当前位置:文档之家› 静电纺丝制备有序纳米纤维的研究进展

静电纺丝制备有序纳米纤维的研究进展

静电纺丝制备有序纳米纤维的研究进展
静电纺丝制备有序纳米纤维的研究进展

静电纺纳米纤维与药物控制释放

静电纺纳米纤维与药物控制释放 陈义旺博士、教授、博士生导师、洪堡学者。南昌大学化学系主任,理学院副院长。 摘要 将抗肿瘤药物通过静电纺丝的方法装载到纳米纤维中以实现药物的控制释放,载药纳米纤维具有较低的药物突释效应,延长药物释放时间,并且从纳米纤维中缓释的抗肿瘤药物能很好地抑制HepG-2细胞的生长。负载抗肿瘤药物的电纺纳米纤维膜纤维能很好的应用于药物缓释系统,对肿瘤进行定位治疗及癌症手术后的化疗有很好的应用前景。 药物的控制释放一直是药物治疗领域中的重要课题。纳米纤维具有纵横交错的纳米孔结构、尺寸可控性好、比表面积大,是一种良好的新型载药系统;纳米纤维是封装药物的理想材料,它不但能将固体药物以颗粒形式封装入纤维内,还可以将液体药物以双层纤维或链珠状纤维形式进行封装[1,2]。因此,纳米纤维及其复合材料在药物控释系统、组织工程支架、伤口敷料等领域均得到了广泛的应用[3,4]。 研究内容 1.溶液电纺或乳液电纺PEG-PLLA/明胶复合纤维纳米纤维担载亲水/疏水药物控制释放及抗肿 瘤活性研究[5-7]应用。PEG-PLLA纳米纤维作为大环内酯类抗生素药物布雷菲德菌素A(BFA)的控制释放系统,用HPLC测定药物BFA在PBS溶液中的释放曲线,结果表明药物可以长时间的控制释放。用MTT法对含有3%,6%,9%,12%和15%BFA的纳米纤维进行体外抗肿瘤活性测试(人肝癌HepG2细胞),细胞生长抑制率在72h分别为64%,77%,80%,81%和85%。结果证明担载BFA的PEG-PLLA纳米纤维(BFA/PEG-PLLA)的对药物BFA 有很好的控释效果,适合癌症的术后化疗。通过乳液电纺方法成功将亲水药物头孢拉定及疏水的药物五氟尿嘧啶装载入PLGA纤维中,同时装载天然蛋白明胶来提高纤维的细胞粘附能力。装载明胶的纤维具有很好亲水性及力学性能,乳液电纺纤维具有低的药物突释效应,具有低的毒性

静电纺丝技术及其研究进展_杨恩龙

静电纺丝技术及其研究进展*杨恩龙 王善元 李 妮 赵丛涛 (东华大学纺织学院,上海,201620) 摘 要:静电纺丝是目前唯一能够直接、连续制备聚合物纳米纤维的方法。概述了静电纺丝技术及其发展历程,静电纺丝射流的稳态和非稳态的研究成果。介绍了静电纺丝机、静电纺丝技术的新进展及静电纺纳米纤维膜的应用。最后指出静电纺丝的研究方向。 关键词:静电纺丝,纳米纤维,进展 中图分类号:TQ340.6;TS176 文献标识码:A 文章编号:1004-7093(2007)08-0007-05 近几年来,由于纳米材料研究的迅速升温,激起了人们对静电纺丝(又称电纺)进行深入研究的浓厚兴趣。和拉伸、相分离等方法相比,静电纺丝已成为制取纳米纤维最重要、最有效的方法。静电纺纳米纤维的发展历程见表1。 1 静电纺丝技术 1.1 静电纺丝的基本原理 使聚合物溶液或熔体带上高压静电,当电场力足够大时,聚合物液滴可克服表面张力形成喷射细流。带电的聚合物射流拉伸细化,同时弯曲、劈裂,溶剂蒸发或固化,沉积于基布上形成纳米纤维膜。 1.2 静电纺丝的影响因素 静电纺丝的影响因素列于表2。 1.3 静电纺丝的优缺点 静电纺丝法简单、易操作。但是有如下缺点:第一,静电纺丝难以得到彼此分离的纳米纤维长丝或短纤维;第二,目前静电纺丝机的产量很低;第三,静电纺纳米纤维的强度较低。 2 静电纺丝机 2.1 喷丝头与收集板垂直排布的静电纺丝机 喷丝头与收集板垂直排布(立式)的静电纺丝 *国家自然科学基金资助项目(10602014) 收稿日期:2006-10-26 作者简介:杨恩龙,男,1980年生,在读博士研究生。主要从事静电纺纳米纤维的研究工作。 表1 静电纺丝的发展历程 年 份发 展 历 程 1934 Fo r mha ls申请了制备聚合物超细纤维的 静电纺丝装置专利[1] 1966 S i m ons申请了由静电纺丝法制备超薄、 超细非织造膜的专利[2] 1981 L arrondo等对聚乙烯和聚丙烯进行了熔 融静电纺丝的研究[3] 1995 R eneker研究组开始对静电纺丝进行研 究。静电纺丝迅速发展[4] 1999 Fong等对静电纺丝纳米纤维串珠现象及 微观结构作了研究[5~6] 2000 Spivak等首次采用流体动力学描述静电 纺丝过程,并且提出了静电纺丝的工艺 参数。R eneker等研究了静电纺丝过程 的不稳定性[7~8] 2003 全面系统地研究静电纺丝超细纤维微观 形貌的影响因素、表征、过程参数的改 进,以及静电纺丝制取纳米纤维后通过 煅烧制备无机氧化物超细纤维等 2004~2006 开发静电纺纳米纤维的原料。多组分聚 合物的静电纺丝。静电纺丝和其他方法 结合开发新型纳米纤维。捷克利贝雷茨 技术大学与爱勒马可(EL M ARCO)公司 合作生产的纳米纤维纺丝机 纳米蜘蛛 问世 机[9],主要用于静电纺丝的基础研究。 2.2 喷丝头与收集板水平排布的静电纺丝机 喷丝头与收集板水平排布的静电纺丝机(卧

静电纺丝技术及其应用

静电纺丝技术及其应用 师奇松, 于建香, 顾克壮, 马春宝, 刘太奇 * (北京石油化工学院材料科学与工程系,北京102617) 摘 要:静电纺丝是一种新技术,它可制备出直径为纳米级的丝,最小直径可至1纳米。介绍了电纺丝制备原理、设备、影响纤维性能的主要工艺参数,综述了静电纺丝技术应用的最新进展,如制备长度无限可控的微米 纳米管子、超净纳米过滤材料等。关键词:纳米材料;纳米纤维;静电纺丝;应用中图分类号:TS 102.5 文献标识码:A 文章编号:0367-6358(2005)05-313-04 Electrospinning Technique and Its Application SHI Q-i song, YU Jian -xiang, GU Ke -zhuang, MA Chun -bao, LI U Ta-i qi * (De partment of Mate rial Scie nce and Enginee ring ,Be ijing Inst itute o f Petro -c he mic al Tec hnology ,Bei j ing 102617,China) Abstract :Electrospinning is a new technique,which can be used to prepare nanofibers with a diameter down to 1nm.In this paper,the theory of electrospinning technique,the equipments for preparing a electrospun fiber and the technological parameters affecting the properties of electrospun fibers were introduced.The new development of the applications of electrospinning technique,such as the preparation of micro nano tubes with controlled lengths and super -purification filtering materials,was reviewed. Key words :nanometer material;nanofiber;electrospinning;application 收稿日期:2003-11-14;修回日期:2004-01-12 基金项目:北京市组织部优秀人才启动经费(BZ00172002),北京市人事局留学人员科技活动择优资助项目(BR -016002)作者简介:师奇松(1977~),女,讲师,主要从事纳米纤维、相变材料的研究。E -mail:liutaiqi@https://www.doczj.com/doc/479130566.html,. 纳米纤维主要包括两个概念:一是严格意义上的纳米纤维,是指纤维直径小于100nm 的超微细纤维。另一概念是将纳米微粒填充到纤维中,对纤维进行改性,也就是我们通常意义上的纳米纤维。纳米纤维有以下几种制备方法:静电纺丝法、海岛形双组分复合纺丝法、分子喷丝板纺丝法、聚合过程中直接制造直径纳米纤维,以及采用直接纺丝或后整理方法将纳米粉体材料与纤维复合,制备纳米纤维的方法 [1-3] 。 1 静电纺丝技术 由于超细纤维的优良性能,人们对其制造方法进行了广泛的研究,但是用传统的纺丝方法很难纺出直径小于500nm 的纤维。而静电纺丝方法则能够纺出超细的纤维,直径最小可至1nm 。1.1 静电纺丝的成形工艺 静电纺丝技术与传统纺丝技术有着明显的不同,即静电纺丝技术通过静电力作为牵引力来制备超细纤维。图1是静电纺丝装置示意图。如图所示,在静电纺丝工艺过程中,将聚合物熔体或溶液加上几千至几万伏的高压静电,从而在毛细管和接地的接收装置间产生一个强大的电场力。当电场力施加于液体的表面时,将在表面产生电流。相同电荷相斥导致了电场力与液体的表面张力的方向相反。这样,当电场力施加于液体的表面时,将产生一个向外的力,对于一个半球形状的液滴,这个向外的力就与表面张力的方向相反。如果电场力的大小等于高分子溶液或熔体的表面张力时,带电的液滴就悬挂在毛细管的末端并处在平衡状态。随着电场力的增大,在毛细管末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,这就是Taylor 锥。当电场力

静电纺丝技术研究及纳米纤维的应用前景..

静电纺丝技术研究及纳米纤维的应用前景 引言: 术语“电纺”来源于“静电纺丝”。虽然电纺这一术语是20世纪90年代才开始使用,但是其基本思想可以追述到60年前。1934一1944年间,FomalaS[1]申请了一系列的专利,发明了用静电场力来制备聚合物纤维的实验装置。1952年,vonnegut和NeubauerI53)发明了电场离子化技术,得到了粒径(0.lmm)均匀、带电程度高的线流。1955年,Drozin进行了不同液体在高电压下,形成气溶胶的研究。1966年,Simons发明了一种装置,用静电场纺丝法制备出了很轻超薄的无纺织物,他在研究中发现,低浓度溶液纺出的纤维较短且细;高浓度溶液纺出的纤维长且连续[2]。1971年,Baumgarten采用静电纺丝法制备出了直径在0.05u m一1.1um的丙烯酸纤维。自从80年代,特别是近些年,由于纳米技术的兴起,使得静电纺丝技术再度引起了纳米材料研究人员的高度关注。采用静电纺丝技术可以很容易的制备出直径在几百微米到几百纳米甚至几十纳米的高质量纤维。目前为止,己经有近上百种高分子采用静电纺丝技术被纺成纳/微米纤维。这些纳/微米纤维有些己经广泛应用于纳米复合材料、传感器、薄膜制造、过滤装置,以及生物医用材料的加工和制造上。本文立足于静电纺丝技术的研究现状,分别从材料的化学组成、纤维的分布方式和特殊结构形态三个方面进行了阐述。同时,概括并展望了纳米纤维的应用领域与前景。 1静电纺丝的基本原理 在电纺丝过程中,喷射装置中装满了充电的聚合物溶液或熔融液。在外加电场作用下,受表面张力作用而保持在喷嘴处的高分子液滴,在电场诱导下表面聚集电荷,受到一个与表面张力方向相反的电场力。当电场逐渐增强时,喷嘴处的液滴由球状被拉长为锥状,形成所谓的“泰勒锥”(Taylorcone)[3-6]。而当电场强度增加至一个临界值时,电场力就会液体的表面张力,从“泰勒锥”中喷出。喷射流在高电场的作用下发生震荡而不稳,产生频率极高的不规则性螺旋运动。

探讨静电纺丝技术的研究进展

探讨静电纺丝技术的研究进展 摘要:静电纺丝工艺是目前能够直接、连续制备聚合物纳米纤维的方法,具有 工艺简单、操作方便、制造速度快等优点,在医学和环保等领域有广泛应用。介 绍了近年来静电纺丝技术及其应用的研究进展,对静电纺丝的原理、影响因素等 方面进行了综述,对静电纺丝技术在未来的应用提出展望。 关键词:静电纺丝;纳米纤维;进展 引言 纳米纤维严格意义上是指纤维直径小于100nm的超微细纤维。它具有比表面 积大、孔隙率高等特点,因而可广泛应用于高效过滤材料、生物材料、高精密仪器、防护材料、纳米复合材料等领域。20世纪90年代纳米技术研究的升温,使 纳米纤维的制备迅速成为研究热点。静电纺制备聚合物纳米纤维具有设备简单、 操作容易等特点,是目前为止制备聚合物连续纳米纤维最重要的方法之一。 1静电纺丝 静电纺丝设备的简图如图1所示,主要由3部分组成:高压电源、喷丝头和 纤维收集装置。一般采用直流电源供应高压电,而不是交流电源。静电纺丝所需 的高压电为 1~30kV。注射器(或者移液管)将溶液或熔体输送到其末端的喷丝 头处。喷丝头是非常细的金属管且装有电极。收集装置或接收板用于收集纳米纤维,通过改变收集装置的几何尺寸与形状,可调整纳米纤维的排列形态。 2静电纺丝技术的原理 早在1882年,Raleigh的研究发现,带电的液滴在电场中不稳定,进入电场之后,由于 电场力的作用,容易劈裂成较小的液滴。Taylor的研究表明,带电的液滴通过喷丝头进入电 场以后,在电场力以及液体表面张力的共同作用下,液滴逐渐被拉长,形成一个锥状体(Taylor锥),并确定其角度为49.3°。 静电纺丝过程中,聚合物溶液或熔体被挤压到喷丝头,由于电场力和表面张力的作用, 在喷丝头处形成Taylor锥,随着纺丝液不断的被推入电场,纺丝液便会从Taylor锥尖端喷出,在电场中受电场力的作用而被继续拉伸,当射流被拉伸到一定程度时,便会克服表面张力, 发生非稳定性弯曲进而被拉伸并分裂成更细的射流,此时射流的比表面积迅速增大而使溶剂 快速挥发,最终在收集装置上被收集并固化形成非织造布状的纤维毡。 3静电纺丝的影响因素 静电纺丝的影响因素主要包括溶液性质(如黏度、浓度、相对分子质量分布、弹性传导率、介电常数、表面张力等),过程条件(如电压、挤出率、喷丝头与接收装置之间的距离、喷丝头直径等)和环境因素(如温度、湿度、气体流速等)。对于这一方面,很多人进行了 研究。 现有的研究结果表明,在静电纺丝过程中,影响纤维性能的主要工艺参数主要有:聚合 物溶液浓度、纺丝电压、固化距离(喷嘴到接丝装置距离)、溶剂挥发性和挤出速度等。 (1)合物溶液浓度 聚合物溶液浓度越高,粘度越大,表面张力越大,而离开喷嘴后液滴分裂能力随表面张 力增大而减弱。通常在其它条件不变时,随着聚合物溶液浓度的增加纤维的直径也增大。 (2)纺丝电压 随着对聚合物溶液施加的电压增大,体系的静电力增大,液滴的分裂能力相应增强,所 得纤维的直径趋于减少。 (3)固化距离 聚合物液滴经喷嘴喷出后,在空气中伴随着溶剂挥发细流中的同时,合物浓缩固化成纤维,最后被接丝装置接受。对于不同的体系,固化距离对纤维直径的影响不同。例如,对于 聚苯乙烯(PS)/四氢呋喃(THF)体系研究表明,改变固化距离,对纤维直径的影响不明显。

静电纺丝制备纳米纤维

静电纺丝制备MWNTs 高度取向的PSF/MWNTs-Epoxy 杂化纳米纤维 刘大伟,李旭,李刚,杨小平 北京化工大学有机/无机复合材料国家重点实验室,北京,100029 CFRP 复合材料在航天航空领域的广泛应用要求其具有良好的强度及韧性[1,2],然而单向纤维增强树脂基复合材料在垂直于纤维的方向力学性能较差,层间强度低,影响了CFRP 的 整体性能。本课题组采用静电纺丝的方法将MWNTs-Epoxy 预分散在纺丝液中[3],制备 PSF/MWNTs-Epoxy 杂化的纳米纤维膜,以碳纤维预浸布包覆的辊筒作为静电纺丝的接收器,通过将预浸料按照不同角度铺放于辊筒上以接收纳米纤维,来控制碳纳米管在复合材料中的取向,最终实现复合材料性能的可设计性。我们考察了MWNTs 环氧化改性效果,研究了不同MWNTs-Epoxy 含量对PSF/MWNTs-Epoxy 杂化纳米纤维膜微观形貌的影响。研究成果可总结为以下两方面:1)利用纯化、混酸化、环氧化等手段制备了MWNTs-Epoxy 。官能化MWNTs-Epoxy 的环氧基团接枝率为24.87%。MWNTs-Epoxy 在静电纺丝液中分散良好,且静电纺丝液的表面张力和电导率随MWNTs-Epoxy 含量的增加而提高。2)随着MWNTs-Epoxy 含量的升高,通过SEM 、TEM 照片可以看出,PSF/MWNTs-Epoxy 杂化纳米纤维的直径逐渐减少,通过取向红外和拉曼谱图研究发现PSF/MWNTs-Epoxy 杂化纳米纤维以及嵌于其内部的MWNTs-Epoxy 的取向度逐渐提高。MWNTs-Epoxy 良好的分散于PSF/MWNTs-Epoxy 杂化纳米纤维轴向位置。 图 1 5wt% MWNTs-Epoxy 含量的PSF/MWNTs-Epoxy 杂化纳米纤维取向表征图 (a )SEM 照片(b )TEM 照片(c )取向红外谱图(d )偏振拉曼谱图 本研究为江苏省自然科学基金(BK2011227)资助 参考文献: [1] Williams JC, Starke Jr EA. Progress in structural materials for aerospacesystems. Acta Metall 2003;51(10):5775–99. [2] Ahmed K, Noor AK, Venneri SL, Donald B, Paul DB, Hopkins MA. Structurestechnology for future aerospace systems. J Comput Struct 2000;74:507–19. [3] Gang Li , Xiaolong Jia , Zhibin Huang , Bo Zhu , Peng Li , Xiaoping Yang , Wuguo Dai. Prescribed morphology and interface correlation of MWNTs-EP/PSF hybridnanofibers reinforced and toughened epoxy matrix, Materials Chemistry and Physics 134 (2012) 958-965 10μm 10μm (a) (b) (c) (d) 10μm

通过静电纺丝技术制备导电高分子纳米纤维【开题报告】

开题报告 应用化学 通过静电纺丝技术制备导电高分子纳米纤维 一、选题的背景与意义 静电纺丝技术是目前制备纳米纤维最重要的基本方法。由于能直接、连续制备聚合物纳米纤维,因而成为国内外的研究热点。利用静电纺丝技术制备导电聚合物纤维是今年来发展起来的一项新的技术,然而由于导电高分子具有不溶,不熔的特点,利用静电纺丝技术制备导电聚合物纤维过程中遇到了许多困难,主要的问题在于:第一,导电聚合物刚性结构的特性使得静电纺丝过程难以进行;第二,大多数关于静电纺丝制备导电聚合物纤维的研究和应用仅仅处于实验室阶段,因此,必须通过更加深入的研究来探索静电纺丝技术制备聚合物纤维的最科学、最有效的方法,这将作为一个刺激,来实现在工业中大规模生产可控、可重复利用的静电纺丝聚合体纤维。 二、研究的基本内容与拟解决的主要问题: 综述利用静电纺丝技术制备导电聚合物纳米纤维的方法及相应的导电聚合物纤维的用途,综合对比各种方法的优缺点。 制备聚2乙烯基吡啶纳米纤维,利用它作为模板制备聚吡咯纳米纤维,尝试新的合成导电聚合物纳米纤维的方法。 三、研究的方法与技术路线: 合成聚2乙烯基吡啶,将2-乙烯基吡啶在引发剂存在聚合,产生聚2-乙烯基吡啶。 将聚2-乙烯基吡啶同氯金酸混合后,通过静电纺丝直接在高压下纺成纳米纤维。 上述纳米纤维在吡咯蒸汽中进行气相聚合,制备成核壳结构的聚吡咯纳米纤维。四、研究的总体安排与进度: 2010.07.08至2010.07.11:翻译文献,熟悉实验流程,设计实验步骤; 2010.07.12至2010.08.10:通过静电纺丝技术制备导电高分子纳米纤维;2010.11.08至2010.12.25:完成文献综述,文献翻译和开题报告; 2011.04.18至2011.05.08:撰写论文,准备答辩; 2011.05.12至2011.05.19:论文答辩。 五、主要参考文献: [1].Ioannis S. Chronakis , Sven Grapenson , Alexandra Jakob . Science Direct

超疏水静电纺丝纳米纤维

超疏水静电纺丝纳米纤维 摘要:这篇文章介绍了最先进的静电纺丝纳米纤维的科技发展,以及它在自清洁簿膜、智能响应材料和其他相关领域的应用。超疏水自清洁,也成为“荷叶效应”,就是利用表面化学结构和拓扑学的正确结合,在表面形成了一个非常大的接触角并且通过重力使水带着表面上的污垢、颗粒以及其他污染物离开表面。本文简单介绍了超疏水自清洁的理论和静电纺丝过程中的基本原则,为了生成超疏水自清洁表面还讨论了静电纺丝过程的各种参数,这些参数可以有效的控制疏水实体的多渗透性结构的粗糙度,静电纺丝在纳米尺寸上的主要原则以及在通过静电纺丝合成一维材料时存在的困难也被完全的隐藏。另外,本文还比较了不同的静电纺丝纳米纤维的超疏水性能以及它们的科技应用。 关键字:超疏水静电纺丝纳米纤维性能应用展望

Superhydrophobic electrospun nanofibers Abstract: This review describes state-of-the-art scientific and technological developments of electrospun nanofibers and their use in self-cleaning membranes, responsive smart materials, and other related applications. Superhydrophobic self-cleaning, also called the lotus effect, utilizes the right combinations of surface chemistry and topology to form a very high contact angle on a surface and drive water droplets away from it, carrying with them dirt, particles, and other contaminants by way of gravity. A brief introduction to the theory of superhydrophobic self-cleaning and the basic principles of the electrospinning process is presented. Also discussed is electrospinning for the purpose of creating superhydrophobic self-cleaning surfaces under a wide variety of parameters that allow effective control of roughness of the porous structure with hydrophobic entities. The main principle of electrospinning at the nanoscale and existing difficulties in synthesis of one-dimensional materials by electrospinning are also covered thoroughly. The results of different electrospun nanofibers are compared to each other in terms of their superhydrophobic properties and their scientific and technological applications. Key words: superhydrophobic; electrospinning; nanofibers; properties; applications; outlook

静电纺丝技术及其应用

静电纺丝技术及其应用 师奇松, 于建香, 顾克壮, 马春宝, 刘太奇 3 (北京石油化工学院材料科学与工程系,北京102617) 摘 要:静电纺丝是一种新技术,它可制备出直径为纳米级的丝,最小直径可至1纳米。介绍了电 纺丝制备原理、设备、影响纤维性能的主要工艺参数,综述了静电纺丝技术应用的最新进展,如制备长度无限可控的微米Π纳米管子、超净纳米过滤材料等。关键词:纳米材料;纳米纤维;静电纺丝;应用中图分类号:TS 102.5 文献标识码:A 文章编号:036726358(2005)052313204 Electrospinning T echnique and Its Application SHI Qi 2s ong , Y U Jian 2xiang , G U K e 2zhuang , MA Chun 2bao , LI U T ai 2qi 3 (Department o f Material Science and Engineering ,Beijing Institute o f Petro 2chemical Technology ,Beijing 102617,China ) Abstract :E lectrospinning is a new technique ,which can be used to prepare nanofibers with a diameter down to 1nm.In this paper ,the theory of electrospinning technique ,the equipments for preparing a electrospun fiber and the technological parameters affecting the properties of electrospun fibers were introduced.The new development of the applications of electrospinning technique ,such as the preparation of micro Πnano tubes with controlled lengths and super 2purification filtering materials ,was reviewed. K ey w ords :nanometer material ;nanofiber ;electrospinning ;application 收稿日期:2003211214;修回日期:2004201212 基金项目:北京市组织部优秀人才启动经费(BZ 00172002),北京市人事局留学人员科技活动择优资助项目(BR 2016002)作者简介:师奇松(1977~),女,讲师,主要从事纳米纤维、相变材料的研究。E 2mail :liutaiqi @https://www.doczj.com/doc/479130566.html,. 纳米纤维主要包括两个概念:一是严格意义上 的纳米纤维,是指纤维直径小于100nm 的超微细纤维。另一概念是将纳米微粒填充到纤维中,对纤维进行改性,也就是我们通常意义上的纳米纤维。纳米纤维有以下几种制备方法:静电纺丝法、海岛形双组分复合纺丝法、分子喷丝板纺丝法、聚合过程中直接制造直径纳米纤维,以及采用直接纺丝或后整理方法将纳米粉体材料与纤维复合,制备纳米纤维的 方法[1-3] 。1 静电纺丝技术 由于超细纤维的优良性能,人们对其制造方法进行了广泛的研究,但是用传统的纺丝方法很难纺出直径小于500nm 的纤维。而静电纺丝方法则能够纺出超细的纤维,直径最小可至1nm 。1.1 静电纺丝的成形工艺 静电纺丝技术与传统纺丝技术有着明显的不 同,即静电纺丝技术通过静电力作为牵引力来制备超细纤维。图1是静电纺丝装置示意图。如图所示,在静电纺丝工艺过程中,将聚合物熔体或溶液加上几千至几万伏的高压静电,从而在毛细管和接地的接收装置间产生一个强大的电场力。当电场力施加于液体的表面时,将在表面产生电流。相同电荷相斥导致了电场力与液体的表面张力的方向相反。这样,当电场力施加于液体的表面时,将产生一个向外的力,对于一个半球形状的液滴,这个向外的力就与表面张力的方向相反。如果电场力的大小等于高分子溶液或熔体的表面张力时,带电的液滴就悬挂在毛细管的末端并处在平衡状态。随着电场力的增大,在毛细管末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,这就是T aylor 锥。当电场力

静电纺丝纳米纤维的制备工艺及其应用

综述与专论 合成纤维工业,2009,32(4):48CH I NA SYNTHETI C FI BER I NDUSTRY 收稿日期:2008 09 17;修改稿收到日期:2009 05 27。作者简介:董晓英(1956 ),教授。从事纳米材料的教学和科研工作。 静电纺丝纳米纤维的制备工艺及其应用 董晓英1 董 鑫 2 (1.江苏技术师范学院,江苏常州 213001;2.慕尼黑大学,德国慕尼黑 80539)摘 要:简述了静电纺丝制备纳米纤维的原理;探讨了静电纺丝电压、流速、接收距离、溶剂浓度等工艺条 件;介绍了同轴静电纺丝制备皮芯结构的超细纤维及中空纤维技术以及静电纺丝纳米纤维毡在生物医药方面的应用。指出静电纺丝纳米纤维材料在生物医用方面具有广阔的应用前景,进一步实现低压纺丝、开发无毒溶剂,控制同轴静电纺丝纳米纤维的释放性能是今后静电纺丝的研发方向。 关键词:静电纺丝 纳米纤维 工艺 生物 医药 应用 中图分类号:TQ 340.64 文献识别码:A 文章编号:1001 0041(2009)04 0048 04 静电纺丝法是一种高速制备纳米纤维的有效方法,其装置简单,成本低廉,供选择的基体材料和所载药物种类众多,可通过改变电压、流速、接 收距离、溶液浓度配比等纺丝工艺控制纤维形貌,从而控制药物的释放。静电纺丝纳米纤维在生物、医药方面有着广泛的应用。1 静电纺丝及其工艺条件 静电纺丝技术最早报道于1934年的美国专利[1] ,发明人For mhals 用静电斥力的推动成功纺出醋酸纤维素纤维,溶剂为丙酮和乙醇。后来,For mha ls 改进了静电纺丝设备,通过多个针头纺丝或复合纺丝 [2] 。 1969年,英国Taylor [3] 研究了强电场作用下 水/油界面的形成。首先,从理论计算上考虑电场、重力和溶液粘度的影响,建立了锥状物模型,即在高压电场下溶液喷出前的形状称为Tay lor 锥。Tay l o r 还根据其模型计算了喷出时的临界锥角为98.6 。 静电纺丝纤维喷出针头后,在空中弯曲回转,最后落在接收器上,给人多股纤维同时喷出的印 象。阿克隆大学的Dosh i 等[4] 假设带电高分子溶液在喷出后互相排斥,克服表面张力而分裂成若干股纤维,落到接收器上形成无纺纤维毡。但是 麻省理工学院的Shin 等[5]和以色列的Yari n [6] 等通过高速成像,只有1股纤维从喷丝口喷出,然后在电场力作用下快速弯曲旋转,给人以很多股纤维的假象。1971年,杜邦公司的B au m garten [7] 研究了纺丝工艺参数对丙烯酸在N,N 二甲基甲酰(D M F)胺溶液中静电纺丝纤维直径的影响。纺 丝工艺参数主要包括喷射距离、溶液粘度、环境气体、流速和电压等。 1.1 电压 足够的电压是形成连续稳定纤维的先决条件。如果电压过小,则产生静电喷射,形成独立的珠状物。随着电压的增加,逐渐形成串珠结构,电压进一步增大,串珠逐渐减少,直至形成连续稳定 的纤维。Deitzel 等[8] 研究了聚氧化乙烯(PEO )/水体系中电压对喷丝口Tay lor 锥表面的影响。结果表明,当电压较小时,Tay lor 锥形成于针头外悬挂液滴的表面;随电压增加,液滴体积逐渐变小,直至液滴和Tay lor 锥相继消失。同时,纤维上串珠的分布密度也随电压增大而增加。因此,一般适宜电压为10~25kV 。1.2 流速 流速是影响静电纺丝纤维形貌的另一重要参数。M ege lski [9] 等研究了静电纺丝流速对聚苯乙烯/四氢呋喃(THF)体系的影响,随着流速增大,纤维直径增加,纤维表面的孔径也增大。同时,流速增大也促进了更明显的串珠结构,其原因是溶剂在到达接受装置前不能完全挥发。目前所采用的流速为1~3mL /h 。1.3 接收距离 接收距离也会在一定程度上影响静电纺丝的 纤维形貌。Jaeger [10] 等研究了PEO /水溶液的静电纺丝行为,随着接收距离由1c m 增大到3.5c m,纤维直径从19 m 下降到9 m 。根据M egel

静电纺丝法制备SrTiO_3多晶微纳米纤维

Vo.l 28 高等学校化学学报No .72007年7月 CHEM I CAL J OURNAL OF CH I NESE UN I VERSI T I E S 1220~1222 静电纺丝法制备SrTi O 3多晶微纳米纤维 周险峰1,2,赵 勇2,曹新宇2,薛燕峰1,许大鹏1,江 雷2,苏文辉1 (1.吉林大学物理学院,长春130012;2.中国科学院化学研究所分子科学中心,北京100080) 摘要 应用静电纺丝法并结合So l g el 技术制备了SrT i O 3微纳米纤维.SE M,TEM 及电子衍射分析结果显示,于900 煅烧获得的纤维直径分布在50~400n m 之间,其典型直径约为280n m.XRD 分析结果表明,纤维由立方结构的S r T i O 3晶粒组成,平均晶粒尺寸为33n m. 关键词 静电纺丝;溶胶 凝胶;钛酸锶(Sr T i O 3);超细纤维 中图分类号 O 614 文献标识码 A 文章编号 0251 0790(2007)07 1220 03 收稿日期:2007 03 19. 基金项目:国家自然科学基金(批准号:30370406)资助. 联系人简介:许大鹏(1960年出生),男,博士,教授,博士生导师,主要从事稀土纳米材料研究.E m ai:l xudp@jlu .edu .cn 钛酸锶(Sr T i O 3)为典型的ABO 3钙钛矿型氧化物,由于具有高介电常数、低介电损耗和热稳定性好等优点,在电子、机械和陶瓷工业领域中已得到广泛应用[1].近年来,Sr T i O 3纳米材料的制备和研究 已引起了人们的极大兴趣,但已有研究主要集中于纳米粉体和纳米薄膜上 [2,3],而具有准一维结构的Sr T i O 3微纳米纤维的制备及研究还未见报道. 作为一种制备微纳米超细纤维重要而简单的方法,静电纺丝技术被应用于无机材料微纳米纤维的制备始于2002年[4],至今人们已制备出20多种无机材料超细纤维[5~7].当前国际上微米/纳米系统的研究热点是纳米材料的可控调变制备及其在纳电子学中的应用,通过制备尺寸、形貌和结构都可控的微米/纳米结构单元,进而研究组装分子电子器件、纳米结构传感器等新型器件.因此,制备具有准一维结构的Sr T i O 3微纳米电子陶瓷纤维,在纳电子学研究方面具有重要的应用价值.本文应用静电纺丝法并结合溶胶 凝胶(So l ge l)技术,制备了Sr T i O 3多晶微纳米纤维. 1 实验部分 1.1 试剂与仪器 乙酸锶[Sr(C H 3C OO )2 1/2H 2O )],分析纯,A lfa A esar 公司;钛酸四丁酯[T i(OC 4H 9)4],化学纯,北京化学试剂公司;聚乙烯吡咯烷酮(P VP), A.R.级,ALDR I C H 公司,平均分子量1300000;无水乙醇(C 2H 5OH )和冰醋酸(C H 3COOH )均为分析纯,北京化学试剂公司. JEOL JS M 6700F 型扫描电子显微镜(SE M );J EOL 100CX 型透射电子显微镜(TE M );R i g aku D /m ax 2500型X 射线衍射仪(XRD);STA 409PC 型差热 热重分析仪(TG DSC ,NETZSC H 公司). 1.2 前驱体溶胶的配制 在搅拌下,将0 54g 乙酸锶缓慢地加入到10mL 质量分数为10%的PVP 乙醇溶液中,再滴入1mL 冰醋酸,然后把0 85g 钛酸四丁酯边搅拌边滴入到上述溶液中,在室温下搅拌2h,得到前驱体溶胶. 1.3 静电纺丝 将前驱体溶胶加入到由玻璃注射器制成的纺丝器中(纺丝喷头内径为0 8mm ),用一根插入前驱体溶胶中的铜丝作阳极,铝箔作阴极,铝箔与水平面成30!角,阳极和阴极之间的垂直距离为15c m,在18kV 电压下静电纺丝,在铝箔上即得到无序排列的复合超细纤维. 1.4 Sr T i O 3微纳米纤维的制备 将从铝箔上取下来的复合纤维放入马弗炉中,以2 /m i n 的速率升温,在600,800和900 下分

静电纺丝技术的工艺原理及应用

静电纺丝技术的工艺原理及应用 静电纺丝技术是目前制备纳米纤维最重要的基本方法。这一技术的核心是使带电荷流体在静电场中流动与变形,最终得到纤维状物质,从而为高分子成为纳米功能材料提供了一种新的加工方法。由于纳米纤维具有许多特性,例如纤维纤度细、比表面积大、孔隙率高,因而具有广泛的应用。 1、静电纺技术 静电纺是一项简单方便、廉价而且对环境无污染的纺丝技术。早在20世纪30年代,Formals A就已经在其专利中报道了利用高压静电纺丝,但是直到近些年,由于对纳米科技研究的迅速升温,激起了人们对这种可制备纳米尺寸纤维的纺丝技术进行深入研究的浓厚兴趣。 1.1 静电纺技术的基本原理 静电纺丝技术(Electrospinning fiber technique)是使带电的高分子溶液(或熔体)在静电场中流动变形,经溶剂蒸发或熔体冷却而固化,从而得到纤维状物质的一种方法。对聚合物纤维电纺过程的图式说明见图1。 静电纺丝机的基本组成主要有3个部分:静电高压电源、液体供给装置、纤维收集装置。静电高压电源根据电流变换方式可以分成DC/DC和AC/DC两种类型,实验中多用IX;/DC电源。液体供给装置是一端带有毛细管的容器(如注射器),其中盛 有高分子溶液或熔体,将一金属线的一端伸进容器中,使液体与高压电发生器的正极相连。纤维收集装置是在毛细管相对端设置的技术收集板,可以是金属类平面(如锡纸)或者是旋转的滚轮等。收集板用导线接地,作为负极,并与高压电源负极相连。另外随着对实验要求的提高,液体流量控制系统也被渐渐的采用,这样可以将液体的流速控制得更准确。电场的大小与毛细管口聚合物溶液的表面张力有关。由于电场的作用,聚合物溶液表面会产生电荷。电荷相互排斥和相反电荷电极对表面电荷的压缩,均会直接产生一种与表面张力相反的力。当电场强度增加时,毛细管口的流体半球表面会被拉成锥形,称为Taylor锥。进一步增加电场强度,是用来克服表面张力的静电排斥力到达一个临界值,此时带电射流从Taylor锥尖喷射出来。带电后的聚合物射流经过不稳定拉伸过程,

静电纺丝制备纳米纤维及其工业化研究进展

静电纺丝制备纳米纤维及其工业化研究进展* 杨大祥,李恩重,郭伟玲,王海斗,徐滨士 (装甲兵工程学院装备再制造技术国防科技重点实验室,北京100072) 摘要 针对静电纺丝技术从实验室走向工业化还存在产率低的问题,重点分析了为提高生产效率而采用的多针头纺丝和无针头纺丝等批量化生产方法,简述了静电纺丝的基本原理和实施方法,介绍了静电纺丝制备聚合物纤维、无机物纤维、同轴及中空纤维的情况和特点。随着对静电纺丝方法、设备、工艺和材料研究的深入,通过对高压静电场分布的控制采用多喷头组合方式和无针滚筒方式将成为产业化制备纳米纤维的有效手段。通过控制高压电场分布利用提高效率后的单孔纺丝方法制备出了长、宽、厚分别为1000mm 、350mm 、1.28mm 的芳纶1313纳米纤维布。最后对静电纺丝工业化规模制备纳米纤维材料进行了展望。 关键词 静电纺丝 纳米纤维 工业化 Research and Industrial Development of Nanofibers Prepared by Electrospinning YANG Daxiang,LI Enzhong,GU O Weiling,WA NG Haidou,XU Binshi (N ational K ey L aborato ry for Remanufacturing ,A cademy of A rmo red For ce Eng ineer ing,Beijing 100072)Abstract A cco rding to the pr oblems that the electro spinning techno lo gy t ransfer f rom the laborat or y to the in -dustria lizatio n,the principle and methods of electro spinning ar e o ut lined,the nanofibers of polymer and ino rg anic ma -terials produced by electr ospinning ,including coax ial and hollo w fibers ar e intr oduced,and then the met ho ds of impr o -ving t he pro ductio n efficiency o f mult-i needles spinning and needless spinning are analyzed.W ith the develo pment o f the met ho d,equipment,technique and mater ials o f electro spinning,both the mult-i needles w ith high -v oltage contro -l ling and the needleless w ith ro ller modes w ill be the mo st effective methods of pr oducing nano fibers thro ugh electr o -spinning.A ramid -1313nano -fiber non -wo ven fabrics with leng th,width and thickenss o f 1000mm,350mm,1.28mm,respect ively have been produced v ia mo dif ied sing le needle electr ospinning method.At last,industr ialized nano fibers produced by electr ospinning go es to pr actice in China is in dir e need and with gr eat pr ospects. Key words elect rospinning ,nanofiber ,industr ializat ion *国家973项目(2007CB607601);解放军总后勤部十二 五预研资助项目 杨大祥:男,1977年生,博士,讲师 E -mail:yang dax iang@hot https://www.doczj.com/doc/479130566.html, 1 静电纺丝简介 静电纺丝是使带电荷的溶液或熔体在静电场中流动或变形,经溶剂蒸发或熔体冷却固化得到纤维状物质的一种过 程,简称电纺。根据被纺材料状态的不同可分为溶液静电纺丝和熔融静电纺丝。静电纺丝技术与传统纺丝技术有着明显的不同,传统的纺丝方法很难纺出直径小于500nm 的纤维,而静电纺丝方法则能够纺出超细的纤维,直径最小可至1nm [1-3]。同时,静电纺丝的装置和原理都比较简单,典型静电纺丝装置的示意图如图1所示,主要由高压电源、计量泵、纺丝液容器、喷丝头、收集器等部件组成。静电纺丝是通过静电力作为牵引力来制备超细纤维。在静电纺丝工艺过程中,通过对纺丝溶液或熔体施加几千至几万伏的高压静电,在喷丝头和接地的纤维收集器间将产生一个强大的电场力。 电场力施加于液体表面时将在纺丝液表面产生电流,根据相同电荷相互排斥的原理,致使电场力与液体表面张力方向相反,产生一个向外的力。如果电场力等于纺丝溶液或熔 体的表面张力,则带电液滴就会悬挂在喷丝头末端并处在平衡状态。随着电场力的增大,在喷丝头末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,这就是T aylor 锥;当电场力超过一个临界值后,它将克服液滴的表面张力形成射流。射流在从喷丝头末端向接收装置运动的过程中会出现加速现象,导致射流在电场中的拉伸,最终在接收装置上形成纳米纤维。 自1934年A.Form hals 报道了其聚合物超细纤维的静电纺丝装置后,静电纺丝的研究进展非常缓慢。直到最近10年,随着纳米材料技术的飞速发展,静电纺丝作为目前所知最有望实现工业化生产连续纳米纤维的有效方法之一,得到科学界和产业界的广泛研究。上百种材料通过静电纺丝已经被制成了纳米纤维,纺丝原料的设计与控制、纺丝工艺的优化、静电纺丝原理和模型建立、纳米纤维的组成、结构和性能分析、纳米纤维在过滤材料、生物医学、结构-功能一体化和高性能复合材料等领域的应用成为前一阶段研究的热点。然而,静电纺丝技术要真正走向实用,必须首先实现静电纺

相关主题
文本预览
相关文档 最新文档