当前位置:文档之家› 速度伺服回路与前馈控制器设计

速度伺服回路与前馈控制器设计

速度伺服回路与前馈控制器设计
速度伺服回路与前馈控制器设计

方向控制回路教案

安岳县职教中心20XX年上期公开课 教案 学科名称:汽车机械基础 课题名称:液压基本回路之方向控制回路授课教师:安岳县职教中心李晓林授课时间:20XX年04月18日 授课地点:2014春11班

【课题名称】方向控制回路 【教学目标】 掌握方向控制回路的工作原理及应用。 【教学重点】 换向回路和锁紧回路的工作原理。 【教学难点】 分析换向回路和锁紧回路。 【教学教具准备】 电脑多媒体 【课时安排】 1节课 【教学流程设计】 复习巩固→新课引入→新课讲解→课堂总结→课后练习【教学过程设计】 一复习巩固 教师:1、液压系统的四大组成部分? 学生:动力、执行、控制、辅助部分。 教师:2、画出三位四通换向阀H、O、M型。 学生:

二导入新课 请同学们观察图片,找出图片中哪些地方运用了液压系统知识。然后请同学们思考登车桥支腿、车载升降平台支架和起重机支腿是如何实现升、降及停止的? 三课程的讲解 方向控制回路 概念:指控制液压油通、断或流动方向的回路统称。 功能:控制执行元件的启动、停止及换向(进、退)。 分类:一般分为换向回路和锁紧回路。 (一)换向回路 二位四通电磁换向阀的换向回路。如图(详) 回路构成:(学生) 核心元件:二位四通电磁换向阀 工作原理(教师分析):当换向阀电磁铁断电时 换向阀3右位工作 进油路:泵→换向阀右位→液压缸无杆腔,活塞向左移动。 回油路:液压缸有杆腔→换向阀右位→油箱。

当换向阀电磁铁通电时 换向阀3左位工作 进油路:泵→换向阀左位→液压缸有杆腔,活塞向右移动。 回油路:液压缸无杆腔→换向阀左位→油箱 换向回路特点及应用:使用方便,易于实现自动化,但换向时间短,冲击大,一般用于小流量、平稳性要求不高的场合。 (二)锁紧回路 锁紧:是指液压缸活塞两端的压力油被封住不能流动。 作用:使执行元件能停留在任意位置上,且停留后不会因外力作用而移动位置。 锁紧回路如何实现? 1、最常用的是采用液控单向阀(又称双向液压锁)的锁紧回路。 2、换向阀中位机能为O形或M组成锁紧回路。 1)、采用液控单向阀的锁紧回路。(详)如图: 学生分析:回路构成 教师分析:锁紧回路工作原理

三相异步电动机正反转控制线路教学设计

《三相异步电动机正反转控制线路》 教学设计 姓名:张洪岩 单位:宽甸职教中心

课题:三相异步电动机的正反转控制线路授课班级:14秋船电 授课时间:2015年6月10日 授课教材: 中国劳动出版社《电力拖动控制线路与技能训练》 教材分析: 《三相异步电动机正反转控制线路》是教材第二章课题二的摘选内容,教材从学生刚刚学过的电动机正转控制入手,结合生活中的实例,从简单到复杂,层层推进的介绍了三相异步电动机接触器联锁控制线路的工作原理。从知识结构看,既是电动机单向启动控制线路安装的拓展和深化,又是学习典型机床控制线路的基础。在实际生活中应用广泛。 教学目标: 知识目标:掌握三相异步电动机正反转控制的设计思路,理解其工作原理。 技能目标:能够完成三相异步电动机正反转控制的接线。 情感目标:培养学生自主学习能力,树立互帮互助的团队合作意识。 教学重、难点: 设计三相异步电动机正反转控制线路是本节课的教学重点,分析正反转控制线路的工作原理是本节课的教学难点。 教法: 任务驱动法:给定任务,引导、启发学生循序渐进分步完成,培养学生自主学习和思维创新能力。 多媒体辅助教学法:在专业课教学中,利用课件的动态效果,使

其趣味化,形象直观的帮助学生更好的理解知识。 分层教学法:在教学中根据学生学习情况,实行分层教学,让不同层次的学生都能感受到成功的喜悦。 启发引导教学法:在教学过程中进行启发性讲授,引导学生进行探究性的学习。 学法: 自主学习:自主设计电路。 合作探究:以小组为单位讨论学习,树立团队合作意识。 成果展示:讲解控制过程,培养学生能思考能表达的综合素质。授课方法: 理论与实践一体化 教具准备 接线控制面板、电工工具10套、若干导线,电工实训台。

伺服电机的三种控制方式

选购要点:伺服电机的三种控制方式 伺服电机速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求以及满足何种运动功能来选择。接下来,松文机电为大家带来伺服电机的三种控制方式。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 一般说驱动器控制的好不好,每个厂家的都说自己做的最好,但是现在有个比较直观的比较方式,叫响应带宽。当转矩控制或者速度控制时,通过脉冲发生器给他一个方波信号,使电机不断的正转、反转,不断的调高频率,示波器上显示的是个扫频信号,当包络线的顶点到达最高值的70.7%时,表示已经失步,此时的频率的高低,就能显示出谁的产品牛了,一般的电流环能作到1000Hz以上,而速度环只能作到几十赫兹。 换一种比较专业的说法: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。 应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。

方向电路场联电路培训教案

四线制方向电路培训教案 一、控制台所设按钮和表示灯 1、表示灯 接车方向表示灯JD,黄色,点亮表示本站该方向为接车站。发车方向表示灯FD,绿色,点亮表示本站该方向为发车站。监督区间表示灯JQD,红色,点亮表示已向该口建立发车进路或列车正在区间运行(注:平时空闲灭灯)。辅助办理表示灯FZD,白色,点亮表示正在办理改变运行方向。允许改变运行方向灯YGFD,红色,点亮表示允许改变运行方向。 2、按钮 允许改变运行方向按钮YGFA,二位非自复式,带铅封。总辅助办理按钮ZFA,非自复式,带铅封。接车辅助办理按钮JFA,自复式,带铅封。发车辅助办理按钮FFA,自复式,带铅封。 3、计数器 记录辅助办理改变运行方向的次数。 二、组合排列 1、每一端的改变运行方向电路由15个继电器组成,分为两个组合,称改变运行方向主组合 2、继电器名称 FJ1、FJ2:方向继电器JQJ:监督区间继电器JQJF:监督区间复示继电器GFJ:改变运行方向继电器GFFJ:改变运行方向辅助继电器JQJ2F:监督区间第二复示继电器DJ:短路继电器FFJ:发车辅助继电器JFJ:接车辅助继电器FGFJ:辅助改变运行方向继电器FAJ:发车按钮继电器FSJ:发车锁闭继电器ZFAJ:总辅助按钮继电器KJ:控制继电器 FZG:硅整流器 3、平时状态 发车站:FJ1↓FJ2↓JQJ↑(空闲) JQJ↓(占用或办理了进路)JQJF↓JQJ2F↓GFJ↑GFFJ↓DJ↓JFJ ↓FFJ↓FGFJ↓FAJ↓FSJ↑(未向发车口办理进路) KJ↓ZFA J↓ 接车站:FJ1↑FJ2↑JQJ↑(空闲) JQJ↓(占用或办理了进路)JQJF↑JQJ2F↑GFJ↓GFFJ↑DJ ↓JFJ↓FFJ↓FGFJ↓FAJ↓FSJ↑(未向发车口办理进路) KJ↓ZFA J↓

电气控制线路的安装与维修(教学设计)

《电气控制线路的安装与维修》教案 授课教师侯庆友授课时间10月16日授课班级D2-1 课题工作台自动往返控制电路安装与检修总学时56-57 教材分析教学目标:掌握行程开关的原理及使用方法教学重点:行程开关的使用方法 教学难点:行程开关的使用方法 教学方法:讲授法 所用课时:2 时间分配教学内容及步骤 5′10′ 25′组织教学: 复习提问(或引入新课): 新课教学: 一、知识学习: (一)行程开关 行程开关又叫限位开关,它的种类很多,按运动形式可分为直动式、微动式、转动式等;按触点的性质分可为有触点式和无触点式。它用以反应工作机械行程,发出命令以控制其运动方向和行程大小的开关。其作用原理与按钮相同,区别在于它不是靠手指的按压而是利用生产机械运动部件的碰压使其触头动作,从而将将机械信号转变为电信号,用以控制机械或用作程序控制。 行程开关的主要参数有型式、动作行程、工作电压及触头的电流容量。目前国内生产的行程开关有LXK3、3SE3、LXl9、LXW和LX等系列。 常用的行程开关有LX19、LXW5、LXK3、LX32和LX33等系列。 1.型号及含义 (2)结构及工作原理 行程开关按其结构可分为直动式、滚轮式、微动式和组合式。 1)直动式行程开关其结构原理如图1-24所示,其动作原理与按钮开关相同,但其触点的分合速度取决于生产机械的运行速度,不宜用于速度低于0.4m/min 的场所。

图1-24 直动式行程开关 1-推杆 2-弹簧 3-动断触点 4-动合触点 2)滚轮式行程开关其结构原理如图1-25所示,当被控机械上的撞块撞击带有滚轮的撞杆时,撞杆转向右边,带动凸轮转动,顶下推杆,使微动开关中的触点迅速动作。当运动机械返回时,在复位弹簧的作用下,各部分动作部件复位。 图1-25 滚轮式行程开关 1-滚轮 2-上转臂 3、5、11-弹簧 4-套架 6-滑轮 7-压板 8、9-触点 10- 横板 滚轮式行程开关又分为单滚轮自动复位和双滚轮(羊角式)非自动复位式,双滚轮行移开关具有两个稳态位置,有“记忆”作用,在某些情况下可以简化线路。3)微动开关式行程开关其结构如图1-26所示。常用的有LXW-11系列产品

PLC控制伺服电机的方法

伺服电机的PLC控制方法 以松下Minas A4系列伺服驱动器为例,介绍PLC控制伺服电机的方法。伺服电机有三种控制模式:速度控制,位置控制,转矩控制{由伺服电机驱动器的Pr02参数与32(C-MODE)端子状态选择},本章简要介绍位置模式的控制方法 一、按照伺服电机驱动器说明书上的"位置

控制模式控制信号接线图"连接导线 3(PULS1),4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC 的输出端子)。 5(SIGN1),6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制。 7(com+)与外接24V直流电源的正极相连。 29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。 上面所述的六根线连接完毕(电源、编

码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器。构成更完善的控制系统。 二、设置伺服电机驱动器的参数。 1、Pr02----控制模式选择,设定Pr02参数为0或是3或是4。3与4的区别在于当32(C-MODE)端子为短路时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如果您只要求位置控制的话,Pr02设定为0或是3或是4是一样的。 2、Pr10,Pr11,Pr12----增益与积分调整,在运行中根据伺服电机的运行情况相应调整,达到伺服电机运行平稳。当然其他的参数也需要调整(Pr13,Pr14,Pr15,Pr16,Pr20也是很重要的参数),在您不太熟悉前只调整这三个参数也

方向控制阀与单缸直接控制回路-教案

液压与气压传动__课程教案

【教案正文】

气动门的动作要求为:开启(多媒体动画播放)气动门的自动开启和关闭是气缸通过变化运动方向实现的,工作关键在于利用控制回路中气流运动方向的元件控制气压缸的运动方向。 动方向的呢? 方向控制阀 a)手动控制b)机械控制c)电动控制d)气压传动控制 3/2阀的结构示意图3/2

方向控制阀有进气口、工作口和排气口。初始位置时,阀芯隔断进气口与工作口之间的通道,两口不相通。此时,工作口与排气口相通,压缩空气可以通过排气口排入大气中。当按下阀芯,这时进气口与工作口相通,压缩空气通过进气口进入从工作口输出,而排气口关闭。 2. 方向控制阀的控制方式和接口表示方式 阀芯动作的控制方式和复位方式,是选择阀的重要依据之一。 (2)方向控制阀接口表示方法 气压传动方向控制阀用数字或字母标出各个接口,并代表着不同的含义 方向控制阀在用字母符号表示时,一般把Z表示左边控制口,而Y表示右边控制口。实际使用中,常以数字符号表示的方式居多。

无气控信号有气控信号 单气控3/2换向阀实物及工作原理 单气控3/2换向阀处于常态(即气控信号口12没有压缩空气进入)时,在弹簧的作用下阀芯处于右端位置,使阀口2与3相通,阀口3排气,而阀口1封闭。当有气控信号(即气控信号口12有压缩空气进入)时,在压缩空气的作用下,阀芯克服弹簧与3断开,阀口1与阀口2接通,阀口2有压缩气体输出。 双气控阀a)实物b)图形符号c)工作原理 当控制阀口12有压缩空气输入,阀口1与阀口2、阀口4和阀口5分别连通,使得阀口2、阀口5有压缩空气输出。当控制阀口12的压缩空气断开时,双气控阀仍保持原有的连通状态,即阀口2阀口5仍然有压缩空气输出。这就是当前的位置被“记忆”了下来。直到控制阀口14

伺服驱动器参数设置方法

伺服驱动器参数设置方法 在自动化设备中,经常用到伺服电机,特别是位置控制,大部分品牌的伺服电机都有位置控制功能,通过控制器发出脉冲来控制伺服电机运行,脉冲数对应转的角度,脉冲频率对应速度(与电子齿轮设定有关),当一个新的系统,参数不能工作时,首先设定位置增益,确保电机无噪音情况下,尽量设大些,转动惯量比也非常重要,可通过自学习设定的数来参考,然后设定速度增益和速度积分时间,确保在低速运行时连续,位置精度受控即可。 1.位置比例增益:设定位置环调节器的比例增益。设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。参数数值由具体的伺服系统型号和负载情况确定。 2.位置前馈增益:设定位置环的前馈增益。设定值越大时,表示在任何频率的指令脉冲下,位置滞后量越小位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡。不需要很高的响应特性时,本参数通常设为0表示范围:0~100% 3.速度比例增益:设定速度调节器的比例增益。设置值越大,增益越高,刚度越大。参数数值根据具体的伺服驱动系统型号和负载值情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较大的值。 4.速度积分时间常数:设定速度调节器的积分时间常数。设置值越小,积分速度越快。参数数值根据具体的伺服驱动系统型号和负载情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较小的值。 5.速度反馈滤波因子:设定速度反馈低通滤波器特性。数值越大,截止频率越低,电机产生的噪音越小。如果负载惯量很大,可以适当减小设定值。数值太大,造成响应变慢,可能会引起振荡。数值越小,截止频率越高,速度反馈响应越快。如果需要较高的速度响应,可以适当减小设定值。 6.最大输出转矩设置:设置伺服驱动器的内部转矩限制值。设置值是额定转矩的百分比,任何时候,这个限制都有效定位完成范围设定位置控制方式下定位完成脉冲范围。本参数提供了位置控制方式下驱动器判断是否完成定位的依据,当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,驱动器认为定位已完成,到位开关信号为ON,否则为OFF。 在位置控制方式时,输出位置定位完成信号,加减速时间常数设置值是表示电机从0~2000r/min的加速时间或从2000~0r/min的减速时间。加减速特性是线性的到达速度范围设置到达速度在非位置控制方式下,如果伺服电机速度超过本设定值,则速度到达开关信号为ON,否则为 OFF。在位置控制方式下,不用此参数。与旋转方向无关。 7.手动调整增益参数 调整速度比例增益KVP值。当伺服系统安装完后,必须调整参数,使系统稳定旋转。首先调整速度比例增益KVP值.调整之前必须把积分增益KVI及微分增益KVD调整至零,然后将KVP值渐渐加大;同时观察伺服电机停止时足否产生振荡,并且以手动方式调整KVP参数,观察旋转速度是否明显忽快忽慢.KVP值加大到产生以上现象时,必须将KVP值往回调小,使振荡消除、旋转速度稳定。此时的KVP值即初步确定的参数值。如有必要,经KⅥ和KVD调整后,可再作反复修正以达到理想值。 调整积分增益KⅥ值。将积分增益KVI值渐渐加大,使积分效应渐渐产生。由前述对积分控制的介绍可看出,KVP值配合积分效应增加到临界值后将产生振荡而不稳定,如同KVP值一样,将KVI值往回调小,使振荡消除、旋转速度稳定。此时的KVI值即初步确定的参数值。

液压基本回路电子教案

【课题编号】 26—11.5 【课题名称】 液压基本回路 【教学目标与要求】 一、知识目标 了解组成液压传动系统的四大基本回路的结构、运动特点和应用场合。 二、能力目标 能够将液压传动系统分成几个基本回路,以便分析运动分析。 三、素质目标 能分析液压系统的传动过程。 四、教学要求 1.能够认识四个基本回路的组成,即各回路中不同类型的特点。 2.能够把液压传动系统图分成相应的基本回路,分析各个回路在传动中的作用。 【教学重点】 各典型回路的运动特点分析。 【难点分析】 1. 换向阀不同中位机能的作用。 2. 进油节流调速与回油节流调速比较。 3. 二次进给回路的应用。

【分析学生】 由于传动系统的图形符号不复杂,比较直观,难度不大,只要各种阀的动作机理清楚,各个典型回路应当比较容易理解。方向控制阀的各中位机能的作用对执行元件运动的影响,估计学生缺少感性认识,可能理解不深。 【教学思路设计】 重点是分析各种典型回路的特点,比较各回路对执行件的影响,所以要注意采用比较法来记住各种回路的特点。 【教学安排】 2学时(90分钟) 【教学过程】 对于任何一种液压传动系统,无论其结构有多么的复杂,总归是由一些基本回路组成的,只要熟悉这些基本回路,就能比较容易地分析传动的过程,正如分析机器时,先将它拆成各个机构一样。 一、方向控制回路 1.换向如图11—35的换向回路由手动三位四通阀来控制工作台的左右运动,图示位置换向阀处于左位,油液进入油缸左腔,执行元件右移;当换向改换成为右位时,油液进入油缸右腔,执行元件左移,实现左右移动。而换向阀处于中位时,由于进油口与回油口相通,油液全部流回油箱,油缸左右两腔油液被封闭,执行元件固定不动。图中溢流阀、压力表、液压泵和配件为基本配置元件。 2 .锁紧将执行元件锁紧在某个位置上不得左右窜动。常用的

伺服电机的三种控制方式有哪些

伺服电机是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。在不同场景下,伺服电机的控制方式各有不同,在进行选择之前你需要先了解伺服电机是三种控制方式各有其特点,下面小编就给大家介绍一下伺服电机的三种控制方式。 伺服电机控制方式有脉冲、模拟量和通讯控制这三种 1、伺服电机脉冲控制方式 在一些小型单机设备,选用脉冲控制实现电机的定位,应该是最常见的应用方式,这种控制方式简单,易于理解。基本的控制思路:脉冲总量确定电机位移,脉冲频率确定电机速度。都是脉冲控制,但是实现方式并不一样: 第一种,驱动器接收两路(A、B路)高速脉冲,通过两路脉冲的相位差,确定电机的旋转方向。如上图中,如果B相比A相快90度,为正转;那么B相比A相慢90度,则为反转。运行时,这种控制的两相脉冲为交替状,因此我们也叫这样的控制方式为差分控制。具有差分的特点,那也说明了这种控制方式,控制脉冲具有更高的抗干扰能力,在一些干扰较强的应用场景,优先选用这种方式。但是这种方式一个电机轴需要占用两路高速脉冲端口,对高速脉冲口紧张的情况,比较尴尬。

第二种,驱动器依然接收两路高速脉冲,但是两路高速脉冲并不同时存在,一路脉冲处于输出状态时,另一路必须处于无效状态。选用这种控制方式时,一定要确保在同一时刻只有一路脉冲的输出。两路脉冲,一路输出为正方向运行,另一路为负方向运行。和上面的情况一样,这种方式也是一个电机轴需要占用两路高速脉冲端口。 第三种,只需要给驱动器一路脉冲信号,电机正反向运行由一路方向IO信号确定。这种控制方式控制更加简单,高速脉冲口资源占用也最少。在一般的小型系统中,可以优先选用这种方式。 2、伺服电机模拟量控制方式 在需要使用伺服电机实现速度控制的应用场景,我们可以选用模拟量来实现电机的速度控制,模拟量的值决定了电机的运行速度。模拟量有两种方式可以选择,电流或电压。电压方式,只需要在控制信号端加入一定大小的电压即可。实现简单,在有些场景使用一个电位器即可实现控制。但选用电压作为控制信号,在环境复杂的场景,电压容易被干扰,造成控制不稳定;电流方式,需要对应的电流输出模块。但电流信号抗干扰能力强,可以使用在复杂的场景。

方向控制回路实验教案12

第12 次课教学整体设计

教学过程(教学设计实施步骤及时间分配) 步骤1:复习巩固、检查课后搜集的资料(10分钟) 一、复习液压系统设计概述 二、复习液压系统设计方法和步骤。 三、检查预习情况。 步骤2:本节课学习任务、情境设计(5分钟) 本节课主要学习方向控制回路实验,通过学习方向控制回路实验有关方面的知识,了解方向控制回路实验步骤和方法。 步骤3-1:讲授知识(30分钟) 实验一方向控制回路 一、实验目的 1.加深认识液控单向阀的工作原理、基本结构、使用方法和在回路中的作用。 2.学会利用液控单向阀的结构特点设计液压双向锁紧回路。 3.通过实验加深对锁紧回路性能的理解。 4.培养安装、联接和调试液压系统回路的实践能力。 二、实验设备 实验台一台;三位四通电磁换向阀一个;液压缸一个;溢流阀一个;油管若干;四通油路过渡底板;接近开关及其支架;压力表(量程:10MPa)一个;油泵一个。 三、实验原理 实验回路如下图所示,当有压力油进入时, 回油路的单向阀被打开,压力油进入工作液压 缸。但当三位四通电磁换向阀(Y型)处于中位 或液压泵停止供油时,两个液控单向阀把工作液 压缸内的油液密封在里面,使液压缸停止在该位 置上被锁住。(如果工作液压缸和液控单向阀都 具有良好的密封性能,即使在外力作用下,回路 也能使执行元件保持长期锁紧状态)。本实 验在图示位置时,由于Y型三位四通电磁换向阀 处于中位,A、B、T口连通,P口不向工作液压

缸供油,保持压力,缸两腔连通。此时,液压泵输出油液经溢流阀流回油箱,因无控制油液作用,液控单向阀A,B关闭,液压缸两腔均不能进排油,于是,活塞被双向锁紧。要使活塞向右运动,则需使换向阀1DT通电,左位接入系统,压力油经液控单向阀A进入液压缸,同时也进入液控单向阀B的控制油口K,打开阀B,使液压缸右腔回油经阀B及换向阀流回油箱,同时工作液压缸活塞向右运动。当换向阀右位接通,液控单向阀B开启,压力油打开阀A的控制口K,工作液压缸向左行,回油经阀A和换向阀T口流回油箱。 四、实验内容与步骤 (一)、实验内容: 根据已学液压传动知识利用液控单向阀的工作原理和基本性能设计双向锁紧回路,并在液压实验台上进行安装、联接、调试和运行。观察分析用液控单向阀的闭锁回路在工作过程中液压缸的锁紧精度及其可靠性。 本实验使用了一个Y型三位四通电磁换向阀和两个液控单向阀所组成的液压双向锁紧回路,在工作液压缸的进、出油路上接入液控单向阀A和B,通过三位四通电磁换向阀对液控单向阀的换向控制,可以在行程的任何位置将液压缸活塞锁紧。其锁紧精度仅受液压缸少量内泄漏的影响。 (二)、实验步骤 1) 设计利用两个液控单向阀的双向液压闭锁回路; 2) 安装回路所需元器件,用透明油管连接回路。经检查确定无误后接通电源,连接三位四通电磁换向阀,启动电气控制面板上的电源开关; 3)启动液压泵开关,调节液压泵的转速使压力表达到预定压力,利用三位四通电磁换向阀的换向功能使活塞进行往复运动; 4) 观察并分析系统压力与液控单向阀控制口压力之间的关系。 五、注意事项 1、因实验元器件结构和用材的特殊性,在实验的过程中务必注意稳拿轻放防止碰撞;在回路实验过程中确认安装稳妥无误后才能进行加压实验。 2、做实验之前必须熟悉元器件的工作原理和动作的条件,掌握快速组合的方法,绝对禁止强行拆卸,不能强行旋扭各种元件的手柄,以免造成人为损坏。

伺服电机的PLC控制

伺服电机的PLC控制方法 以我司KSDG系列伺服驱动器为例,介绍PLC控制伺服电机的方法。 伺服电机有三种控制模式:速度控制,位置控制,转矩控制{由伺服电机驱动器的Pr02参数与32(C-MODE)端子状态选择},本文简要介绍位置模式的控制方法 一、按照伺服电机驱动器说明书上的"位置控制模式控制信号接线图"连接导线3(PULS1), 4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。5(SIGN1),6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制。7(com+)与外接24V直流电源的正极相连。29(SRV-0N),伺服使能信号,此端子与外接24V 直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器构成更完善的控制系统。 二、设置伺服电机驱动器的参数。 1、Pr02----控制模式选择,设定Pr02参数为0或是3或是4。3与4的区别在于当32(C-MODE)端子为短路时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如果您只要求位置控制的话,Pr02设定为0或是3或是4是一样的。 2、Pr10,Pr11,Pr12----增益与积分调整,在运行中根据伺服电机的运行情况相应调整,达到伺服电机运行平稳。当然其他的参数也需要调整(Pr13,Pr14,Pr15,Pr16,Pr20也是很重要的参数),在您不太熟悉前只调整这三个参数也可以满足基本的要求. 3、Pr40----指令脉冲输入选择,默认为光耦输入(设为0)即可。也就是选择3(PULS1),4(PULS2),5(SIGN1),6(SIGN2)这四个端子输入脉冲与方向信号。 4、Pr41,Pr42----简单地说就是控制伺服电机运转方向。Pr41设为0时,Pr42设为3,则5(SIGN1),6(SIGN2)导通时为正方向(CCW),反之为反方向(CW)。Pr41设为1时,Pr42设为3,则5(SIGN1),6(SIGN2)断开时为正方向(CCW),反之为反方向(CW)。(正、反方向是相对的,看您如何定义了,正确的说法应该为CCW,CW). 5、Pr46,Pr4A,Pr4B----电子齿轮比设定。此为重要参数,其作用就是控制电机的运转速度与控制器发送一个脉冲时电机的行走长度。其公式为:伺服电机每转一圈所需的脉冲数=编码器分辨率×Pr4B/(Pr46×2^Pr4A)伺服电机所配编码器如果为:2500p/r5线制增量式编码器,则编码器分辨率为10000p/r如您连接伺服电机轴的丝杆间距为20mm,您要做到控制器发送一个脉冲伺服电机行走长度为一个丝(0.01mm)。 计算得知:伺服电机转一圈需要2000个脉冲。(每转一圈所需脉冲确定了,脉冲频率与伺服电机的速度的关系也就确定了)三个参数可以设定为:Pr4A=0,Pr46=10000,Pr4B=2000,约分一下则为:Pr4A=0,Pr46=100,Pr4B=20。从上面的叙述可知:设定Pr46,Pr4A,Pr4B这三个参数是根据我们控制器所能发送的最大脉冲频率与工艺所要求的精度。在控制器的最大发送脉冲频率确定后,工艺精度要求越高,则伺服电机能达到的最大速度越低。做好上面的工作,编制好PLC程序,我们就可以控制伺服运转了。

伺服系统的速度控制模式运行

伺服系统的速度控制模式运行 2010-01-03 19:52 一、实训目的: 伺服控制系统的功能很广,有速度控制模式,转矩控制模式,位置控制模式以及这三种模式的组合模式,本项目练习速度控制模式,通过实训理解速度控制模式下的伺服电机的运行特点。 二、实训任务。 在速度控制模式下,能完成7段调速以及电位器调速。 三、相关知识。 1、理解伺服电机和伺服驱动器的控制原理。 2、理解伺服驱动器的参数设置要求,和每调参数对系统运行情况的影响。 3、速度控制模式的使用场合。以及速度控制模式的特点。 四、实训设备。 由伺服驱动器MR-J2S-10A、伺服电机HC-MFS13B、DC24V电源、接触器、中间继电器、按钮等组成的实训板。万用表、螺丝刀等。 五、实训步骤。 1、画出控制系统的原理图并接线。 (1)系统控制主电路(如图2-1)。 (2)系统控制回路(如图2-2). 2.设置参数. 首先将设置参数 NO.19=000E,然后再设置下表2-1中的参数,设置完毕后,把系统断电,重新启动,则参数有效。 表2-1 速度控制模式要设置的参数

NO.11 加速时间常数0 1000 1000ms NO.12 减速时间常数0 1000 1000ms NO.25 模拟量速度指令 最大速度0 4000 模拟量输入为10V时对 应速度是4000r/min NO.41 用于设定SON、 LSP、LSN的自动 置ON 0000 0111 SON、LSP、LSN内部自动 置ON. NO.43 输入信号选择2 0111 0AA1 在速度模式、转矩模式 下把CN1B-5改成SP3 NO.72 内部速度4 200 2000 速度是2000r/min NO.73 内部速度5 300 3000 速度是3000r/min NO.74 内部速度6 500 2500 速度是2500r/min NO.75 内部速度7 800 1800 速度是1800r/min 图2-1 系统控制主电路

伺服电机控制方式的选择

伺服电机控制方式的选择 一般伺服电机主要有三种控制方式,即速度控制方式,转矩控制方式和位置控制方式,下面分别对每种控制方式进行详细说明。 1.速度控制方式 通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位机控制装置的外环PID控制时,速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位机反馈以做运算用。速度模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。 2.转矩控制方式 转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为:例如10V对应5Nm的话,当外部模拟量设定为5V时,电机轴输出为2.5Nm,如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转。可以通过即时的改变模拟量的设定来改变设定力矩的

大小,也可以通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如绕线装置或拉光纤设备。 3.位置控制方式 位置控制方式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服驱动器可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置,应用领域如数控机床、印刷机械等等。 如何选择伺服电机的控制方式呢? 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 如果对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如

伺服电机速度规划

伺服电机位置控制速度运行规划图 1、这个图是伺服电机位置控制速度运行规划图,图上每一个点的高度表示这个时刻电机的运行速度; 2、这个图不是运动控制轨迹图; 3、这个伺服电机位置控制速度图说明位置控制过程,伺服电机由启动、加速、匀速、减速、停车几个运行速度部分,完成一个位置控制过程。 4、伺服电机的一个位置控制过程,有上电启动到停车,是一个连续转动的过程,不是脉冲步进进式前进的,编码器的反馈脉冲只是记录了运转过程电机的速度和角位移;: 5、伺服电机的启动指令、加速指令、减速指令、停车指令,是PLC计数器、比较器运算得出的; 6、例如:指令脉冲数-编码器反馈脉冲数/电子齿轮比=0 ,PLC输出端输出停车指令,变频调速机构完成制动停车! 7、所以大家不要认为,PLC发脉冲电机转,不发就不转,发得快就转得快,发的慢就转的慢,好像PLC 发脉冲控制着电机转动;

8、伺服电机的速度v单位是:指令脉冲数/秒,或者是:编码器反馈脉冲数/电子齿轮比·秒; 9、速度曲线图所围的面积=指令脉冲数=编码器反馈脉冲数/电子齿轮比; 10、伺服电机速度的上限可以这样计算,电机速度的上限(r/s)×周指令脉冲数=PLC计数脉冲额定频率; 11、伺服电机速度的上限可以这样计算,电机速度的上限(r/s)=PLC计数脉冲额定频率×电子齿轮比/编码器解析度;

12、伺服电机运行速度可以设定,必须小于上限速度,即电机速度(r/s)<PLC计数脉冲额定频率/周指令脉冲数; 13、伺服电机速度不设定,也可以默认为电子齿轮比、编码器解析度、PLC计数脉冲额定频率确定的上限速度; 14、减速曲线下方三角形的面积=减速位置; 15、t3 - t2 为减速时间; 16、加、减速时间的设定和变频器一样;

速度控制回路实验14

第14 次课教学整体设计

教学过程(教学设计实施步骤及时间分配) 步骤1:复习巩固、检查课后搜集的资料(10分钟) 一、复习汽车动力转向液压系统; 二、复习汽车液压悬架系统。 三、检查预习情况。 步骤2:本节课学习任务、情境设计(5分钟) 本节课主要学习速度控制回路实验,通过学习速度控制回路实验有关方面的知识,了解速度控制回路实验方法和步骤。 步骤3-1:讲授知识(30分钟) 实验二速度控制回路 一、实验目的 1.了解节流调速回路的构成,掌握其回路的特点。 2.通过对节流阀三种调速回路性能的实验,分析它们的速度—负载特性,比较三种节流调速方法的性能。 3.通过对节流阀和调速阀进口节流调速回路的对比实验,分析比较它们的调速性能。 二、实验设备 实验台、秒表 三、实验原理 1.通过对节流阀的调整,使系统执行机构的速度发生变化。

1.通过对节流阀的调整,使系统执行机构的速度发生变化。 2.通过改变负载,可观察到负载的变化对执行机构速度的影响。 整个实验系统分为两大部分:实验回路部分和加载回路部分。左边部分为实验回路,油缸19为工作油缸,通过调节节流阀7、8、9及单向调速阀6的开口大小,可分别构成三种节流调速回路。电磁换向阀3用于油缸19换向,溢流阀2起限压和溢流作用;右边部分为加载回路,油缸20为负载油缸(注意:加载时一定要是油缸20无杆腔进油),负载的大小由溢流阀11调节。 四、实验内容与步骤 (一)、实验内容: 1.采用节流阀的进口节流调速回路的调速性能。 2.采用节流阀的出口节流调速回路的调速性能。 (二)、实验步骤 本实验主要需解决的问题是:各种调速回路如何构成,主油缸运动速度的调节,如何加负载及负载大小的调节。 1.进口节流调速回路 1)实验回路的调整 a) 将调速阀6、节流阀9关闭、节流阀7调到某一开度,回油路节流阀8全开。 b) 松开溢流阀2,启动液压泵1,调整溢流阀,使系统压力为4MPa 。 c) 操纵电磁换向阀3,使主油缸19往复运动,同时调节节流阀7的开度,使工作缸活塞杆运动速度适中(使油缸19空载时向右运动全程时间为4S左右)。 d) 检查系统工作是否正常。退回工作缸活塞。 2)加载回路的调整 (1)松开溢流阀11,启动油泵18。 (2)调节溢流阀11使系统压力为0.5MPa。 (3)通过三位四通电磁换向阀17的切换,使加载油缸活塞往复运动3—5次,排除系统中的空气,然后使活塞杆处于退回位置。 3)节流调速实验数据的采集 (1)伸出加载缸活塞杆,顶到工作缸活塞杆头上,通过电磁换向阀3使工作缸19活塞杆推着加载缸20活塞杆一起向右运动。测得工作缸19活塞杆全程运动时间。退回工作缸活塞杆。 (2)通过溢流阀11调节加载缸的工作压力P12-3(每次增加0.5MPa,重复步骤(1),逐次记载工作缸活塞杆全程运动时间,直至工作缸活塞杆推不动所加负载为止。 (3)操纵换向阀3,11使油缸19,20的活塞杆缩回,松开溢流阀2、11,停油泵1、18。 2.节流阀的出口节流调速回路 将节流阀6、9关死,阀7全开,阀8调到某一开度,其余同方法与步骤同实验1 3.调速阀的进油节流调速回路 将节流阀7、9关死,阀8全开,阀6调到某一开度,其余同方法与步骤同实验1 五、注意事项 1、因实验元器件结构和用材的特殊性,在实验的过程中务必注意稳拿轻放防止碰撞;在回路实

如何选择伺服电机控制方式

如何选择伺服电机控制方式? 如何选择伺服电机控制方式? 一般伺服电机都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。 速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。

三相交流电动机正反转控制电路安装实训教案

二相交流电动机正反转控制电路安装实训教案 教学过程

完成任务1、小组讨论电路的安装方法2、检查所有电气元件是否合格。 3、确定电气元件在配电板上的位置,元 器件布置要整齐、合理。 4、按下图固定所有电气元件,按钮不要 固定在配电板上。 1、电器的“自连接方式, 锁”和“互锁”为下一步安 2、如何进行各装打下基 电器元件的导础。 线连接及布线 工艺。 3、各电器元件 的安装方法。 5、先布置控制回路的导线,然后布置主电路 的导线,布线时要做到横平竖直,并避免 导线交叉。 6、空载试运行:第一次按下按钮时,应短时 运行,同时观察所有电器元件是否有异常 现象,在操作时严格按操作规程进行,1 人操作,1人监护。 7、带负载试运行:空载试运行正常后要进行 带负载试运行,当电动机平稳运行时,用 转速表测量电动机的转速,用钳形表测量 电动机的电流,若三相平衡则试运行成 功。 老师提供资料及安装的标准电路板,并 进行随时指导答疑和动作示范。 1、基本工具的使用方法: a、起子的使用:右手握紧起子手 柄,起子口在大拇指方向,顺时针旋转 为拧紧螺丝,逆时针旋转为松开螺丝。 b、尖嘴钳的使用:右手握住尖嘴 钳,平口的方向靠近指尖。 c、电工刀的使用:右手握住电 工刀手柄,在剖削导线绝缘层时, 先用电工刀45。切入绝缘层,再改成 结合老师的讲 解、分工合作。 仔细观察 老师的操作动 作,为下一步自 已的模仿做准 备,根据老师的 演示,做好笔 记。 1、进行分 析,讨论制定电 路安装的方法, 编制安装步骤。 2、通过查 找资料,确定 让学生初步 认识电路的 安装方法。 20 分 钟

相关主题
相关文档 最新文档