兴产业的发展是科学技术转化为生产力的典型事例,其中的规律性对其它新兴科技领域和相关产业的发展也会有有益的启示。本文将追述非晶硅太阳电他的诞生、发展过程,简要评述其中的关键之点,指出进一步发展的方向。 2.太阳能电池概述 .太阳能电池原理 太阳能电池是通过光电效应或者光化学效应把光能转化成电能的装置。太阳能电池以光电效应工作的结晶体太阳能电池和薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。太阳能电池工作原理的基础是半导体PN结的光生伏特效应。所谓光生伏特效应就是当物体受到光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。 为了理解太阳能电池的运做,我们需要考虑材料的属性并且同时考虑太阳光的属性。太阳能电池包括两种类型材料,通常意义上的P型硅和N型硅。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体掺杂了能俘获电子的硼、铝、镓、铟等杂质元素,那么就构成P型半导体。如果在硅晶体面中掺入能够释放电子的磷、砷、锑等杂质元素,那么就构成了N型半导体。若把这两种半导体结合在一起,由于电子和空穴的扩散,在交接面处便会形成PN结,并在结的两边形成内建电场。太阳光照在半导体 p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n 区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应,也是太阳能电池的工作原理。 太阳能电池种类 太阳能电池的种类有很多,按材料来分,有硅基太阳能电池(单晶,多晶,非晶),化合物半导体太阳能电池(砷化镓(GaAs),磷化铟(InP),碲化镉(CdTe), 铜铟镓硒(CIGS)),有机聚合物太阳能电池(酞青,聚乙炔),染料敏化太阳能电池,纳米晶太阳能电池;按结构来分,有体结晶型太阳能电池和薄膜太阳能电池。

硅太阳能电池的结构及工作原理

硅太阳能电池的结构及 工作原理 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。?? 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、

日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。由此可以看出,太阳能电池市场前景广阔。 在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。

生产工艺流程图及说明

(1)电解 本项目电解铝生产采用熔盐电解法:其主要生产设备为预焙阳极电解槽,项目设计采用大面六点进电SY350型预焙阳极电解槽。铝电解生产所需的主要原材料为氧化铝、氟化铝和冰晶石,原料按工艺配料比例加入350KA 预焙阳极电解槽中,通入强大的直流电,在945-955℃温度下,将一定量砂状氧化铝及吸附了电解烟气中氟化物的载氟氧化铝原料溶解于电解质中,通过炭素材料电极导入直流电,使熔融状态的电解质中呈离子状态的冰晶石和氧化铝在两极上发生电化学反应,氧化铝不断分解还原出金属铝——在阴极(电解槽的底部)析出液态的金属铝。 电解槽中发生的电化学反应式如下: 2323497094032CO Al C O Al +?-+℃ ℃直流电 在阴极(电解槽的底部)析出液态的金属铝定期用真空抬包抽出送往铸造车间经混合炉除渣后由铸造机浇铸成铝锭。电解过程中析出的O 2同阳极炭素发生反应生成以CO 2为主的阳极气体,这些阳极气体与氟化盐水解产生的含氟废气、粉尘等含氟烟气经电解槽顶部的密闭集气罩收集后送到以Al 2O 3为吸附剂的干法净化系统处理,净化后烟气排入大气。被消耗的阳极定期进行更换,并将残极运回生产厂家进行回收处置。吸附了含氟气体的截氟氧化铝返回电解槽进行电解。 电解槽是在高温、强磁场条件下连续生产作业,项目设计采用大面六点进电SY350型预焙阳极电解槽,是目前我国较先进的生产设备。电解槽为6点下料,交叉工作,整个工艺过程均自动控制。电解槽阳极作业均由电解多功能机组完成。多功能机组的主要功能为更换阳极、吊运出铝抬包出铝、定期提升阳极母线、打壳加覆盖料等其它作业。 (2)氧化铝及氟化盐贮运供料系统 氧化铝及氟化盐贮运系统的主要任务是贮存由外购到厂的氧化铝和氟化盐 ,并按需要及时将其送到电解车间的电解槽上料箱内。

非晶硅太阳能电池研究毕业论文

非晶硅太阳能电池研究毕 业论文 Final approval draft on November 22, 2020

非晶硅太阳能电池 赵准 (吉首大学物理与机电工程学院,湖南吉首 416000) 摘要:随着煤炭、石油等现有能源的频频告急和生态环境的恶化.使得人类不得不尽快寻找新的清洁能源和可再生资源。其中包括水能、风能和太阳能,而太阳能以其储量巨大、安全、清洁等优势使其必将成为21世纪的最主要能源之一。太阳是一个巨大的能源,其辐射出来的功率约为其中有被地球截取,这部分能量约有的能量闯过大气层到达地面,在正对太阳的每一平方米地球表面上能接受到1kw左右的能量。 目前分为光热发电和光伏发电两种形式。太阳能热发电是利用聚光集热器把太阳能聚集起来,将一定的工质加热到较高的温度(通常为几百摄氏度到上千摄氏度),然后通过常规的热机动发电机发电或通过其他发电技术将其转换成电能。光伏发电是利用界面的而将光能直接转变为电能的一种技术。目前光—电转换器有两种:一种是光—伽伐尼电池,另一种是光伏效应。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件,将光伏组件串联起来再配合上功率控制器等部件就形成了光伏发电装置。因为光伏发电规模大小随意、能独立发电、建设时间短、维护起来也简单.所以从70年代开始光伏发电技术得到迅速发展,日本、德国、美国都大力发展光伏产业,他们走在了世界的前列,我国在光伏研究和产业方面也奋起直追,现在以每年20%的速度迅速发展。 关键词:光伏发电;太阳能电池;硅基太阳能电池;非晶硅太阳能电池

1.引言 1976年卡尔松和路昂斯基报告了无定形硅(简称a一Si)薄膜太阳电他的诞生。当时、面积样品的光电转换效率为2.4%。时隔20多年,a一Si太阳电池现在已发展成为最实用廉价的太阳电池品种之一。非晶硅科技已转化为一个大规模的产业,世界上总组件生产能力每年在50MW以上,组件及相关产品销售额在10亿美元以上。应用范围小到手表、计算器电源大到10Mw级的独立电站。涉及诸多品种的电子消费品、照明和家用电源、农牧业抽水、广播通讯台站电源及中小型联网电站等。a一Si太阳电池成了光伏能源中的一支生力军,对整个洁净可再生能源发展起了巨大的推动作用。非晶硅太阳电他的诞生、发展过程是生动、复杂和曲折的,全面总结其中的经验教训对于进一步推动薄膜非晶硅太阳电池领域的科技进步和相关高新技术产业的发展有着重要意义。况且,由于从非晶硅材料及其太阳电池研究到有关新兴产业的发展是科学技术转化为生产力的典型事例,其中的规律性对其它新兴科技领域和相关产业的发展也会有有益的启示。本文将追述非晶硅太阳电他的诞生、发展过程,简要评述其中的关键之点,指出进一步发展的方向。 2.太阳能电池概述 .太阳能电池原理 太阳能电池是通过光电效应或者光化学效应把光能转化成电能的装置。太阳能电池以光电效应工作的结晶体太阳能电池和薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。太阳能电池工作原理的基础是半导体PN结的光生伏特效应。所谓光生伏特效应就是当物体受到光照时,物 体内的电荷分布状态发生变化而产生电动势和电流的一种效应。 为了理解太阳能电池的运做,我们需要考虑材料的属性并且同时考虑太阳光的属性。太阳能电池包括两种类型材料,通常意义上的P型硅和N型硅。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体掺杂了能俘获电子的硼、铝、镓、铟等杂质元素,那么就构成P型半导体。如果在硅晶体面中掺入能够释放电子的磷、砷、锑等杂质元素,那么就构成了N型半导体。若把这两种半导体结合在一起,由于电子和空穴的扩散,在交接面处便会形成PN结,并在结的两边形成内建电场。太阳光照在半导体 p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n 区流向p区,电子由p区流向n 区,接通电路后就形成电流。这就是光电效应,也是太阳能电池的工作原理。 太阳能电池种类 太阳能电池的种类有很多,按材料来分,有硅基太阳能电池(单晶,多晶,非晶),化合物半导体太阳能电池(砷化镓(GaAs),磷化铟(InP),碲化镉(CdTe), 铜铟镓硒(CIGS)),有机聚合物太阳能电池(酞青,聚乙

硅太阳能电池的结构及工作原理

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显

生产工艺流程简述

生产工艺流程简述 清棉工序 1.主要任务:(1)将紧压的原纤维松解成较小的纤维块或纤维束,以利混合、除杂作用的顺利进行;(2)清除原纤维中的大部分杂质、疵点及不宜纺纱的短纤维。(3)将不同批次的纤维进行充分而均匀地混和,以利棉纱质量的稳定。(4)成卷:制成一定重量、长度、厚薄均匀、外形良好的棉纤维卷。 梳棉工序 1.主要任务 (1)分梳:将纤维分解成单纤维状态,改善纤维伸直平行状态。(2)混合:使纤维进一步充分均匀混合。(4)成条:制成符合要求的棉条。 精梳工序 主要任务: 1.除杂:清除纤维中细小的纤维疵点。 2.梳理:进一步分离纤维,排除一定长度以下的短纤维,提高纤维的长度整齐度和伸直度。 3.牵伸:将棉条拉细到一定粗细,并提高纤维平行伸直度。 4.成条:制成符合要求的棉条。

并条工序 主要任务 1.并合:一般用6-8根纤维条进行并合,改善棉条长片段不匀。2.牵伸:把纤维条拉长抽细到规定重量,并进一步提高纤维的伸直平行程度。3.混合:利用并合与牵扯伸,使纤维进一步均匀混合,不同唛头、不同工艺处理的纤维条,在并条机上进行混和。4.成条:做成圈条成型良好的熟条,有规则地盘放在棉条桶内,供后工序使用。 粗纱工序 主要任务: 1.牵伸:将熟条均匀地拉长抽细,并使纤维进一步伸直平行。2.加捻:将牵伸后的须条加以适当的捻回,使纱条具有一定的强力,以利粗纱卷绕和细纱机上的退绕。 细纱工序 主要任务: 1.牵伸:将粗纱拉细到所需细度,使纤维伸直平行。 2.加捻:将须条加以捻回,成为具有一定捻度、一定强力的细纱。3.卷绕:将加捻后的细纱卷绕在筒管上。4.成型:制成一定大小和形状的管纱,便于搬运及后工序加工。

三、非晶硅太阳能电池

三、非晶硅太阳能电池

尽管单晶硅和多晶硅太阳能电池经过多年的努力已取得很大进展,特别是转换效率已超过20%,这些高效率太阳能电池在空间技术中发挥了巨大的作用。但在地面应用方面,由于价格问题的影响,长久以来一直受到限制。 太阳能电力如果要与传统电力进行竞争,其价格必须要不断地降低,而这对单晶硅太阳能电池而言是很难的,只有薄膜电池,特别是下面要介绍的非晶硅太阳能电池最有希望。因而它在整个半导体太阳能电池领域中的地位正在不断上升。从其诞生到现在,全世界以电力换算计太阳能电池的总生产量的约有1/3是非晶硅系太阳能电池,在民用方面其几乎占据了全部份额。

1、非晶态半导体 与晶态半导体材料相比,非晶态半导体材料的原子在空间排列上失去了长程有序性,但其组成原子也不是完全杂乱无章地分布的。由于受到化学键,特别是共价键的束缚,在几个原子的微小范围内,可以看到与晶体非常相似的结构特征。所以,一般将非晶态材料的结构描述为:“长程无序,短程有序”。

晶硅的结构模型很多,左面给出了其中的一种,即连续无规网络模型的示意图。可以看出,在任一原子周围,仍有四个原子与其键合,只是键角和键长发生了变化,因此在较大范围内,非晶硅就不存在原子的周期性排 列。

在非晶硅材料中,还包含有大量的悬挂键、空位等缺陷,因而其有很高的缺陷态密度,它们提供了电子和空穴复合的场所,所以,一般说,非晶硅是不适于做电子器件的。

1975年,研究人员通过辉光放电技术分解 硅烷,得到的非晶硅薄膜中含有一定量的氢,使得许多悬挂键被 氢化,大大降低了材料的缺陷态密度,并且成功 地实现了对非晶硅材料的p型和n 型掺杂。

太阳能电池板及其工作原理

太阳能电池板及其工作原理

太阳能电池板及其工作原理 性能及特点: 太阳能电池分为单晶硅太阳电池(坚固耐用,使用寿命一般可达20年。光电转换效率为15%。)多晶硅太阳电池(其光电转换效率约14.5%,材料制造简便,节约电耗,总的生产成本较低非晶硅太阳电池。)非晶硅太阳能电池(其光电转换率为10%,成本低,重量轻,应用方便。) 太阳能发电原理: 太阳能不象煤和石油一样用交通工具进行运输,而是应用光学原理,通过光的反射和折射进行直接传输,或者将太阳能转换成其它形式的能量进行间接传输。直接传输适用于较短距离。基本上有三种方法:基本上有三种方法:通过反射镜及其它光学元件组合,改变阳光的传播方向,达到用能地点;通过光导纤维,可以将入射在其一端的阳光传输到另一端,传输时光导纤维可任意弯曲;采用表面镀有高反

射涂层的光导管,通过反射可以将阳光导入室内。间接传输适用于各种不同距离。将太阳能转换为热能,通过热管可将太阳能传输到室内;将太阳能转换为氢能或其它载能化学材料,通过车辆或管道等可输送到用能地点;空间电站将太阳能转换为电能,通过微波或激光将电能传输到地面。 太阳能的光电转换是指太阳的辐射能光子通过半导体物质转变为电能的过程,通常叫做"光生伏打效应”,太阳电池就是利用这种效应制成的。 当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子-空穴对。这样,光能就以产生电子-空穴对的形式转变为电能、如果半导体内存在P-n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n 区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P-n结附近形成与势垒电场方向相反光的生电场。光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p区之间的薄层产生所谓光生伏打电动势。若分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。 太阳能发电原理图如下:

非晶硅薄膜在太阳能电池领域的应用

非晶硅薄膜在光伏领域的应用 一、PN结的形成与光伏效应 金刚石结构的硅晶体中,每个硅原子都以它的四个价电子与相邻的四个硅原子构成共价键,共价键中的电子受到原子核的束缚力较小,但是在没有足够的光热条件时,电子仍然无法自由移动,只在晶体中的特定能级上参与公有化运动,对晶体的电学性质几乎没有贡献。在当我们把四价的硅中掺杂入只有三个价电子的B杂质,晶体中就会有一些共价键缺少电子而形成空穴(如下图左图),这种半导体中空穴的数量远远多于未掺杂时原有的电子和空穴的数量,空穴占多数,我们称之为P型半导体。同理,在纯净的硅中掺入有5个价电子的磷元素,这样必然有一个电子多余出来而不能成键,这样就会在晶体中出现很多被排斥在共价键之外的电子,这些新出现的电子数量远超过未掺入杂质时的电子和空穴的数量,电子占多数,我们称之N型半导体。 我们将掺3价杂质而富含空穴的P型半导体和掺5价杂质而富

含自由电子的N型半导体拼接到一起,N型半导体中的自由电子就会因为其所在能级高且浓度大,而很容易扩散到P型半导体中,在两者的表面处,P区带负电,N区相对带正电,于是形成一个内电场,内电场一方面阻止N型中的电子继续扩散到P区,另一方面,协助P区的电子向N区漂移。当扩散运动和漂移达到稳定之后就形成了PN结(如下图右图)。 此时,如果对PN结施加光照,P型和N型半导体中的电子将从共价键中激发,以致产生更多的空穴电子对,由于内电场的作用,P区的空穴和N区的电子都被阻挡无法闯过PN结,只有P区的电子和N区的空穴在扩散到PN结区的时候能够通过内电场漂移过结。这样,PN结中的光生电子空穴对就被分离,这导致N区附近有电子积累,P区附近有空穴积累,加上电极连接外电路,于是产生一个向外可测试的电压。这就是光生伏特效应,简称光伏效应。在光照界面产生的电子空穴对越多,外电路电流越大,界面吸收的光能越多,电流也越大。

晶体硅太阳能电池

晶体硅太阳能电池 专业班级:机械设计制造及其自动化13秋姓名:张正红 学号: 1334001250324 报告时间: 2015年12月

晶体硅太阳能电池 摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。 关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势 前言 “开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。 大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在! 一、晶体硅太阳能电池工作原理 太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。

生产工艺流程图和工艺描述

生产工艺流程图和工艺描述 香肠工艺流程图 辅料验收原料肉验收 原料暂存肥膘解冻 精肉解冻水切丁辅料暂存分割热水漂洗1 漂洗2 加水绞肉 肠衣验收、暂存(处理)灌装、结扎 (包括猪原肠衣和蛋白肠衣) 咸水草、麻绳验收、暂存浸泡漂洗3 冷却 内包装 装箱、入库 出货

香肠加工工艺说明 加工步骤使用设备操作区域加工工艺的描述与说明 原料肉验收、暂存化验室、仓库 按照原料肉验收程序进行,并要求供应商 提供兽药残留达标保证函及兽医检疫检 验证明 辅料验收、暂 存 化验室、仓库按验收规程进行验收肥膘验收、暂 存 化验室、仓库按验收规程进行验收肠衣验收化验室按验收规程进行验收 肠衣处理腊味加工间天然猪肠衣加工前需用洁净加工用水冲洗,人造肠衣灌装前需用洁净加工用水润湿 咸水草、麻绳 验收 化验室按验收规程进行验收暂存仓库 浸泡腊味加工间咸水草、麻绳加工前需用洁净加工用水浸泡使之变软 解冻解冻间肉类解冻分 割间 ≤18℃、18~20h恒温解冻间空气解冻 分割分割台、刀具肉类解冻分 割间 将原料肉筋键、淋巴、脂肪剔除、并分割 成约3cm小肉块 加工步骤使用设备操作区域加工工艺的描述与说明 漂洗2 水池肉类解冻分 割间 加工用水漂洗,将肉的污血冲洗干净 绞肉绞肉机肉类解冻分 割间 12℃以下,采用Φ5mm孔板 肥膘切丁切丁机肉类解冻分 割间 切成0.5cm长的立方

漂洗1 水池肉类解冻分 割间 水温45-60℃,洗去表面游离油脂、碎肉 粒 灌装、结扎灌肠机香肠加工间按产品的不同规格调节肠体长度,处理量800~1200kg/h ,温度≦12℃ 漂洗3 水池香肠加工间水温45~60℃,清洗肠体表面油脂、肉碎 冷却挂肠杆预冷车间12℃下冷却0.5~1小时,中心温度≦25℃ 内包装真空机、电子 秤、热封口机 内包装间 将待包装腊肠去绳后按不同规格称重,装 塑料袋、真空包装封口 装箱、入库扣扎机、电子 秤 外包装间、成 品仓库 将真空包装的产品装彩袋封口,按不同规 格装箱、核重、扣扎放入成品库并挂牌标 识。

非晶硅太阳电池的原理

非晶硅太阳电池的原理 2010-11-1314:54 目录 一、非晶硅薄膜太阳电池基础知识简介 二、非晶硅薄膜太阳电池生产线及制造流程简介 三、国产提供的非晶硅薄膜太阳电池生产线介绍 一、非晶硅薄膜太阳电池基础知识简介 1976年美国RCA实验室的D.E.Conlson和C.R.Wronski在Spear形成和控制p-n结工作的基础上利用光生伏特(PV)效应制成世界上第一个a-Si太阳能电池,揭开了a-Si在光电子器件或PV组件中应用的幄幕。目前a-Si多结太阳能电池的最高光电转换效率己达15%。图1为一般单结的非晶硅太阳能电池结构图,图2为非晶硅太阳能电池 图1非晶硅太阳能电池结构图图2非晶硅柔性太阳能电池 第一层,为普通玻璃,是电池载体。第二层为绒面的TCO。所谓TCO就是透明导电膜,一方面光从它穿过被电池吸收,所以要求它的透过率高;另一方面作为电池的一个电极,所以要求它导电。TCO制备成绒面起到减少反射光的作用。太阳能电池就是以这两层为衬底生长的。太阳能电池的第一层为P层,即窗口层。下面是i层,即太阳能电池的本征层,光生载流子主要在这一层产生。再下面为n 层,起到连接i和背电极的作用。最后是背电极和Al/Ag电极。目前制备背电极通常采用掺铝ZnO(A1),或简称AZO。 由于a-Si(非晶硅)多缺陷的特点,a-Si的p-n结是不稳定的,而且光照时光电导不明显,几乎没有有效的电荷收集。所以,a-Si太阳能电池基本结构不是p-n 结而是p-i-n结。掺硼形成P区,掺磷形成n区,i为非杂质或轻掺杂的本征层(因为非掺杂的a-Si是弱n型)。重掺杂的p、n区在电池内部形成内建势,以收集电

非晶硅太阳能电池测试

薄膜太阳能电池测试: 1外观检测10.1 观察台,显微镜,相机等 2 最大功率确定10.2 符合IEC60904-9太阳能模拟器,符合IEC60904-2标准光伏组件,一个支架,|I-V 测试装置 3 绝缘试验10.3 耐压绝缘测试仪及一个可限流的直流电源 4温度系数的测试10.4符合IEC60904-9BBB等级太阳光模拟器,一个根据IEC60904-2校准的标准太阳能电池,温度测试仪,I-V 测试装置。烤箱(加温设备),支架。 5 电池标称工作温度的测量10.5 辐射计,温度测试仪(环境温度和电池温度),风速风向仪,支架 6 标准测试条件下和标称工作温度下的性能 10.6符合IEC60904-9太阳能模拟器,符合IEC60904-2标准光伏组件,支架,温度测试仪,I-V 测试装置。 7 低辐照度下的性能10.7符合IEC60904-9BBB等级太阳光模拟器,符合IEC60904-10辐照度计,符合IEC60904-2标准光伏组件,支架,温度测试仪,I-V 测试装置。 8 室外曝露试验10.8符合IEC60904-9太阳能模拟器,辐射计,实验架等 9 热斑耐久试验10.9符合IEC60904-9CCB太阳光模拟器,I-V 测试装置,不透明挡板,组件电源供应器,红外热像仪。 10 紫外预处理试验10.10 UV 试验箱,UV辐射计及温度传感器 11 热循环试验10.11 环境实验箱-40°C--85°C,安装和支撑装置,温度测试仪。 12 湿-冻试验10.12 环境试验箱-40°C--85°C,安装和支撑装置,温度测试仪,检测内部 电连续的装置。 13 湿-热试验(双85)10.13 环境试验箱温度85°C 湿度85% 14 引线端强度试验10.14 拉力试验机 15 湿露电流试验10.15 试验水槽,温控水槽,加温系统,喷淋装置,控制柜,表面张力测定仪,电导率仪,程控绝缘耐压测试仪 16 机械负荷试验10.16 机械压力试验机及检测组件短路或漏电装置 17冰雹试验10.17 冷冻箱,冰球存储箱,发射装置,支架 电子天平,速度传感器。 18旁路二极管热性能试验10.18 电源,温度测试仪,烤箱(加温设备) 及测量接线盒旁路二极管电压仪器,监控电流装置。 19光老炼实验10.19 符合IEC60904-9CCB太阳光模拟器,带积分器的标准设备,支架,温度测试仪,电阻负载。

非晶硅太阳电池的原理

非晶硅太阳电池的原理 非晶硅太阳电池是20世纪70年代中期发展起来的一种新型薄膜太阳电池,与其他太阳电池相比,非晶硅电池具有以下突出特点: 1).制作工艺简单,在制备非晶硅薄膜的同时就能制作pin结构。 2).可连续、大面积、自动化批量生产。 3).非晶硅太阳电池的衬底材料可以是玻璃、不锈钢等,因而成本小。 4).可以设计成各种形式,利用集成型结构,可获得更高的输出电压和光电转换效率。 5).薄膜材料是用硅烷SiH4等的辉光放电分解得到的,原材料价格低。 1.非晶硅太阳电池的结构、原理及制备方法 非晶硅太阳电池是以玻璃、不锈钢及特种塑料为衬底的薄膜太阳电池,结构如图1所示。 为减少串联电阻,通常用激光器将TCO膜、非晶硅(A-si)膜和铝(Al)电极膜分别切割成条状,如图2所示。国际上采用的标准条宽约1cm,称为一个子电池,用内部连接的方式将各子电池串连起来,因此集成型电池的输出电流为每个子电池的电流,总输出电压为各个子电池的串联电压。在实际应用中,可根据电流、电压的需要选择电池的结构和面积,制成非晶硅太阳电池。

1.1 工作原理 非晶硅太阳电池的工作原理是基于半导体的光伏效应。当太阳光照射到电池上时,电池吸收光能产生光生电子—空穴对,在电池内建电场Vb的作用下,光生电子和空穴被分离,空穴漂移到P边,电子漂移到N边,形成光生电动势VL, VL 与内建电势Vb相反,当VL = Vb 时,达到平衡; IL = 0, VL达到最大值,称之为开路电压Voc ; 当外电路接通时,则形成最大光电流,称之为短路电流Isc,此时VL= 0;当外电路加入负载时,则维持某一光电压VL和光电流IL。其I--V特性曲线见图3 非晶硅太阳电池的转换效率定义为:

单晶硅、多晶硅、非晶硅、薄膜太阳能电池地工作原理及区别1

单晶硅、多晶硅、非晶硅、薄膜太阳能电池 的工作原理及区别 硅太阳能电池的外形及基本结构如图1。其中基本材料为P型单晶硅,厚度为0.3—0.5mm左右。上表面为N+型区,构成一个PN+结。顶区表面有栅状金属电极,硅片背面为金属底电极。上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。 当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子——空穴对。各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。当光伏电池两端接一负载后,光电池就从P区经负载流至N+区,负载中就有功率输出。 太阳能电池各区对不同波长光的敏感型是不同的。靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5-10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5 %左右。电池基体域

产生的光电流对红外光敏感,占80-90%,是光生电流的主要组成部分。 2.单晶硅太阳能电池 单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。将单晶硅棒切成片,一般片厚约0.3毫米。硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。扩散是在石英管制成的高温扩散炉中进行。这样就在硅片上形成PN结。然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳能电池的单体片就制成了。单体片经过抽查检验,即可按所需要的规格组装成太阳能电池组件(太阳能电池板),用串联和并联的方法构成一定的输出电压和电流,最后用框架和封装材料进行封装。用户根据系统设计,可

晶硅太阳能电池的特点和种类

晶体硅太阳能电池的种类及特点 太阳能电池已经有30多年的发展历史。目前世界各国研制的硅太阳能电池种类繁多,;主要系列有单晶、多晶、非晶硅几种。其中单晶硅太阳能电池占50%,多晶硅电池占20%、非晶占30%。我国光伏发电发展需解决的关键问题。太阳能光伏发电发展的瓶颈是成本高。为此,需加大研发力度,集中在降低成本和提高效率的关键技术上有所突破,主要包括:a)晶体硅电池技术。降低太阳硅材料的制备成本:开发专门用于晶体硅太阳能电池的硅材料,是生产高效和低成本太阳电池的基本条件;同时实现硅材料国产化和提高性能,从产业链的源头,抓好降低成本工作。提高电池/组件转换效率:高效钝化技术,高效陷光技术,选择性发射区,背表面场,细栅或者单面技术,封装材料的最佳折射率等高效封装技术等。光伏技术的发展以薄膜电池为方向,高效率、高稳定性、低成本是光伏电池发展的基本原则。 单晶硅在太阳能的有效利用当中,太阳能光电利用是近些年来发展最快,也是最具活力的研究领域。而硅材料太阳能电池无疑是市场的主体,硅基(多晶硅、单晶硅)太阳能电池占80%以上,每年全世界需消费硅材料3000t左右。生产太阳能电池用单晶硅,虽然利润比较低,但是市场需求量大,供不应求,如果进行规模化生产,其利润仍然很可观。目前,中国拟建和在建的太阳能电池生产线每年将需要680多吨的太阳能电池用多晶硅和单晶硅材料,其中单晶硅400多吨,而且,需求量还以每年15%~20%的增长率快速增长。硅系列太阳能电池中,单晶硅太阳能电池在实验室里最高的转换效率为23%,而规模生产的单晶硅太阳能电池,其效率为15%,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成熟的加工处理工艺基础上的。现在单晶硅的电池工艺已近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%。单晶硅具有完整的金刚石结构。通过掺杂得到n,P型单晶硅,进而制备出p/n结、二极管及晶体管,从而使硅材料有了真正的用途。单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。 多晶硅众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为:(1)可

非晶硅太阳能电池工作原理及进展

非晶硅太阳能电池工作原理及进展.txt生活是过出来的,不是想出来的。放得下的是曾经,放不下的是记忆。无论我在哪里,我离你都只有一转身的距离。本文由yy19880602贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 维普资讯 https://www.doczj.com/doc/499252386.html, 、非晶硅太阳能电池工作原理及进展、/ 徐温元 (开大学电子科学系)南 自196年以来,晶硅基台金作为一种新型的电子材料,7非由于它的优异的光电特性,它在太阳能使电池及其他方面具有广泛的应用前景,而推动着人们对这羹材料特性进行深人研究。近几年国际上从有关这方面的研究工作发展迅速,已形成一个新技术产业部门.非晶硅太阳能电池的转换效率和电弛面积也都有明显的提高和增太.本文综述了非晶硅材料特性,电池工作原理及最近发展.一 、 非晶硅材料特性 移率虺 非晶硅基合金材料包括氢化非晶硅as:—i 了 H、非晶碳化硅aSxH、非晶氮化硅-iC: s1i…N:H、非晶锗硅aSl—i…Ge:等一系列H 犍 材料.类台金均可在较低的温度下(3O)这<0℃以等离子化学气相沉积方法(CVPD)在较广泛的衬底材料(玻璃、属、高温塑料)生如金及上成大面积薄膜.1非晶硅舍金的带隐及悬挂键. 远程无序的.对理想晶态半导体来说,我们已 卷市崖(m ?ePc) 图l非晶态半导体态密宦分布示意图 带隙宽度.非晶硅的带隙宽度约等于17V,.e同.这种不同与非晶硅中含有1%以上的氢0 非晶硅与晶体硅不同之处是其原子排列是晶体硅的带隙宽度为1IV,二者有明显的不.c能用能带理论阐明其导电机理,即电子或空穴有关.再者,在非晶硅中掺人适量的锗(e、若G)可“由”运动于扩展的导带或价带之中,并碳(或氮O,可以形成不同的硅基合金即自地c)N)则具有较高的迁移率,而处于导带和价带之间的非晶锗硅合金禁带态密度为零.对非晶态半导体来说,由于aSl—i…C:Has—i一Gc:非晶碳硅台金H,或非晶氮硅台金asl—i…N:H.原子排列非长程有序,即材料中存在着各种不各种合金的带隙宽度随掺人量(的变化而变.)完整性(键长、角不相等和材料中存在空洞表1列出几种常见合金的带隙宽度.从迁移率如键或E,内分布的带尾的态密度近似以指向等)导致在描述非晶态导电机理时虽也有类似边E,于晶态的导带和价

相关主题
文本预览
相关文档 最新文档