当前位置:文档之家› 循环动载作用下改良土路基累积塑性变形的数值模拟与试验研究

循环动载作用下改良土路基累积塑性变形的数值模拟与试验研究

循环动载作用下改良土路基累积塑性变形的数值模拟与试验研究
循环动载作用下改良土路基累积塑性变形的数值模拟与试验研究

循环动载作用下改良土路基累积塑性变形的数值模拟与试验研究

摘要:为了研究循环荷载作用下高速铁路花岗岩全风化物改良土路基的累积塑性变形特性,引入路基变形的弹塑性循环蠕变模型,进行了有限元分析并与现场试验实测值对比。研究结果表明:循环蠕变模型可以较好地模拟路基的累积塑性变形;在200万次的循环动载作用下,花岗岩全风化物改良土路基的累积塑性变形很小,所以花岗岩全风化物经过改良以后可以用作高速铁路的路基填料,从而可以解决工程中常常遇到的弃方、借土、占地和生态、环保等方面的难题。

关键词:循环动载;累积塑性变形;循环蠕变模型;有限元分析

中图分类号:文献标志码:A 文章编号:1672-7029(2010)01- Numerical simulation and experimental research on accumulative plastic deformation of improved soil roadbed under cyclic dynamic loads

DENG Tian-tian,WU Bin,ZHOU Yuan-heng

(School of Civil & Architecture Engineering.Central S outh U niversity, Changsha 410075, China) Abstract:In order to study at the characteristics of accumulative plastic deformation of roadbed filled with completely weathered granite improved soil under cyclic loads, the elasti c-plastic cyclic creep model of roadbed deformation was introduced, the results with the data of field test were analyzed and compared, and it proves that The cyclic creep model could be used to simulate the accumulative plastic deformation of roadbed well.The plastic deformation of roadbed filled with improved soil under 2 million times of the cyclic loads is small and completely weathered granite improved soil can be served as the filling of high-speed ,rail way roadbed.

Key words: cyclic loads; accumulative plastic deformation;cyclic creep model; finite element s analysis

花岗岩在我国华东、华南和中南地区分布广泛,风化层深厚。大部分全风化花岗岩的物理力学性质较差,如果经改良后能够作为高速铁路基床底层和路堤本体填料,则可解决工程中弃方、借土难题,创造巨大经济效益。在列车荷载产生的动应力重复作用下,基床会产生塑性变形,并且塑性变形随动应力的重复作用而累积增加。在路基的动力特性方面,国内外做了大量的研究,如:何群[1]对全风化花岗岩高速铁路路基的动力特性及稳定性进行了研究;邹静容等[2]对高速公路全风化花岗岩路基路面结构动力

特性模型试验研究进行了研究,分析论证了全风化花岗岩及其水泥稳定土和土工格室加强作为高速公路路基填料的可行性和适用范围;郭建湖[3]通过模拟高速列车荷载,研究了高低不平顺条件下高速铁路桥-隧过渡段路基的动力特性,证实了合理选择“超高”填筑过渡段对减小过渡段路基动态响应是非常有利的;Makoto[4]对软土地基上路基在火车荷载作用下的路基动应力和下沉进行了试验;Le [5]对具有不同刚度的路基进行了轮载试验。我国高速铁路现阶段正处于快速发展的建设时期,在路基填筑方面,常常由于沿线的A和B填料大量缺乏,基本上都是以路堑的弃碴作为填料。对于将大量的风化物进行改良,以取代A和B填料组填筑路基,以及周期性的列车荷载对各种不同改良土路基的塑性变形有何影响等,目前则尚无系统的研究成果。因此,对武广客运专线花岗岩全风化物改良土路基循环累积变形特性的研究就显得十分必要。本文对武广客运专线线路上DK2102+260处黄色花岗岩全风化物改良土路基的累积塑性变形特性进行了有限元计算,并与现场试验的实测值进行了对比分析, 获得了具有重要工程意义的结论。

1 现场激振试验

大量试验和研究[6~9]表明,列车荷载在路基中产生和传播的是频率在一定范围内的正弦波。本文现场试验中主要采用山东济南激振试验机厂生产的可调频调幅PMS—500动态激振试验机。参考文献[6~10] ,取激振频率为4.75 Hz, 施加的模拟列车轮轨力作用的等效激振力表达式为:

p=

p+

1

p sin(2ft

π)

=148.5+11.5×sin(2π×4.75t)

注:△——加速度计;●——拾振器;

▄——动土压力盒;□——位移计

单位:m

图1全风化花岗岩改良土路基动载试验示意图Fig.1 Dynamic load test diagram of roadbed fillied with completely weathered granite improve-

d soil

分别在断面埋设加速度计、动土压力盒、位移计及沉降基标等测试元件。现场测试全部采用微机自动数据采集系统进行数

据采集。本文研究取用的振动次数为200万次。动载试验示意图见图1。

2 有限元分析

2.1 改良土路基的循环蠕变模型

周期性荷载作用下土体的循环累积变形是一个复杂的过程,在循环次数达几百万次的周期荷载作用下,其每一次循环后的累积应变,可通过建立循环累积应变关系式,来进行土体的累积变形计算。目前,这种方法主要用于计算由地震荷载引起的地基累积变形。本文基于这一思路并参考文献[11~13] ,探讨建立花岗岩全风化物改良土路基循环累积塑性变形的计算模型。

对土动力特性的研究表明:在不同的静应力和动应力作用下,土的循环累积应变都随着循环次数的增加而增加。这一点与一些材料在静力作用下的蠕变过程相似,蠕变表现为材料的变形随时间的变化特性[14]。本文将改良土路基的循环累积变形过程与静力作用下的蠕变过程等效,把循环次数看作为蠕变时间,并采用拟静力的方法,建立弹塑性的循环蠕变模型,使循环累积变形计算得到简化。

在循环荷载作用下,土单元的循环累积应变随着循环次数的增加而增加,循环次数可以看作时间过程,将土单元的每一次循环累积应变的增加量等效为蠕变增量。因此,把土单元的应变增量分为弹性应变增量

e d ε、塑性应变增量p d ε和蠕变应变增量

c d ε, 表示为式(1): e p c d d d d εεεε=++ (1) 由式(1)导出的应力应变增量关系式为: {d σ} = [e D ]({d ε} - {p d ε} - {c d ε}) (2) 式中: [e D ]为弹性矩阵。

假定不排水条件下的全风化花岗岩改良土遵守Drucker-Prager 屈服准则,塑性应变增量和蠕变应变增量符合相关流动法则,分别表示为如下形式:

p d ε= [1e D -][p D ]d ε (3) c d ε= c

d σεσ

?? (4) 这里[p D ]为塑性矩阵; c d ε是等效蠕变增量,用式(5)表示,可以通过土的动力试验来确定。用σ表示等效应力,把循环三轴试验轴向应力和一般应力关系统一起来,表达为式(6)。

c d ε=

(5)

(

)

121

32

T

d e v

d e v

m

M σλσσσ

=+ (6)

式中:m σ为平均压力或静水压力;dev

σ

偏应力;λ为材料常数;M 为几何矩阵。

在不排水条件下土样的循环三轴试验中,由于只有轴向(z 方向)累积偏应变,没有体应变和剪应变(xy γ,yz γ,zx γ), 所以,等效蠕变增量可表达为:

c zp

d d εε= (7)

zp d ε是土样三轴试验的循环累积残余应变增量。

通过对全风化花岗岩改良土的循环三

轴试验资料的分析[1],提出循环累积应变p

ε随循环次数的变化关系,见式(8)。式(8)改进了传统幂函数式在描述累积变形与循环加

载次数关系时加载次数较小时的相关性,而

当循环加载次数较大时,两者所描述关系式相同。按照给出的关系式,得出循环累积残余应变增量关系式(9)及式(10):

2

21

p N N β

εα=+ (8)

α

,β为待定的试验函数 ()N zp d d df εσ=, (9)

zp d ε=1

2

2()221N N N βββ

α--1++()

dN (10) 其中:α和β为

的函数。由循环三轴试验

资料的分析[1]可得:

α= 0.081exp(0.002d σ) , β=1.041exp(0.001d σ)

在计算路基塑性变形时, 以上得出的等效蠕变增量只是土单元的一种潜在的变形,是一种蠕变势。因此,在计算路基的循环累积变形时,需要将蠕变势转化为等价节点力,进而计算由等价节点力产生的附加变形。把式(3)、(4)代入式(2)得出增量形式的应力—应变关系式(11):

{σ?} = [ep D ] {ε?} - [e D ] {c ε?}

(11)

[]{}{}T

B dV R σ?=?? (12)

可以得到循环累积变形的有限元计算公式:

[]

T

B ?[ep D ] [B]{δ?}dV =

{}R ?+[][]{}T

e c B D dV ε?? (13)

这里:[ep D ] = [e D ] - [p D ]为弹塑性矩阵; [B]为几何矩阵; {R ?}为等效节点力增

量; {δ?}为节点位移增量。

3.2 改良土路基的循环累积变形

花岗岩全风化物改良土路基循环累积变形的有限元模型网格划分见图2,激振试验台尺寸为2.5 m ×1.5 m ×0.5 m ,模型中路基长度取为18.5 m ,路堤宽25.95 m 。其他有关计算参数见表1。

图2 有限元计算模型 Fig.2 Finite element model

表 1 武广客运专线激振试验工点轨下结构

计算模型参数

Table 1 Calculate model parameters of structure

under rail of vibration test work sites of Wuhan-Guangzhou passenger dedicated

图3 路基不同深度处动应力

Fig.3 Subgrade dynamic stress at different

depths

图4 振动200万次后路基不同深度处塑性变形 Fig.4 The plastic deformation of subgrade at

different depths after 2 million times’ vibration

图3和图4所示分别为激振力作用横断面下沿路基深度方向动应力实测值与计算值、塑 性变形实测值与计算值的变化曲线。可见: (1)实测值曲线和有限元计算值曲线基本平行且较接近,表明弹塑性循环蠕变模型可以较好地模拟周期性荷载作用下改良土路基动应力和塑性变形沿深度方向的变化规律,且在路基面沿深度方向2.5 m 范围内计算得出的塑性变形值与实测值很接近。由曲线的斜率变化可以看出,随着路基深度的增加,动应力、塑性位移沿深度衰减很快,但衰减的速率由快变慢。 (2)由于在路基深度方向存在能量的损失,实测动应力值、实测塑性变形值均要小于有限元计算值,由动应力实测值曲线和有

限元计算值曲线可以看出路基面以下4.5 m 左右深处的动应力、循环累积塑性变形都很小,趋向于0。

图5 基床表层塑性变形

Fig.5 Plastic deformation of the surface

of

roadbed

图6 基床底层塑性变形 Fig.6 Plastic deformation of the

bottom of roadbed

图5和图6所示分别为基床表层和基床

底层在激振力的循环作用下动应力实测值、塑性变形实测值和塑性变形有限元计算值与循环振动次数的关系曲线。可见:

(1)在循环荷载作用的开始阶段,动应力和塑性位移均快速发展,动应力在振动次数2万内基本达到稳定,塑性变形性曲线在振动次数达到20万次左右时,变得平缓,塑性变形增长缓慢,由实测曲线可以看出塑性位移在振动次数达到100万次以后基本达

到稳定。

(2)由于在路基深度方向存在着能量的损失,基床底层塑性变形的实测值要比有限元计算值小。

(3)循环荷载作用下(基床表层动应力42 kPa 左右)花岗岩全风化物改良土路基的累积塑性变形很小(在0.5 mm 之内),说明

可以用作高速铁路路基的填料。

(4)随着振动次数的不断增加,塑性变形实测值曲线和计算值曲线逐渐趋于一致,二者较接近,表明弹塑性循环蠕变模型可以较好地模拟周期性荷载作用下改良土路基塑性变形随振动次数的变化规律。

4 结语

(1)将循环荷载作用下花岗岩全风化物改良土路基的循环累积变形等效为静力蠕变过程,考虑了土单元动应力和循环次数对循环累积变形的影响,建立了拟静力循环蠕变的弹塑性模型,并结合动三轴试验得到了循环累积残余应变公式中的相关试验函数,简化了周期性荷载作用下改良土路基的循环累积变形计算。通过现场试验和有限元计算的对比分析可知,弹塑性蠕变模型可以用来较好地评价周期性荷载作用下花岗岩全风化物改良土路基的累积塑性变形特性。

(2)花岗岩全风化物改良土路基的动应力、塑性变形沿深度方向快速衰减,路基面以下4.5 m左右深处的动应力、循环累积塑性变形已经很小,其数值已接近于0。

(3)振动次数达到100万次左右时花岗岩全风化物改良土路基的塑性变形趋于稳定,且循环累积塑性变形值很小,说明了花岗岩全风化物改良土可以用作高速铁路的路基填料,从而可以解决工程中弃方、借土、占地和生态、环保方面的难题,并且能够获得较大的社会、经济效益。

参考文献

【1】何群. 全风化花岗岩高速铁路路基的动力特性及稳定性研究[D].中南大学,2007:

10-15,135-154.

HE Qun.The Research of Stability and

Dynamic Characteristic for Fully

Effloresced Granite Embankment Fill-

ing in High Speed Railway[D]. Central

South University,2007:10-15,135-154. 【2】邹静容,李志勇,曹新文. 全风化花岗岩路基路面结构动力特性模型试验研究[J].公路

交通科技,2007,4.

ZHOU Jing-rong,LI Zhi-yong,CAO Xin-

wen.Research of the dynamic perfor-

mance of the full weathering granite

subgrade and pavement by model test[J].

Journal of Highway and Transponation

Research and Development,2007,4. 【3】郭建湖. 高低不平顺条件下高速铁路桥-隧过渡段路基的动力特性[J].铁道科学与

工程学报,2008,8.

GUO Jian-hu.Dynamic performance on

high speed railway bridge-tunneltran-

sition section in geometric vertical

irregular condition[J].Journal of rai-

lway science and engineering, 2008, 8. 【4】Makotos.Vibration behavior 0f roadbed on soft grounds under train load [J].Quartly

Report of RTRI 1990(31):29—35.

【5】LI D,SELIG E T.Resilient Modulus for Fine-grained Subgrade Soils [J].J.Geo.Eng,

ASCE, 1994,120(6):939-957.

【6】聂志红.高速铁路轨道路基竖向动力响应研究[D].中南大学博士学位论

文.2005.8:113-114.

NIE Zhi-hong.Study on Vertical Dynamic

Response of the Track/subgrade in

High-speed Railway[D].PhD thesis,

Central South University.2005.8:113-

114.

【7】梁波,蔡英.不平顺条件下高速铁路路基的动力分析[J].铁道学报,1999,4,21(2):84-

88.

LIANG Bo,CAI Ying.Dynamic Analysis on

Subgrade of High Speed Railways in

Geometric Irregular Condition[J].Journal of

the China Society, 1999,4,21(2):84-88.【8】环行线200km/h以上高速列车综合试验研

究报告,铁道部科学研究院,1997.

Integrated experimental study on high-speed

train of over 200km/h in loop line, Research

Institute of Ministry of Railways, 1997. 【9】杨春环,周神根执笔.路基动态参数测试报告,广深准高速铁路运营线试验报告之六.

铁道部科学研究院铁道建筑研究所,1995.

Yang C H,Zhou S G. Subgrade dynamic

parameter test report, the Sixth test report of

Guangzhou-Shenzhen High-Speed Opera-

tion Railway. Institute of Railway Construc-

tion of Research Institute of Ministry of

Railways,1995.

【10】杨广庆. 水泥改良土的动力特性试验研究[J].岩石力学与工程学报,

2003.7,22(7):1156-1160.

YANG Guang-qing. Study of dynamic

performance of cement-improved soil

[J].Chinese Journal of Rock Mechanics and

Engineering, 2003, 7,22(7):1156-1160. 【11】李广信等. 高等土力学[M].北京:清华大学出版社,2004:61–85.

LI Guang-xin X,etc. Advanced Soil

Mechanics[M].Beijing: Tsinghua University

Press, 2004:61–85.

【12】熊玉春,陈久照. 考虑各向异性影响的循环弹塑性模型[J].岩土工程学报,2008, 8.

XIONG Yu-chun,CHEN Jiu-zhao.Cyclic

elasto-plastic constitutive model considering

anisotropic effect[J].Chinese Journal of

Geotechnical Engineering, 2008, 8.

【13】刘振纹,秦崇仁,王建华等.循环荷

载作用下软粘土地基的累积变形[J].中国

港湾建设,2004, 12:31–34.

LIU Zhen-wen,QING Chong-ren,WANG Ji-

an-hua,etc. Accumulative Deformation of

Soft Clayey Foundation under Cyclic Loa-

ds[J].China Harbour Engineering, 2004,

12:31–34.

【14】Zienkiewicz O C.Visco-Plasticity-Plastici- ty and creep in Elastic solids—A unified

numerical solution Approach [J] .Internati-

onal Journal for numerical Methods in

Engineering,1974, 8: 821-845.

第六章 回复与再结晶

第六章回复与再结晶 (一)填空题 1. 金属再结晶概念的前提是,它与重结晶的主要区别是。 2. 金属的最低再结晶温度是指,它与熔点的大致关系是。 3 钢在常温下的变形加工称,铅在常温下的变形加工称。 4.回复是,再结晶是。 5.临界变形量的定义是,通常临界变形量约在范围内。 6 金属板材深冲压时形成制耳是由于造成的。 7.根据经验公式得知,纯铁的最低再结晶温度为。 (二)判断题 1.金属的预先变形越大,其开始再结晶的温度越高。(×) 2.变形金属的再结晶退火温度越高,退火后得到的晶粒越粗大。(√)3.金属的热加工是指在室温以上的塑性变形过程。(×) 4.金属铸件不能通过再结晶退火来细化晶粒。(√) 金属铸件不能通过再结晶退火达到细化晶粒的目的,因为铸件,没有经受冷变形加工,所以当加热至再结晶退火温度时,其组织不会发生根本变化,因而达不到细化晶粒的目的。 再结晶退火必须用于经冷塑性变形加工的材料,其目的是改善冷变形后材料的组织和性能。再结晶退火的温度较低,一般都在临界点以下。若对铸件采用再结晶退火,其组织不会发生相变,也没有形成新晶核的驱动力(如冷变形储存能等),所以不会形成新晶粒,也就不能细化晶粒。 5.再结晶过程是形核和核长大过程,所以再结晶过程也是相变过程。(×); 6 从金属学的观点看,凡是加热以后的变形为热加工,反之不加热的变形为冷加工。 (×) 7 在一定范围内增加冷变形金属的变形量,会使再结晶温度下降。( √) 8.凡是重要的结构零件一般都应进行锻造加工。(√) 9.在冷拔钢丝时,如果总变形量很大,中间需安排几次退火工序。( √) 10.从本质上讲,热加工变形不产生加工硬化现象,而冷加工变形会产生加工硬化现象。这是两者的主要区别。( ×) (三)选择题 1.变形金属在加热时发生的再结晶过程是一个新晶粒代替旧晶粒的过程,这种新晶粒的晶型( )。 A.与变形前的金属相同 B 与变形后的金属相同 C 与再结晶前的金属相同D.形成新的晶型 2.金属的再结晶温度是( ) A.一个确定的温度值B.一个温度范围 C 一个临界点D.一个最高的温度值 3.为了提高大跨距铜导线的强度,可以采取适当的( A )。 A.冷塑变形加去应力退火 B 冷塑变形加再结晶退火 C 热处理强化D.热加工强化 4 下面制造齿轮的方法中,较为理想的方法是( C )。 A.用厚钢板切出圆饼再加工成齿轮B用粗钢棒切下圆饼再加工成齿轮 C 由圆钢棒热锻成圆饼再加工成齿轮D.由钢液浇注成圆饼再加工成齿轮 5.下面说法正确的是( C )。 A.冷加工钨在1 000℃发生再结晶 B 钢的再结晶退火温度为450℃ C 冷加工铅在0℃也会发生再结晶D.冷加工铝的T再≈0.4Tm=0.4X660℃=264℃ 6 下列工艺操作正确的是(D ) 。 A.用冷拉强化的弹簧丝绳吊装大型零件淬火加热时入炉和出炉 B 用冷拉强化的弹簧钢丝作沙发弹簧 C 室温可以将保险丝拉成细丝而不采取中间退火 D.铅的铸锭在室温多次轧制成为薄板,中间应进行再结晶退火 7 冷加工金属回复时,位错(C )。

上海交大材基-第五章塑性变形与回复再结晶--复习提纲.

第5章材料的形变和再结晶 提纲 5.1 弹性和粘弹性 5.2 晶体的塑性变形(重点) 5.3 回复和再结晶(重点) 5.4 高聚物的塑性变形 学习要求 掌握材料的变形机制及特征,以及变形对材料组织结构、性能的影响;冷、热加工变形材料的回复和结晶过程。 1.材料的弹性变形本质、弹性的不完整性及黏弹性; 2.单晶体塑性变形方式、特点及机制(滑移、孪生、扭折) 3.多晶体、合金塑性变形的特点及其影响因素 4.塑性变形对材料组织与性能的影响; 5.材料塑性变形的回复、再结晶和晶粒长大过程; 6.影响回复、再结晶和晶粒长大的诸多因素(包括变形程度、第二相粒子、工艺参数等) 7、结晶动力学的形式理论(J-M-A方程) 8、热加工变形下动态回复、再结晶的微观组织特点、对性能影响。 9、陶瓷、高聚物材料的变形特点 重点内容 1. 弹性变形的特征,虎克定律(公式),弹性模量和切变弹性模量; 材料在外力作用下发生变形。当外力较小时,产生弹性变形。弹性变形是可逆变形,卸载时,变形消失并恢复原状。在弹性变形范围内,其应力与应变之间保持线性函数关系,即服从虎克(Hooke)定律: 式中E为正弹性模量,G为切变模量。它们之间存在如下关系: 弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结

构不敏感参数。在工程上,弹性模量则是材料刚度的度量。 2. 弹性的不完整性和粘弹性; 理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等。3. 滑移系,施密特法则(公式),滑移的临界分切应力; 晶体中一个滑移面和该面上一个滑移方向组成。 fcc和bcc,bcc的滑移系?滑移系多少与塑性之间的关系。 滑移的临界分切应力: 如何判断晶体中各个滑移系能不能开动? 解释几何软化和几何硬化?为何多晶体塑性变形时要求至少有5个独立的滑移系进行滑移? 4. 滑移的位错机制,派-纳力(公式); 为什么晶体中滑移系为原子密度最大的面和方向? 5. 比较塑性变形两种基本形式:滑移与孪生的异同特点; 6. 多晶体塑性变形的特点:晶粒取向的影响,晶界的影响;

回复与再结晶

1、一块单相多晶体包含。 A.不同化学成分的几部分晶体B.相同化学成分,不同结构的几部分晶体C.相同化学成分,相同结构,不同位向的几部分晶体 2、在立方系中点阵常数通常指。 A.最近的原子间距B.晶胞棱边的长度 3、每一个面心立方晶胞中有八面体间隙m个,四面体间隙n个,其中。 A.m=4,n=8B.m=13,n=8C.m=1,n=4 4、原子排列最密的一族晶面其面间距。 A.最小B.最大 5、晶体中存在许多点缺陷,例如 A.被激发的电子B.空位C.沉淀相粒子 6、金属中通常存在着溶质原子或杂质原子,它们的存在。 A.总是使晶格常数增大B.总是使晶格常数减小C.可能使晶格常数增大,也可能使晶格常数减小 7、金属中点缺陷的存在使电阻。 A.增大B.减小C.不受影响 8、空位在过程中起重要作用。

A.形变孪晶的形成B.自扩散C.交滑移 9、金属的自扩散的激活能应等于。 A.空位的形成能与迁移激活能的总和B.空位的形成能C.空位的迁移能 10、位错线上的割阶一般通过形成 A.位错的交割B.交滑移C.孪生 一、名词解释 沉淀硬化、细晶强化、孪生、扭折、第一类残余应力、第二类残余应力、、回复、再结晶、多边形化、临界变形量、冷加工、热加工、动态回复、动态再结晶 沉淀硬化:在金属的过饱和固溶体中形成溶质原子偏聚区和由之脱出微粒弥散分布于基体中导致硬化。 细晶强化:通过细化晶粒而使金属材料力学性能提高的方法。 孪生:在切应力作用下,晶体的一部分沿一定晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系。 扭折:在滑移受阻、孪生不利的条件下,晶体所做的不均匀塑性变形和适应外力作用,是位错汇集引起协调性的形变。 按残余应力作用范围不同,可分为宏观残余应力和微观残余应力等两大类,其中宏观残余应力称为第一类残余应力(由整个物体变形不均匀引起),微观残余应力称为第二类残余应力(由晶粒变形不均匀引起)。 储存能:在塑性变形中外力所作的功除大部分转化为热之外,由于金属内部的形变不均匀及点阵畸变,尚有一小部分以畸变能的形式储存在形变金属内部,这部分能量叫做储存能。回复:经冷塑性变形的金属加热时,尚未发生光学显微组织变化前(即再结晶之前)的微观结构变化过程。 再结晶:经冷变形的金属在一定温度下加热时,通过新的等轴晶粒形成并逐步取代变形晶粒的过程。 多边形化:指回复过程中油位错重新分布而形成确定的亚晶结构过程。 临界变形量:需要超过某个最小的形变量才能发生再结晶,这最少的形变量就称为临界变形量。 冷加工:在再结晶温度以下的加工过程;在没有回复和在接近的条件下进行的塑性变形加工。热加工:在再结晶温度以上的加工过程;在再结晶过程得到充分进行的条件下进行的塑性变形加工。 动态回复:热加工时由于温度很高,金属在变形的同时发生回复,同时发生加工硬化和软化两个相反的过程。这种在热变形时由于温度和外力联合作用下发生的回复过程 动态再结晶:是指金属在热变形过程中发生的再结晶现象。 二、问答题

混凝土本构关系模型

一、混凝土本构关系模型 1.混凝土单轴受压应力-应变关系 (1)Saenz 等人的表达式 Saenz 等人(1964年)所提出的应力-应变关系为: ])()()( /[30 200εεεεεεεσd c b a E +++= (2)Hognestad 的表达式 Hognestad 建议模型,其上升段为二次抛物线,下降段为斜直线。所提出的应力-应变关系为: cu cu εεεσσεεσσεεεεεεεε≤≤-=≤-=--000 02,)]( 15.01[,])(2[0 00 (3)我国《混凝土结构设计规范》(GB50010-2010)中的混凝土受压应力-应变曲线,其表达式为: 1,)1(1 ,)1(2>+-=≤+-= x x x x y x x n nx y c n α r c x ,εε= ,r c f y ,σ= ,r c r c c r c c f E E n ,,,-=εε c α是混凝土单轴受压时的应力应变曲线在下降段的参数值,r c f ,是混凝土单轴抗压的 强度代表值,r c ,ε是与单轴抗压强度r c f ,相对应的混凝土峰值压应变。 2.混凝土单轴受拉应力-应变关系 清华大学过镇海等根据实验结果得出混凝土轴心受拉应力-应变曲线: 1 ],)1(/[)/(1 ,])(2.0)(2.1[7 .16≥+-?=≤-=t t t t t t t t t t εε εεεεεεεεεεασεεσσσ 3.混凝土线弹性应力-应变关系 张量表达式,对于未开裂混凝土,其线弹性应力应变关系可用不同材料常数表达,其中用材料弹性模量E 和泊松比v 表达的应力应变关系为: ij kk E ij E ij ij kk E ij E ij δσσεδεεσν ν νννν-=+=+-++1)21)(1(1

金属的塑性变形与再结晶-材料科学基础学习知识-实验-06

实验六金属的塑性变形与再结晶 (Plastic Deformation and Recrystallization of Metals)实验学时:2 实验类型:综合 前修课程名称:《材料科学导论》 适用专业:材料科学与工程 一、实验目的 1.观察显微镜下变形孪晶与退火孪晶的特征; 2.了解金属经冷加工变形后显微组织及机械性能的变化; 3.讨论冷加工变形度对再结晶后晶粒大小的影响。 二、概述 1.显微镜下的滑移线与变形孪晶 金属受力超过弹性极限后,在金属中将产生塑性变形。金属单晶体变形机理指出,塑性变形的基本方式为:滑移和孪晶两种。 所谓滑移,是晶体在切应力作用下借助于金属薄层沿滑移面相对移动(实质为位错沿滑移面运动)的结果。滑移后在滑移面两侧的晶体位向保持不变。 把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。变形后的显微组织是由许多滑移带(平行的黑线)所组成。

在显微镜下能清楚地看到多晶体变形的特点:① 各晶粒内滑移带的方向不同(因晶粒方位各不相同);② 各晶粒之间形变程度不均匀,有的晶粒内滑移带多(即变形量大),有的晶粒内滑移带少(即变形量小);③ 在同一晶粒内,晶粒中心与晶粒边界变形量也不相同,晶粒中心滑移带密,而边界滑移带稀,并可发现在一些变形量大的晶粒内,滑移沿几个系统进行,经常看见双滑移现象(在面心立方晶格情况下很易发现),即两组平行的黑线在晶粒内部交错起来,将晶粒分成许多小块。(注:此类样品制备困难,需要先将样品进行抛光,再进行拉伸,拉伸后立即直接在显微镜下观察;若此时再进行样品的磨光、抛光,滑移带将消失,观察不到。原因是:滑移带是位错滑移现象在金属表面造成的不平整台阶,不是材料内部晶体结构的变化,样品制备过程会造成滑移带的消失。) 另一种变形的方式为孪晶。不易产生滑移的金属,如六方晶系的镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的一部分以一定的晶面(孪晶面或双晶面)为对称面,与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。 孪晶的结果是:孪晶面两侧晶体的位向发生变化,呈镜面对称。所以孪晶变形后,由于对光的反射能力不同,在显微镜下能看到较宽的变形痕迹——孪晶带或双晶带。在密排六方结构的锌中,由于其滑移系少,则易以孪晶方式变形,在显微镜下看到变形孪晶呈发亮的竹叶状特征。(注:孪晶是材料内部晶体结构上的变化,样品制备过程不会造成孪晶的消失。) 对体心立方结构的Fe -α,在常温时变形以滑移方式进行;而在0℃以下受冲击载荷时,则以孪晶方式变形;而面心立方结构大多是以滑移方式变形的。 2.变形程度对金属组织和性能的影响

金属的塑性变形与再结晶

实验名称:金属的塑性变形与再结晶实验类型: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、实验步骤与实验结果(必填) 五、讨论、心得(必填) 一、实验目的 1.了解冷塑性变形对金属材料的内部组织与性能的影响; 2.了解变形度对金属再结晶退火后晶粒大小的影响。 二、实验原理 金属塑性变形的基本方式有滑移和孪生两种。在切应力作用下,晶体的一部分沿某一晶面相对于另一部分滑动,这种变形方式称为滑移;在切应力作用下,晶体的一部分沿某一晶面相对另一部分产生剪切变形,且变形部分与未变形部分的位向形成了镜面对称关系,这种变形方式称为孪生。 (一) 冷塑性变形对金属组织与性能的影响 若金属在再结晶温度以下进行塑性变形,称为冷塑性变形。冷塑性变形不仅改变了金属材料的形状与尺寸,而且还将引起金属组织与性能的变化。金属在发生塑性变形时,随着外形的变化,其内部晶粒形状由原来的等轴晶粒逐渐变为沿变形方向伸长的晶粒,在晶粒内部也出现了滑移带或孪晶带。当变形程度很大时,晶粒被显著地拉成纤维状,这种组织称为冷加工纤维组织。同时,随着变形程度的加剧,原来位向不同的各个晶粒会逐渐取得近于一致的位向,而形成了形变织构,使金属材料的性能呈现出明显的各向异性。金属经冷塑性变形后,会使其强度、硬度提高,而塑性、韧性下降,这种现象称为加工硬化。 (二) 冷塑性变形后金属在加热时组织与性能的变化 金属经冷塑性变形后,由于其内部亚结构细化、晶格畸变等原因,处于不稳定状态,具有自发地恢复到稳定状态的趋势。但在室温下,由于原子活动能力不足,恢复过程不易进行。若对其加热,因原子活动能力增强,就会使组织与性能发生一系列的变化。 1.回复当加热温度较低时,原子活动能力尚低,故冷变形金属的显微组织无明显变化,仍保持着纤组织的特征。此时,因晶格畸变已减轻,使残余应力显著下降。但造成加工硬化的主要原因未消除,故其机械性能变化不大。 2.再结晶当加热温度较高时,将首先在变形晶粒的晶界或滑移带、孪晶带等晶格畸变严重的地带,通过晶核与长大方式进行再结晶。冷变形金属在再结晶后获得了新的等轴晶粒,因而消除了冷加工纤维组织、加工硬化和残余应力,使金属又重新恢复到冷塑性变形前的状态。 金属的再结晶过程是在一定温度范围内进行的。通常把变形程度在70%以上的冷变形金属经1h加热能完全再结晶的最低温度,定为再结晶渡。实验证明,金属的熔点愈高,在其他条件相同时,其再结晶温度也愈高。金属的再结晶温度(T再)与其熔点(T熔)间的关系,大致可用下式表示: T再≈0.4 T熔 3.晶粒长大冷变形金属再结晶后,一般都得到细小均匀的等轴晶粒。但继续升高加热温度或延长保温时间,再结晶后的晶粒又会逐渐长大,使晶粒粗化。 (三) 变形程度对金属再结晶后晶粒度的影响 冷变形金属再结晶后晶粒度除与加热温度、保温时间有关外,还与金属的预先变形程度有关。金属再结晶后的晶粒度与其预先变形程度间的关系如下图所示:

ANSYS中混凝土的本构关系

一、关于模型 钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。 就ANSYS而言,她可以考虑分离式模型(solid65+link8,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65)。而其裂缝的处理方式则为分布裂缝模型。 二、关于本构关系 混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。就ANSYS而言,其问题比较复杂些。 1 ANSYS混凝土的破坏准则与屈服准则是如何定义的 采用tb,concr,matnum则定义了W-W破坏准则(failure criterion),而非屈服准则(yield criterion)。W-W破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。理论上破坏准则(failure criterion)和屈服准则(yield criterion)是不同的,例如在高静水压力下会发生相当的塑性变形,表现为屈服,但没有破坏。而工程上又常将二者等同,其原因是工程结构不容许有很大的塑性变形,且混凝土等材料的屈服点不够明确,但破坏点非常明确。 定义tb,concr matnum后仅仅是定义了混凝土的破坏准则和缺省的本构关系,即W—W 破坏准则、混凝土开裂和压碎前均为线性的应力应变关系,而开裂和压碎后采用其给出的本构关系。但屈服准则尚可另外定义(随材料的应力应变关系,如tb,MKIN,则定义的屈服准则是Von Mises,流动法则、硬化法则也就确定了)。 2 定义tb,concr后可否定义其它的应力应变关系 当然是可以的,并且只有在定义tb,concr后,有些问题才好解决。例如可以定义tb,miso,输入混凝土的应力应变关系曲线(多折线实现),这样也就将屈服准则、流动法则、硬化法则等确定了。 这里可能存在一点疑问,即ANSYS中的应力应变关系是拉压相等的,而混凝土材料显然不是这样的。是的,因为混凝土受拉段非常短,认为拉压相同影响很小,且由于定义的tb,concr中确定了开裂强度,所以尽管定义的是一条大曲线,但应用于受拉部分的很小。 三、具体的系数及公式 1 定义tb,concr时候的两个系数如何确定 一般的参考书中,其值建议先取为~(江见鲸),原话是“在没有更仔细的数据时,不妨先取~进行计算”,足见此~值的可用程度。根据我的经验和理由,建议此值取大些,即开裂的剪力传递系数取,(定要>)闭合的剪力传递系数取。支持此说法的还有现行铁路桥规的抗剪计算理论,以及原公路桥规的容许应力法的抗计剪计算。 2 定义混凝土的应力应变曲线

第六章材料的塑性变形与再结晶

何谓滑移和孪生 滑移:晶体的一部分相对于另一部分沿某些晶面和晶向发生滑动 孪生:晶体的一部分相对于另一部分沿某些晶面和晶向作均匀切变 指出三种典型结构金属晶体的滑移面和滑移方向 1. 面心立方金属:密排面{}111密排晶向1101234=?个滑移系,塑性较好 2. 体心立方金属:密排面{}110密排晶向1111226=?个滑移系,塑性较好 3. 密排六方金属:室温时{}0001密排晶向2011331=?塑性较差 并比较其滑移难易程度 1. 当其他条件相同时,金属晶体中的滑移系越多,则滑移时可供采用的空间位 向也多,塑性也越好 2. 面心立方晶格的金属晶体的滑移系为12个,密排立方结构的金属晶体的滑移 系为3个()2011,0001,所以面心立方晶格的金属晶体更易发生滑移 3. 从此可以看出,面心立方和体心立方金属的塑性较好,而密排六方金属的塑 性较差 4. 金属塑性的好坏,不只是取决于滑移系的多少,还与滑移面上原子的密排程 度和滑移方向的数目有关 5. 例如Fe -α,它的滑移方向不及面心立方金属多,其滑移面上原子密排程度 也比面心立方金属低,因此它的滑移面间距较小,原子间结合力较大,必须在较大的应力作用下才开始滑移,所以它的塑性要比铜铝金银等面心立方金属差些 为何晶体的滑移通常沿着其最密晶面和最密晶向进行

1.在晶体原子密度最大的晶面上,原子间的结合力最强,而面与面之间的距离 却最大,即密排面之间的原子间结合力最小,滑移阻力最小,最易于滑移2.沿最密晶向滑移的步长最小,这种滑移所需要的切应力最小 何谓加工硬化 金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象 运用位错理论说明细化晶粒可以提高材料强度的原因 通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化 运用位错理论说明细化晶粒可以提高材料强度的原因 来自69页北京工业大学2009细晶强化的位错理论 1.金属多晶体材料塑性变形时,粗大晶粒的晶界处塞积的位错数目多,形成较 大的应力场,能够使相邻晶粒内的位错源启动,使变形继续 2.相反,细小晶粒的晶界处塞积的位错数目少,要使变形继续,必须施加更大 的外加作用力以激活相邻晶粒内的位错源 3.因此,细晶材料要发生塑性变形需要更大外部作用力,即晶粒越细小晶体强 度越高 单相固溶体合金的强度均高于纯溶剂组元的强度,试用位错理论分析之

回复与再结晶

理论课教案 编号:NGQD-0707-09版本号:A/0页码:编制/时间:审核/时间:批准/时间: 学科金属材料及 热处理 第三章金属的塑性变形与再结晶 第三节回复与再结晶 教学类型授新课授课时数1授课班级 教学目的 和要求 1、了解加热过程中,变形金属内部组织的变化。 教学重点和难点1、重点:回复、再结晶的作用。 2、难点:再结晶温度的计算。 教具准备 复习提问再结晶温度如何计算? 作业布置P33习题8 教学方法主要教学内容和过程附记 §3-3回复与再结晶 经冷塑性变形后的金属晶粒破碎,晶格扭曲,位错密度增高,产生内应力,其内部能量增高,因而组织处于不稳定 的状态,并存在向稳定状态转变的趋势。在低温下,这种转 变一般不易实现。而在加热时,由于原子的动能增大,活动 能力增强,冷塑性变形后的金属组织会发生一系列的变化, 最后趋于较稳定的状态。随着加热温度的升高,变形金属的 内部相继发生回复、再结晶、晶粒长大三个阶段的变化

理论课教案附页 编制/时间: 教学方法主要教学内容和过程附记 一、回复 回复:当加热温度不太高时,原子活动能力有所增加,原子已能作短距离的运动,此时,晶格畸变程度大为减轻, 从而使内应力有所降低,这个阶段称为回复。 1、回复是冷塑性变形金属在较低温度下加热的阶段。 在这个温度范围内,随温度的升高,变形金属中的原子活动 能力有所增大。 2、通过回复,变形金属的晶格畸变程度减轻,内应力 大部分消除,但金属的显微组织无明显变化,因此力学性能 变化不大。 3、在生产实际中,常利用回复现象将冷变形金属在低 温加热,进行消除内应力的处理,适当提高塑性、韧性、弹 性,以稳定其组织和尺寸,并保留加工硬化时留下的高硬度 的性能。 二、再结晶 再结晶:当冷塑性变形金属加热到较高温度时,由畸变晶粒通过形核及晶核长大而形成新的无畸变的等轴晶粒的 过程。 1、再结晶过程是发生在较高温度(再结晶温度以上), 其过程以形核和核长大的方式进行。(见教材P30) 2、再结晶后,冷变形金属的组织和性能恢复到变形前 的状态(教材P31) 3、再结晶过程是新晶粒重新形成的过程,而晶格类型 并没有发生改变,所以它不是相变过程。(教材P31)

上海交大材基第五章塑性变形与回复再结晶习题集讲解.

1 单晶体的塑性变形 铜单晶(a=0.36nm )在[112]方向加拉伸应力,拉伸应力为2.5×105Pa ,此条件下:(1)取向因子最大的滑移系有哪几个?(2)计算其分切应力多大? 解:(1) Cu 为F.C.C 结构,易滑移面为{1,1,1},滑移方向为〈1,1,0〉,可以分别求 出[112]方向与这些滑移系之间的两个夹角,然后得到12个取向因子的值。(这里省略了) 通过上述计算得到具体的滑移系(1,-1,1)[0,1,1]和(-1,1,1) [1,0,1]为具有最大取向因子滑移系。 (2) 根据施密特法则(公式略), F=δcosAcosB=1.02*105 Pa 何谓临界分切应力定律?哪些因素影响临界分切应力大小? 解:(略) 沿密排六方单晶的[0001]方向分别加拉伸力和压缩力,说明在这两种情况下,形变的可能方式。 解:1)滑移:a -拉伸的时,当c/a>=1.633,不会产生滑移,当c/a<1.633有可能产 生滑移,可产生滑移的是{1,1,-2,2}<1,1,-2,-3>;其他滑移面不能产生滑移; b -压缩的时候结果和拉伸一样; 2)孪生:拉伸和压缩的时候都可能产生孪生变形; 3)扭折:拉伸的时候一般不易扭折变形,压缩的时候可以产生扭折变形。 试指出单晶体的Cu 与α-Fe 中易滑移面的晶面与晶向,并分别求它们的滑移面间距,滑移方向上的原子间距及点阵阻力,已知泊松比为ν=0.3,G Cu =48300MPa , G α-Fe =81600MPa. 解:体心Fe 具有多种类的滑移系,但是滑移方向均相同。 力=90.56MPa 。

铝单晶体拉伸时,其力轴为[001],一个滑移系的临界分切应力为0.79MN/m2,取向因子COS φCOSλ=0.41,试问有几个滑移系可同时产生滑移?开动其中一个滑移系至少要施加多大的拉应力? 解:Al为F.C.C结构,其滑移系共有{1,1,1}4<1,1,0>3=12个。可以求得【001】与这些滑移系的取向因子。(可以列表列出来如下) 其它有4个滑移系,它们的滑移方向的第三个数字为0,因为取向因子为0,根据施密特法则,不能产生滑移。 开动其中一个滑移系需要施加的拉应力,可以根据施密特法则求得: F=0.79/0.41=1.93 MN/m2

工业纯铝的塑性变形与再结晶实验方案

实验方案金属的塑性变形与再结晶 一,实验目的 1、观察显微镜下滑移线、变形孪晶的特征; 2、了解金属经冷加工变形后显微组织及性能的变化; 二、概述 1 显微镜下的滑移线与变形挛晶 金属受力超过弹性极限后,在金属中特产生塑性变形。金属单晶体变形机理指出,塑性变形的基本方式为滑移和孪晶两种。 所谓滑移时晶体在切应力作用下借助于金属薄层沿滑移面相对移动实质为位错沿滑移面运动的结果。滑移后在滑移面两侧的晶体位相保持不变。把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。变形后的显微姐织是由许多滑移带所组成。 另一种变形的方式为孪晶。不易产生滑移的金属,如六方晶系镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的—部分以一定的晶面为对称面;与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。孪晶的结果是孪晶面两侧晶体的位向发生变化,呈镜面对称。所以孪晶变形后,由于对光的反射能力不同,在显微镜下能看到较宽的变形痕迹——孪晶带或双晶带。 2、变形程度对金属组织和性能的影响 变形前金属为等轴晶粒,轻微量变形后晶粒内即有滑移带出现,经过较大的变形后即发现晶粒被拉长,变形程度愈大,晶粒被拉得愈长,当变形程度很大时,则加剧剧了晶粒沿一定方向伸长,晶粒内部被许多的滑移带分割成细小的小块,晶界与滑移带分辨不清,呈纤维状组织。 由于变形的结果,滑移带附近晶粒破碎,产生较严重的晶格歪扭,造成临界切应力提高,使继续变形发生困难,即产生了所谓加工硬化现象。随变形程度的增加,金属的硬度、强度、矫顽力、电阻增加,而塑性和韧性下降。 3、形变金属在加热后组织和性能的影响 变形后的金属在较低温度加热时,金属内部的应力部分消除,歪曲的晶格恢

弹塑性本构关系的认识及其在钢筋混凝土中的应用浅谈_塑

弹塑性本构关系的认识及其在钢筋 混凝土结构中的应用浅谈 摘要:本文首先对弹塑性本构关系和钢筋混凝土材料的本构模型作了简要概述,然后结合上课所学知识和自己阅读的几篇文章,从材料的屈服准则、流动准则、硬化准则和加载卸载准则等四个方面详细阐述了弹塑性本构关系。最后,结合上述准则简要论述了混凝土这一常用材料在地震作用下的弹塑性本构关系。 关键词:弹塑性本构关系,钢筋混凝土,地震 Understanding of Elastoplastic Constitutive Relation and a Brife Talk of Its Aapplication to Reinforced Concrete Structure Abstract:This paper firstly makes a brief overview about elastoplastic constitutive relation and reinforced concrete constitutive model. Then,elaborating the elastoplastic constitutive relation from the four aspects of material yield criterion,flow rule,hardening rule,loading and unloading criterion based on what I have learned in class and reading from a few articles. Lastly,a simply introduction on the elastoplastic constitutive of reinforced concrete under earthquake is demonstrated. Keywords:elastoplastic constitutive relation; reinforced concrete structure; earthquake 1 引言 钢筋混凝土结构材料的本构关系对钢筋混凝土结构有限元分析结果有重大的影响,如果选用的本构关系不能很好地反映材料的各项力学性能,那么其它计算再精确也无法反映结构的实际受力特征。所谓材料的本构关系,主要是指描述材料力学性质的数学表达式。用什么样的表达式来描述材料受力后的变化规律呢?不同的学者根据材料的性质、受力条件和大小、试验方法以及不同的理论模型等因素综合考虑,建立了许多种钢筋混凝土材料的本构关系表达式。 材料的本构关系所基于的理论模型主要有:弹性理论、非线性弹性理论、弹塑性理论、粘弹性理论、粘弹塑性理论、断裂力学理论、损伤力学理论、内时理论等。迄今为止,由于钢筋混凝土材料的复杂因素,还没有一种理论模型被公认为可以完全描述钢筋混凝土材料的

【材料课件】实验三金属的塑性变形与再结晶组织观察

实验三金属的塑性变形与再结晶组织观察 目的 1.加深对材料塑性编写过程的理解; 2.认识塑性变形的典型组织; 3.理解变形量对再结晶后晶粒尺寸的影响。 一、塑性变形引起材料组织的变化 晶体塑性材料塑性变形的基本方式有四种:滑移、孪生、蠕变、粘滞性流动。 滑移是晶体中位错在外力作用下发生运动,造成晶体的两部分在滑移面上沿滑移方向的相对移动,滑移是位错的移动,晶体内部原子从一个平衡位置移到另一个平衡位置,不一起晶体内的组织变化,位错移出晶体的表面,形成滑移台阶,一个位错源发出的位错都移出,在晶体表明形成台阶在显微镜下可以见到,就是滑移线。 孪生是在滑移困难时以形成孪晶的方式发生的塑性变形,晶体发生孪生,在晶体表面产生浮凸,晶体内部生成的孪晶与原晶体的取向不一样,并有界面分隔,所以在晶体内重新制样后依然可以看到孪晶。 多晶体材料发生塑性变形后,原等轴晶粒被拉长或压扁,晶界变模糊。两相材料经过塑性变形后,第二相的分布也与变形方向有关。 塑性变形后进行退火加热发生再结晶的晶粒尺寸与变形量有直接的关系。在临界变形量(不同材料不相同,一般金属在2—10%之间)以下,金属材料不发生再结晶,材料维持原来的晶粒尺寸;在临界变形量附近,刚能形核,因核心数量很少而再结晶后的尺寸很大,有时甚至可得到单晶;一般情况随着变形量的增加,再结晶后的晶粒尺寸不断减小;当变形量过大(>70%)后,可能产生明显织构,在退火温度高时发生晶粒的异常长大。 二、实验内容 1.观察几种塑性变形后的组织形貌 ①.低碳钢拉伸后的组织变化:看断口附近,变形量最大,组织特征明显,白色的软相的 晶粒的形状分布,黑色较硬相形状分布特征。 ②纯铁压缩表面的滑移线:为了观察,现将试样磨平,再压缩变形,晶体表面可留下滑移 线。若再打磨则滑移线就不可见。一个滑移系能开动,与之平行的滑移系也可能开动,滑移线往往时互相平行,因为存在交滑移,滑移线为波浪状。 ③锌的变形孪晶:Zn是hcp晶系,仅有三个滑移系,多晶体变形就会发生孪生,从试样 上可见到变形产生的孪晶。

9塑性变形与回复再结晶实验指导书4

实验4 塑性变形与回复再结晶 一、实验目的 1.加深对加工硬化现象和回复再结晶的认识。 2.通过实验分析加工温度和变形程度对所选原材料组织和性能的影响。 3.测定所选原材料(例如工业纯铝)的形变度与再结晶后的晶粒度的关系曲线。 二、实验原理 1、加工硬化现象 当金属与合金在外力的作用下,应力超过弹性极限以后,将发生塑性形变。金属在塑性形变过程中,组织与性能将发生变化。一般说来随着形变程度的增加,金属的强度、硬度提高而塑性下降,同时也造成其它物理化学性能的明显变化。人们就把金属因塑性变而导致的强度和硬度增加的现象称为加工硬化。 2、金属经塑性形变后显微组织的变化 金属经塑性形变以后,其组织发生以下的变化。 (1)金属在塑性形变后,组织也将发生相应的变化,例如在轧制后,晶粒沿着形变方向被拉长,其程度随形变量的加大而增大,当形变量很大时,晶粒伸长呈“纤维状”。与此同时,除晶粒的形状发生变化外,组织中的第二相也将发生变化,硬的相将破碎,软的相将发生形变等。 (2)塑性形变导致金属组织内部的亚结构细化。在形变不大的情况下,晶粒内首先出现明显的滑移带,随着形变量的加大。滑移带逐渐增多。射线结构分析结果表明:晶粒被碎化成许多位向略有不同(位向差一般不大于1°)的晶块,其大小约为10-3~10-6厘米,即在原来晶粒内出现了很多小晶块,这种组织称为亚结构。 (3)金属塑性形变时,由于各部分的形变的不均匀性而造成的内应力(第一类,第二类,第三类内应力)将增大。 (4)当金属的塑性形变量很大时,在形变过程中晶体将产生转动和旋转,使各晶粒的某一晶向都不同程度的转向与外力相近的方向,这样便使得原来晶向不同的晶粒取向渐趋一致。而使其具有择优趋向组织称之为形变结构。 金属塑性形变后组织和性能的变化规律,在生产中有一定的实际意义,为此应了解这一变化规律,从而能更好的为生产服务。 塑性形变的方式,主要有两种。其一是滑移形变方式,其二是孪晶形变方式。至于形变结构与机理,这里不做叙述。 3、回复与再结晶 由于塑性形变,使晶格畸变增大(使错密度增加,亚结构细化等),使得冷形变金属的自由能升高而处于不稳定状态。因此,便有一种向较稳定状态转化的自发趋势。 如将冷形变后的金属加热到较高的温度,使其原子具有一定的扩散能力,就会产生一系列组织与性能的变化。这个变化过程就是回复——再结晶及晶粒长大(聚集再结晶)过程,参看图1。 回复:当加热温度较(再结晶温度)低时,通过原子作短距离的扩散,使某些晶体缺陷互相抵消而使缺陷数量减少;使晶格畸变程度减轻(由多边化结果导致);第一类、第二类内应力基本消除;显微组织无变化,机械性能和物理化学性能部分的恢复到形变前的状态,如硬度、强度稍微下降,塑性略有提高;导磁率上升,比电阻下降等,这一过程称为回复。 再结晶:冷形变金属加热到某一温度,由于原子扩散能力的增大,组织和性能将发生剧烈的变化,完全回复到形变以前的情况。从显微组织看形变组织完全消失,代之的是新的等轴晶粒;其强度硬度下降而塑性提高。把在这一温度下组织和性能发生剧烈变化的现象称做

第五章材料变形与再结晶答案.doc

第五章固体材料的塑性变形 Chapter 5 Plastic Deformation 作业1:在面心立方晶体结构中,有一位错可以在(111)和(111) Solution: 4歩0 晶面上发生交滑移,请确定这个位错的伯氏矢量? 作业2:在面心立方晶体中有三个滑移系,假定在Au晶体的[100]± 施加2MPa的拉伸应力,其临界分切应力是0. 91MPa o证明滑移不会在(111)晶面的三个滑移系上滑移? The three slip systems in the (111) plane are (111) [101], (111) [llo], (111) Oil]. Because [100]丄[oii], that is 入=90°,so r( resolred shear stress in (lll)[oii]) is 0.

COS60°=T So: Measurable slip will not occur on any of the three slip systems in the (111) plane. 作业3?:在面心立方晶体中,沿[i23]方向施加2 MPa的正应力。滑移面是(111),滑移方向是[101]o请确定临界分切应力Tor To solve this problem, we must find both cos0 and cos(p? This can be done suing the vector dot product: |[123j[ioq V14V2 Solving equation T C R =(ycos6cos(p for T C R and substituting the data given in the problem statement yields: T cR=(2Mpa)x(0.617)x(0.756)=0.933Mpa 作业4:假定某面心立方晶体可以开动的滑移系为(ni)[011]o试回答: (1)给出引起滑移的单位位错得相应矢量,并说明之。

第五章塑性变形与回复再结晶--习题集

psi是一种压力单位,定义为英镑/平方英寸,145psi=1Mpa PSI英文全称为Pounds per square inch。P是磅pound,S是平方square,I 是英寸inch。把所有的单位换成公制单位就可以算出:1bar≈14.5psi 1 KSI = 1000 lb / in. 2 = 1000 x 0.4536 x 9.8 N / (25.4 mm)2 = 6.89 N / mm2 材料机械强度性能单位,要用到试验机来检测 Density of Slip Planes The planar density of the (112) plane in BCC iron is 9.94 atoms/cm2. Calculate the planar density of the (110) plane and the interplanar spacings for both the (112) and the (110) planes. On which type of plane would slip normally occur? (112) planar density: The point of this problem is that slip generally occurs in high density directions and on high density planes. The high density directions are directions in which the Burgers' vector is short, and the high density planes are the "smoothest" for slip. It will help to visualize these two planes as we calculate the atom density.

第五章金属的塑性变形与再结晶全解

第五章金属的塑性变形与再 结晶 目的:掌握金属在塑性变形后组织与性能的变化。 要求: 1、掌握塑性变形对金属组织和性能的影响; 2、了解冷变形金属在加热过程中的变化,掌握回复和 再结晶的概念及其应用; 3、明确金属冷加工和热加工的区别。 重点:塑性变形对金属组织和性能的影响、回复和再结晶的概念及其应用。 §5-1 金属的塑性变形 一、单晶体金属的塑性变形 1、单晶体金属的塑性变形只能在切应力作用下发 生; 2、单晶体金属的塑性变形在晶体原子最密排面上 沿最密排方向进行; 3、单晶体金属的塑性变形伴随着晶体的转动;

二、多晶体金属的塑性变形 1、多晶体金属的组织、结构特点对塑性变形的影响 1)各晶粒形状、大小不同,成分、性能不均匀,各相邻晶粒的晶格位向不同:塑性变形抗力增大;相互约束、 阻碍;应力、应变分布不均匀;相互协调、适应。 2)存在大量晶界,晶内与晶界性能不同,晶界易聚集杂质,晶格排列紊乱:晶格畸变增大,滑移位错运动阻 力增大,难以变形,塑性变形抗力增大。晶粒越细,

强度越高:晶界总面积增加,周围不同取向的晶粒数越多,塑性变形抗力越大;晶粒越细,塑性、韧性越好:晶粒越细,单位体积中的晶粒数越多,变形量分散到更多晶粒中进行,产生较均匀的变形,不致造成局部应力集中,引发裂纹的产生和扩展,断裂前可发生较大塑性变形量。 工业上,常用压力加工、热处理方法细化晶粒,提高性能。 2 、多晶体金属的塑性变形过程 多晶体金属中各晶粒的 晶格位向不同,所受分切应 力不同,塑性变形在不同晶 粒中逐批进行,是个不均匀 过程。 软位向:晶格位向与外力处于或接近45°角的晶粒所受分切应力最大,首先发生塑性变形。 硬位向:晶格位向与外力处于或接近平行或垂直的晶粒所受分切应力最小,难以进行塑性变形。 多晶体金属的塑性变形是一批一批晶粒逐步发生,由少数晶粒发生塑性变形逐渐趋于大量晶粒发生塑性变形,由不均匀变形逐渐趋于较均匀变形。 §5-2 塑性变形对组织和性能的影 响 一、塑性变形对组织的影响 1、 晶粒形状发生变化: 沿变形方向被拉长,形成纤维组织; 2、 晶粒内产生亚结构:

相关主题
文本预览
相关文档 最新文档