当前位置:文档之家› SNP分型方法及科研应用

SNP分型方法及科研应用

SNP分析命令

E:\ > cd e: E:\ E:\ > cd plink-1 E:\plink-1>plink –file test 1.Map 更新 Plink --sheep --file data --update-map position.txt --recode --out data1 Chrnew.txt -- update-chr --recode --out data2 Position: SNP code and position Chrnew:SNP code and Chr. 2.SNP merge Plink --file data1 --merge data2.ped data2.map --recode --out merge 3.提取SNP位点 Plink --file data --extract 50kSNP.txt --recode --out data1 50kSNP.txt: 50k中的SNP名 4. Quality control Call rate >98%/99% Plink --file sheep --geno 0.02 --recode --out sheepgeno Plink --file sheepgeno --mind 0.01 --recode --out sheepmind MAF>0.05 Plink --file sheepmind --maf 0.05 --recode --out sheepmaf Hardy-Weinberg equilibrium <0.0001 Plink --file sheepmaf --hwe 0.0001 --recode --out sheephwe Exclude the SNP markers with either chromosome or both unknown Plink --sheep --file sheephwe --extract 4newsnp.txt --recode --out sheep4 Note: 制作4newsnp.txt(包含chromosome 和base-pair position 都为0的SNP) To identify sample duplication or half-sibs or closer Plink –sheep –file sheep4 –genome –max 0.85 Note:Check the genome file 5. LD quality control Plink –sheep --file sheep4 –indep-pairwise 100 25 0.2 –out sheepld0.2 Plink --sheep --file sheep4 --indep-pairwise 100 25 0.05 --out sheepld0.05 Plink--file sheep4--ld-window-r2 0.2 --out sheepldr0.2 输出结果为data prunein 和data prune out (质控时,要去除X染色体) 将data prune in 转化为ped和map Plink --sheep --file 114hwe --extract 114sheep0.05.prune.in --recode --out sheepforpca 6. PCA- PCA的三个文件: Plink --sheep --file data(生成LD的文件) --extract data (LD).prune.in --recode --out sheepforpca 1sheepforpca.ped 改为5.ped 2sheepforpca.map 改为5.pedsnp 3将sheepforpca 制作成二进制文件输出5b plink --file hapmap1 --make-bed --out hapmap1 结果为5b.farm即为ped文件的前6列,将5b.farm 改名为5.pedind

隐身技术的发展及应用

隐身技术的发展及应用 摘要:介绍隐身技术带来了军事装备的变革,并探讨有源和无源隐身原理,并重点介绍了无源隐身中利用理想对消特性、频率差将破坏相干性、相位差的影响、幅度差的影响,以规避雷达对目标的检测。 接着分析了隐身技术的现状及其原理,分别从可见光隐身技术、声波隐身技术、雷达隐身技术、激光隐身技术及红外辐射隐身技术方面介绍了当前所采用隐身技术的原理、方法及其应用。通过采用可见光、红外及激光隐身兼容技术,更好的达到隐身的效果,即可得隐身兼容技术才是隐身技术的发展方向。 隐身技术迅猛发展,新的隐身方法和技术应运而生。仿生技术、等离子体隐身技术、“微波传播指示”技术及智能隐身技术丰富和扩展了隐身技术的领域。在新的隐身方法中,重点介绍了等离子体隐身技术这一典型事例,通过介绍其原理、方法,以及在军事装备上的应用,以便我们把握这一隐身技术的发展方向。 隐身材料的开发和利用一直是隐身技术发展的重要内容,是飞机等隐身兵器实现隐身的基石,接下来介绍了正在研制开发的新型隐身材料:宽频带吸波剂、高分子隐身材料、纳米隐身材料、手征材料、结构吸波材料及智能隐身材料。新的隐形材料的研制,必将推动隐身技术迈向新的台阶。 隐身技术与反隐身技术的发展,是相互制约、相互促进的,无论哪一方有新的突破,都将引起另一方的重大变革。最后,我们探讨了当今反隐身技术的发展,以及探讨反隐身技术的方法:采用长波低频雷达探测技术、采用激光雷达探测技术、采用光电探测技术、采用数据融合技术、采用自动化和智能化技术。希望隐身技术和反隐身技术,这对矛和盾,能够加快我国的武器装备现代化的进程。 关键词:有效散射截面积(RCS)无源及无源隐身技术等离子体技术

SNP与基因型和疾病表型之间的关系

SNP与基因型和疾病表型之间的关系3 随着人类基因组计划精确序列图的完成,功能基因的克隆与鉴定、人类基因组多样性的研究也提到日程,而这些研究的进行将依赖于精细和精确的遗传标记的选择和应用。在人类基因组计划研究的历史上,RF LP(restriction fragment length polym or2 phism)和STR(short tandem repeats)作为上两代遗传标记,在物理图和遗传图的构建、序列草图的拼接和装搭过程中曾起到决定性的作用。但这些遗传标记依然存在多态性不高、无法摆脱电泳分型、难以实现大规模检测和自动化、难于进行基因判定等缺点。1996年由美国的https://www.doczj.com/doc/408578527.html,nder提出了并称之为“第3代遗传标记”的“单核苷酸多态性”(single nucleotide polym orphism, S NP)。S NP即以基因组序列中一个核苷酸的变异而导致DNA序列的变化(多态性)为基础。由于所有遗传多态性的分子基础均为核苷酸,因此S NP在密度上有可能达到人类基因组多态位点数目的极限。S NP与RF LP和STR等DNA标记的根本不同,是不再以长度的差异作为检测手段,而直接以序列的变异作为标记;在理论上,S NP有可能在核苷酸水平上,把序列图、物理图与遗传图最终有机地整合、统一起来;在技术上,S NP可以完全摆脱电泳分型的瓶颈,而采用最新的非电泳分型技术等。以下就S NP与基因型和疾病表型之间的关系作一简介。 1 鉴定SNP 发现核苷酸的变体不是一件困难的事情,每天,许多分子遗传学家在他们的研究工作中会不经意间偶然发现。直接地S NP发现可采取对一个有一定规模的基因组并行测序的战略,如对Y染色体;或在看似候选基因的基因内寻找,如心血管疾病、炎症性疾病和Ⅱ型糖尿病等复杂性遗传病。然而,一些生物信息学小组正在应用“in silico”中储存的序列资料寻找S NP。 C.Lee描述了EST数据库如何提供了成千上万个个体的表现度,通过序列比对,使编码S NP的发现成为可能。同样的数据采集方法已经被用于重叠BAC的克隆。这种日积月累的结果使在S NP数据库(dbS NP)和人类基因组数据库(HG BASE)已有超过二百万个候选S NP。现在的任务是证实这些已发现的S NP,即由于序列错误、重复区域和选择性剪接而产生假的S NP变体。此外,由于这些S NP来自世界不同的人群,还有如下未完成的工作要做:一方面,要确定S NP的等位基因频率;另一方面,要区别在某单一人群中特殊的S NP。 2 SNP的应用 涌向S NP发现和分析淘金热的心理起源于推测它们在两个方面的应用潜力。一方面是应用S NP探索复杂疾病的分子遗传学基础,另一方面是应用S NP进行基因自动分型的可靠性。推荐应用S NP多位点作图的方法用于病例———对照(case2con2 trol)研究,其目的是鉴定某一位点的特殊等位基因和某一特定表型统计学上的显著相关性。广泛的基因组相关性研究的设计依赖于人们关于变异的设想,即变异构成复杂性状的基础。一直争论的问题是H ome sapiens在“hominids”有限的遗传变异中是否不同寻常。然而,关于构成人类常见疾病表型的变异已出现两种相互竞争的学说,其正确的学说将指导研究设计。 (1)常见病Π常见变体(C DΠC V)学说:C DΠC V学说认为这些常见病的等位基因在地球的人类迁移以前已经存在,或者这些通过正选择的等位基因在一定程度上(以显著的比例)代表易感性等位基因。在现存的人群中,预测这些等位基因授予人群以中度的危险性,并在人群中出现相对高的频率(>1%)。它们出现的高频率意味着在大规模的人群中进行相关性研究对于鉴定危险性等位基因将是富有成效的。https://www.doczj.com/doc/408578527.html,nder(Whitehead Institute)引证了ApoE34等位基因的例子,该等位基因使对阿尔茨海默病(Alzheimer disease)的易感性增加;CCR52△32等位基因可防止被HI V-1感染。以上是在一些独立(特殊)的人群中产生一些常见变体的例子。在C DΠC V学说的指导下,现在主要的问题是要对公共变体库中的所有变体进行实验分析,或者对每一变体进行直接评价,或者对来自祖先的基因片段进行间接实验分析。从根本上说,目前通过环境导致变体的连锁不平衡度(LD)的研究方法是有限的。在大多数群体中,一个大样本的群体模型预测靠近共同变体的显著的LD一般将不会跨越3kb的基因组。然而,最近以经验为根据的研究已经给出了一个非常乐观的理由,在一个有北欧血统的美国人群中跨越60kb的区域显示了显著的LD。在2001年10月出版的《Nature genetics》发表了一系列的论文,表明被重组热点所中断的大范围基因组区域的连锁不平衡是人类基因组的一个特征。通过代表性的S NP定义有限数量的常见单体型好象能解释大多数的单体型。提示:应用代表性的S NP进行相关性研究将鉴定与疾病易感性增加有关的常见的单体型,形成构建人类基因组单体型图谱的必要基础,即鉴定所有主要的单体型和它们特征性的S NP。 (2)常见病Π稀有等位基因学说(C DΠRA):另一方面,C DΠRV学说的支持者认为,他们没有理由预期大多数常见遗传病是由常见的等位基因引起的。该学说最近被正式接受,应用群体模型在疾病位点预期了广泛的等位异质性(不均一性)。A. Clark已经扩展了该学说的研究工作,表明在人口爆炸性增长和分散以后,人类常见病的99.9999%的突变已经出现。另外,许多研究者相信,在复杂的疾病中我们可预示有意义的位点和异质性。观察与孟德尔疾病类似的疾病,C DΠRA的支持者指出视网膜炎色素沉着和非症状性常染色体隐性耳聋的遗传和等位异质性,这些“简单”的孟德尔疾病带有多个已知位点和一系列的疾病等位基因。如果这个方案适用于常见病的研究,在不均一人群中进行广泛的基因组疾病相关性研究将是无效的。J. T erwilliger争辩说,采用远交人群的病例———对照研究,通过遗传(血缘)查找鉴定等位基因没有令人信服的根据。在上一年的一个评论中上述观点引起注意。J.T erwilliger断言,那些我们估计遗传和等位异质性较低的方法在家系和具有独特来历的人群研究中会始终得到应用。鉴于目前仅把构建人类单体型图谱计划的重点放在常见等位基因上,而在一定程度上,那些稀有等位基因也可以解释常见病,在分析远缘人群时单体型图谱将是有用的,可以减少不一致性。 3 回归到生物学 无论常见或稀有等位基因被证实与某一特殊疾病发病风险相关,对所有的研究者而言,下一步的研究策略是相同的:一旦鉴定某一单体型与对某一疾病的易感性相关,那些定义单体型的所有S NP将被作为候选的致病因素。在这一点上,S NP达到遗传学研究的极限,必须重新回归到生物学。研究策略方面,基因型和表型之间关系的阐明将是21世纪面临的最大挑战和重要任务之一。 3第四届单核苷酸多态性和复杂基因组分析国际会议(The fourth international meeting on single nucleotide polym orphisms and complex genome analysis) 顾明亮 摘译自:Challenges for the21st century.Nature G enet,2001,29:353-354 邱长春 审校 ? 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. https://www.doczj.com/doc/408578527.html,

SNP数据统计详细方法

S N P数据统计详细方法集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

S N P操作步骤与结果记录 按照陈丽学位论文第二部—— 步骤一、使用在线软件SHEsis检验各个危险的hw遗传平衡(因rs2607659未发生突变,故不纳入分析。) 结论:9个位点P值均大于0.05,均符合HW遗传平衡。(有附件) 步骤二、分析前将协变量进行分类,并用KS法检验连续变量正态性,结果如下: 正态性连续变量非正态连续变量分类变量 ALT CReGFR-A ASTBMIHBeAg 年龄eGFR年龄-A 药物浓度ADV合用 性别 步骤三、用KM生存曲线画出某一位点的CK升高时间与累积危险函数之间的曲线,(KM曲线中状态选项选择服药四年CK数据组)并联合Log-rank检验,比较该位点突变与否对CK结局的差异。结果:9个位点P值均大于0.05 即:这些位点的变异对CK升高作用无差异。为验证统计操作的正确性,将TK2基因rs3826160位点进行统计,得到的KM曲线与Log-rankP值与陈丽师姐论文相同。故统计操作正确。 (SPSS输出结果见附件) 步骤四、对协变量进行单因素分析,排除rs位点突变与其他临床因素对CK产生相反作用,掩盖rs位点对CK结局影响的情况。 选择二元Logistic回归(除根据P值定性外,可提供OR值观察因素的影响程度)方法。影响CK 的临床因素(P<0.05)如下: 协变量P 性别0.000 药物浓度0.007 年龄0.032 BMI0.016 HBVDNA-A0.021 CR0.01 eGFR0.03 (SPSS输出结果见附件)

隐身材料的应用与研究前景

隐身材料的应用与研究前景 摘要:探讨了隐身材料的种类与现状和存在问题,未来研究及发展方向等,介绍了雷达隐身、红外隐身等几种常见的隐身技术,分析未来隐身技术的发展趋势 关键词:隐身材料隐身技术 正文: 隐身材料是隐身技术的重要组成部分,在装备外形不能改变的前提下,隐身材料(stealth material)是实现隐身技术的物质基础。武器系统采用隐身材料可以降低被探测率,提高自身的生存率,增加攻击性,获得最直接的军事效益。因此隐身材料的发展及其在飞机、主战坦克、舰船、箭弹上应用,将成为国防高技术的重要组成部分。对于地面武器装备,主要防止空中雷达或红外设备探测、雷达制导武器和激光制导炸弹的攻击;对于作战飞机,主要防止空中预警机雷达、机载火控雷达和红外设备的探测,主动和半主动雷达、空对空导弹和红外格斗导弹的攻击。为此,常需要雷达、红外和激光隐身技术。 隐身材料的分类 隐身材料按频谱可分为声、雷达、红外、可见光、激光隐身材料。按材料用途可分为隐身涂层材料和隐身结构材料。 1.雷达吸波材料 雷达吸波材料是最重要的隐身材料之一,它能吸收雷达波,使反射波减弱甚至不反射雷达波,从而达到隐身的目的。如日本研制的一种由电阻抗变换层和低阻抗谐振层组成的宽频带高效吸波涂料,其中变换层由铁氧体和树脂混合组成,谐振层由铁氧体导电短纤维和树脂组成,在1~20吉赫的雷达波段上吸收率达20分贝以上。雷达吸波材料中尤以结构型雷达吸波材料和吸波涂料最为重要,国外目前已实用的主要也是这两类隐身材料。雷达吸波涂料主要包括磁损性涂料、电损性涂料。 (1)磁损性涂料磁损性涂料主要由铁氧体等磁性填料分散在介电聚合物中组成。目前国外航空器的雷达吸波涂层大都属于这一类。这种涂层在低频段内有较好的吸收性。美国Condictron公司的铁氧体系列涂料,厚1mm,在2~10GHz内衰减达10~12dB,耐热达500℃;Emerson公司的Eccosorb Coating 268E厚度1.27mm,重4.9kg/m2,在常用雷达频段内(1~16GHz)有良好的衰减性能(10dB)。磁损型涂料的实际重量通常为8~16kg/m2,因而降低重量是亟待解决的重要问题。 (2) 电损性涂料电损性涂料通常以各种形式的碳、SiC粉、金属或镀金属纤维为吸收剂,以介电聚合物为粘接剂所组成。这种涂料重量较轻(一般可低于4kg/m2),高频吸收好,但厚度大,难以做到薄层宽频吸收,尚未见纯电损型涂层用于飞行器的报道。90年代美国Carnegie-Mellon大学发现了一系列非铁氧体型高效吸收剂,主要是一些视黄基席夫碱盐聚合物,其线型多烯主链上含有连接二价基的双链碳-氮结构,据称涂层可使雷达反射降低80%,比重只有铁氧体的1/10,有报道说这种涂层已用于B-2飞机。 2.复合型红外隐身材料 复合型红外隐身材料主要有涂料型隐身材料、多层隐身材料和夹芯材料。

S参数精讲

S参数测量是射频设计过程中的基本手段之一。S参数将元件描述成一个黑盒子,并被用来模拟电子元件在不同频率下的行为。在有源和无源电路设计和分析中经常会用到S参数。 S参数是RF工程师/SI工程师必须掌握的内容,业界已有多位大师写过关于S 参数的文章,即便如此,在相关领域打滚多年的人,可能还是会被一些问题困扰着。你懂S参数吗? 请继续往下看...台湾同行图文独特讲解! 1、简介:从时域与频域评估传输线特性 良好的传输线,讯号从一个点传送到另一点的失真(扭曲),必须在一个可接受的程度内。而如何去衡量传输线互连对讯号的影响,可分别从时域与频域的角度观察。 S参数即是频域特性的观察,其中"S"意指"Scatter",与Y或Z参数,同属双端口网络系统的参数表示。

S参数是在传输线两端有终端的条件下定义出来的,一般这Zo=50奥姆,因为V NA port也是50奥姆终端。所以,reference impedance of port的定义不同时,S参数值也不同,即S参数是基于一指定的port Zo条件下所得到的。 2. 看一条线的特性:S11、S21 看一条线的特性:S11、S21 如下图所示,假设port1是讯号输入端,port2是讯号输出端 S11表示在port 1量反射损失(return loss),主要是观测发送端看到多大的的讯号反射成份;值越接近0越好(越低越好,一般-25~-40dB),表示传递过程反射(reflection)越小,也称为输入反射系数(Input Reflection Coefficient)。

S21表示讯号从port 1传递到port 2过程的馈入损失(insertion loss),主要是观测接收端的讯号剩多少;值越接近1越好(0dB),表示传递过程损失(loss)越小,也称为顺向穿透系数(Forward Transmission Coefficient)。 3、看两条线的相互关系:S31、S41 虽然没有硬性规定1、2、3、4分别要标示在线哪一端,但[Eric Bogatin大师]建议奇数端放左边,且一般表示两条线以上cross-talk交互影响时,才会用到S31。以上图为例,S31意指Near End Cross-talk (NEXT),S41意指Far End Cross-talk (FEXT). 4、看不同模式的讯号成份:SDD、SCC、SCD、SDC 以上谈的都是single ended transmission line (one or two line),接着要谈differential pair结构。

高通量SNP基因分型技术研究进展

10 Sheng W et al.J Virol,2003;77(6):3859 11 C ohen J I,et al.J Virol,1999;73(9):7627 12 Wei MX et al.Cancer Res,1994;54(7):1843 13 G ao Y et al.Oncogene,2002;21(5):825 14 T anner J E et al.J In fect Dis,1997;175(1):3815 Decaussin G et al.Cancer Res,2000;60(19):5584 16 Brink AA et al.J Clin M icrobiol,1998;36(11):3164 17 Hayes DP et al.M ol Pathol,1999;52(2):97 18 zur Hausen A et al.Cancer Res,2000;60(10):2745 (2002211201 收稿) 高通量SNP基因分型技术研究进展 方唯意综述 姚开泰审阅 中南大学湘雅医学院肿瘤研究所(长沙,410078) 摘要 在后基因组时代,单核苷酸多态性研究已迅速成为了生物医学许多领域的焦点。发展可靠、敏感、经济、稳定、高通量的S NP基因分型技术已迫在眉睫。本文主要着重于高通量S NP基因分型技术的原理、利弊以及这些技术在这个领域过去几年中的进展。 关键词 高通量;单核苷酸多态性;基因分型 单核苷酸多态性(S NPs)是最普遍的遗传变异形式。通过开展具有明显表型特征的S NPs基因分型大规模相关研究,有助于鉴定许多复杂疾病原因,了解个体对各种药物的耐受性和对环境因子的反应。人类基因组测序的完成和142万个S NPs在基因组上的定位[1],为首次在全基因组水平上进行S NPs研究打开了方便大门。经典的S NPs分析方法是PCR 扩增后用凝胶电泳检测,虽然可靠性好,但缺乏效率。寡核苷酸微阵列和其他高通量筛选技术效率有了明显的提高,但临床应用绝非可靠,因此,有必要改进和发展新的可靠、敏感、高通量、经济、稳定的S NPs基因分型技术。在本文中,我们主要阐述高通量S NPs基因分型方法,包括一步均质法、焦磷酸测序、DNA芯片/阵列分析法、微球法、MA LDI2T OF质谱基因分型分析法等,讨论这些技术的目前状态和将来潜力。 1 一步均质法 T aqman、Scorpion分析和分子灯塔组成了微滴定平板荧光阅读系统。T aqman和分子灯塔都依赖于等位基因特异性寡核苷酸杂交在PCR期间对等位基因进行区分。而Scorpion分析能使用等位基因特异性PCR或是等位基因特异性杂交反应[2]来区分等位基因。它们作为一个末端分析能在一个完全均质的反应条件下进行分析。在反应起始,所有试剂和基因组DNA都混合在一起,经热循环步骤后,荧光信号能被检测到。该反应既没有单独的预扩增步骤,也没有中间的处理过程,因此它们是一种最简单的分析方法。由于没有适合这些方法的384孔荧光检测器,以及荧光标记探针的价格过高和缺乏可靠的自动化基因型呼叫软件,因此阻碍了这些方法的发展。最近,Applied Biosystems公司新开发的7900HT型高通量荧光定量PCR仪,使得进行384孔微滴定平板荧光检测成为了可能,这主要归因于高通量能力的增加和反应容积的减少。当如果要发展更高的基因分型通量时,一个可靠的自动化等位基因呼叫能力是必须的,它不只是纠正基因型呼叫信号更快,而且在处理和加工数据上必须更迅速,更准确。近来研究表明,自动化基因型呼叫在无阳性对照情况下进行聚类分析是可行的[3]。 2 焦磷酸测序Pyrosequencing 焦磷酸测序是对短到中等长度的DNA序列样品进行高通量、精确和重复性好的分析方法。其反应原理是当测序引物与PCR扩增的,单链DNA模板杂交,和各种酶包括DNA聚合酶、ATP硫酸化酶、荧光素酶、三磷酸腺苷双磷酸酶、以及底物、荧光素一起共同孵育。4种dNTP之一被加入反应体系,如与模板配对,该dNTP与引物的末端形成共价键,dNTP 的焦磷酸基团释放出来。ATP硫酸化酶在APS存在的情况下催化焦磷酸生成ATP,ATP驱动荧光素酶介导的荧光素向氧化荧光素的转化,氧化荧光素发出的可见光信号与ATP量成正比。ATP和未掺入的dNTP由三磷酸腺苷双磷酸酶降解,光信号淬灭,并再生反应体系,然后再加另一种dNTP继续反应。焦磷酸测序最初作为DNA测序方法而发展起来的,其化学反应与Sanger双脱氧二核苷酸法完全不同。它无需灌胶、毛细管电泳,也无需同位素或荧光染料

S参数详解

电子元器件S参数的含义和用途 在进行射频、微波等高频电路设计时,节点电路理论已不再适用,需要采用分布参数电路的分析方法,这时可以采用复杂的场分析法,但更多地时候则采用微波网络法来分析电路,对于微波网络而言,最重要的参数就是S参数。在个人计算机平台迈入GHz阶段之后,从计算机的中央处理器、显示界面、存储器总线到I/O接口,全部走入高频传送的国度,所以现在不但射频通信电路设计时需要了解、掌握S参数,计算机系统甚至消费电子系统的设计师也需要对相关知识有所掌握。 S参数的作用S参数的由来和含义 在低频电路中,元器件的尺寸相对于信号的波长而言可以忽略(通常小于波长的十分之一),这种情况下的电路被称为节点(Lump)电路,这时可以采用常规的电压、电流定律来进行电路计算。其回路器件的基本特征为: ●具体来说S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。 ●针对射频和微波应用的综合和分析工具几乎都许诺具有用S参数进行仿真的能力,这其中包括安捷伦公司的ADS(Advanced Design System),ADS被许多射频设计平台所集成。 ●在进行需要较高频率的设计时,设计师必须利用参数曲线以及预先计算的散射参数(即S-参数)模型,才能用传输线和器件模型来设计所有物理元件。 ○电阻:能量损失(发热) ○电容:静电能量 ○电感:电磁能量 但在高频微波电路中,由于波长较短,组件的尺寸就无法再视为一个节点,某一瞬间组件上所分布的电压、电流也就不一致了。因此基本的电路理论不再适用,而必须采用电磁场理论中的反射及传输模式来分析电路。元器件内部电磁波的进行波与反射波的干涉失去了一致性,电压电流比的稳定状态固有特性再也不适用,取而代之的是“分布参数”的特性阻抗观念,此时的电路被称为分布(Distributed)电路。分布参数回路元器件所考虑的要素是与电磁波的传送与反射为基础的要素,即: ○反射系数 ○衰减系数 ○传送的延迟时间 分布参数电路必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。微

红外隐身原理及其应用技术

课程(论文)题目:红外隐身原理及其应用技术 内容: 1 背景 光电隐身技术可分为可见光隐身、红外隐身和激光隐身三大类。光电隐身起源于可见光隐身,成熟于红外隐身,发展于激光隐身。而现代红外隐身技术经历了探索时期(2 0世纪60年代以前)、技术全面发展时期(20世纪60~70 年代)和应用时期(20世纪80年代至今)。红外隐身技术于20世纪70年代末基本完成了基础研究和先期开发工作,并取得了突破性进展,已由基础理论研究阶段进入实用阶段。从20世纪80年代开始,国外陆海空三军研制的新式武器已经广泛采用了红外隐身技术。 红外隐身技术通过降低或改变目标的红外辐射特征,实现对目标的低可探测性。这可通过改进结构设计和应用红外物理原理来衰减、吸收目标的红外辐射能量,使红外探测设备难以探测到目标。 2 红外隐身原理 概述 从红外物理学可知, 物体红外辐射能量由斯蒂芬-玻耳兹曼定律决定: 式中W——物体的总辐射出射度; σ——玻耳兹曼常数; ε——物体的发射率; T——物体的绝对温度。 温度相同的物体,由于发射率的不同,在红外探测器上会显示出不同的红外图像。鉴于一般军事目标的辐射都强于背景,所以采用低发射率的涂料可显著降低目标的红外辐射能量。另一方面,为降低目标表面的温度,红外伪装涂料在可见光和近红外还具有较低的太阳能吸收率和一定的隔热能力,以使目标表面的温度尽可能接近背景的温度,从而降低目标和背景的辐射对比度,减小目标的被探测概率。 红外侦察系统能探测目标的最大距离R为: 式中J——目标的辐射强度; ——大气透过率; N A——光学系统的数值孔径; ——探测器的探测率; ω——瞬时视场; ——系统带宽; ——信号电平; ——噪声电平。 红外隐身的主要目的是减少公式中第一项的各项取值,也就是说,目标的红外隐身应包括三方面内容,一是改变目标的红外辐射特性,即改变目标表面的发射率;二是降低目标的红外辐射强度,即通常所说的热抑制技术;三是调节红外辐射的传播途径(包括光谱转换技术)。 改变目标红外辐射特性采用的技术 (1) 改变红外辐射波段改变红外辐射波段,一是使目标的红外辐射波段处于红外探测器的响

SNP基因分型的高通量方法

Chapter16 High-Throughput Methods for SNP Genotyping Chunming Ding and Shengnan Jin Abstract Single nucleotide polymorphisms(SNPs)are ideal markers for identifying genes associated with complex diseases for two main reasons.Firstly,SNPs are densely located on the human genome at about one SNP per approximately500–1,000base pairs.Secondly,a large number of commercial platforms are available for semiautomated or fully automated SNP genotyping.These SNP genotyping platforms serve different purposes since they differ in SNP selection,reaction chemistry,signal detection,throughput,cost,and assay flexibility.This chapter aims to give an overview of some of these platforms by explaining the technologies behind each platform and identifying the best application scenarios for each platform through cross-comparison.The readers may delve into more technical details in the following chapters. Key words:Whole genome association,fine mapping,single nucleotide polymorphism,copy number variation,haplotyping. 1.Introduction Single nucleotide polymorphisms(SNPs)are best known as genetic markers in disease-association studies to identify genes associated with complex diseases(1,2).However,SNPs are also used in many other clinically and biologically important applica- tions(3).A large variety of commercial platforms are available for semiautomated or fully automated SNP genotyping analysis.On the basis of the purposes of the study,SNP genotyping can be divided into two domains:whole genome association(WGA)and fine mapping(Fig.16.1).Most of the genotyping platforms can be classified accordingly.This chapter aims to briefly explain the principles behind various platforms which lead to a comparison of these platforms so that the readers will get a quick overview before delving into the technical details of some of these methods in the following chapters. A.A.Komar(ed.),Single Nucleotide Polymorphisms,Methods in Molecular Biology578, DOI10.1007/978-1-60327-411-1_16,aHumana Press,a part of Springer Science+Business Media,LLC2003,2009 245

SNP基因型分析

Powerful, Proven Chemistry Whether your genotyping studies require targeted detection of essential SNPs, or the flexibility for choosing SNPs for mapping, TaqMan SNP Genotyping Assays are the technology of choice. Proven TaqMan probes, which incorporate minor groove binder (MGB) technology at the 3’ end, deliver superior allelic discrimination. The MGB molecule binds to the minor groove of the DNA helix, improving hybridization-based assays by stabilizing the MGB-probe/template complex. The increased binding stabilization permits the use of probes as short as 13 bases TaqMan ? SNP Genotyping Assays TaqMan ? SNP Genotyping Assays from Applied Biosystems provide a highly flexible technology for detection of poly-morphisms within any genome. With the simplest workflow available, TaqMan ? Assays are the quickest way to generate genotyping data. Based on powerful TaqMan ? probe and primer chemistry and designs, and coupled to dependable Applied Biosystems instruments and software, these Made-to-Order assays produce high-confidence results. These TaqMan Assays are ideal for genotyping applications including screening, associa-tion, candidate region, candidate gene, or fine-mapping studies. Content-rich marker-selection tools simplify study design and help you select from a library of human and mouse assays. This library includes over 4.5 million genome-wide human assays (of which 3.5 million are HapMap SNP-based assays, 160,000 are validated assays, and over 70,000 are coding region assays) and 10,000 mouse assays. We also offer over 2,600 Inventoried Drug Metabolism Genotyping Assays. Additionally, Custom TaqMan ? SNP Genotyping Assays let you create your own confidential assays by submitting target SNP sequences for any genome. Let TaqMan SNP Genotyping Assays accelerate the pace of your discovery by eliminating time-consuming experimental design and optimization. Figure 1. Allelic discrimination is achieved by the selective annealing of TaqMan ? MGB probes.

当代潜艇隐身技术的发展

当代潜艇隐身技术的发展 林瑛 所有军用舰艇中,潜艇可以说是最具隐蔽性和突然性的。占地球面积70%以上的海洋为潜艇作战、生存提供了极为有利的自然环境。 在二战中,潜艇击沉的舰船数量居各种作战舰艇之首。在战后几次较大局部战争中(如英阿马岛之战,海湾战争),潜艇无论作为威慑力量还是作为攻击力量也都发挥了巨大的作用。因此世界各主要海军国家都把潜艇力量放在十分重要的位置,对其发展做了相当大的投入。冷战期间,美、前苏联两个超级大国间的军备竞赛刺激了潜艇技术的迅速发展,先后出现了几级闻名于世的潜艇经典之作,如美国的“俄亥俄”级(SSBN),“洛杉矶”级(SSN) ,前苏联的“台风”级(SSBN),O级(SSGN),Ak级(SSN)等等。即使在冷战结束后,在战列舰退出历史舞台,对航母和巡洋舰的发展存在不同争议的情况下,对潜艇的发展,各海军大国却都持积极态度,不断地将当代最新科技成果应用于潜艇之上。美国正在建造的“海狼”级(SSN—21)、俄罗斯正在研制的“北德文斯克”级(855型)等就是典型代表。 有矛必有盾。潜艇技术的发展必然促使反潜技术的发展,各种反潜作战平台、反潜作战武器和反潜侦查系统相继出现,形成了水面、水下、空中、陆基、太空多位一体的综合反潜作战体系,给潜艇的作战和生存带来了极大的危胁,也为潜艇发展带来了一个重要的课题——研究潜艇的各种隐身技术,提高潜艇的隐蔽性和生存概率以及作战的突然打击能力。 一、影响潜艇隐身性的主要因素 1.结构线型不合理 潜艇结构的大小、形状和反射特性决定了潜艇在被声纳探测时的反射截面大小。一般而言,排水量大,长宽比不合理,非水滴线形的潜艇隐蔽效果差。下潜深度小的潜艇被探测到的概率较大。 2.辐射噪声 潜艇辐射噪声的主要来源是沿着潜艇壳体和附体(如垂直舵和水平舵)的水动力噪声、螺旋桨产生的噪声及艇内各种机械装置产生的噪声,这是被动声纳探测的主要目标。 3.磁性特征 潜艇在航行中会引起大地磁场扰动,艇内的机械振动也会使出航前已消过磁的艇体逐渐磁化,形成磁力特有迹象。此外,螺旋桨扰动会在海水中产生局部电流,引起可被磁探仪探测到的地磁场动态变化。

S 文件格式详解

S19文件格式详解 1.概述 为了在不同的计算机平台之间传输程序代码和数据,摩托罗拉将程序和数据文件以一种可打印的格式(ASCII格式)编码成s格式文件。 S-record格式文件是Freescale CodeWarrior编译器生成的后缀名为.S19的程序文件,S格式文件是Freescale推荐使用的标准文件传送格式。编译完成之后,Freescale CodeWarrior编译器将在bin文件夹下自动生成“*.abs.s19”文件,这个文件包含最终下载带单片机中的所有内容。 是一段直接烧写进MCU的ASCII码,英文全称问Motorola format for EEPROM programming。 2.格式定义及含义 S-record每行最大是78个字节,156个字符。 S格式文件中的每一行称为一个S记录,每个S记录由记录类型、记录长度、存储地址、代码/数据、校验和5个部分组成。 每字节数据被编码成2个16进制字符,第一个字符代表数据的高四位,第二个字符代表数据的低4位。 5个部分具体内容如下: 记录类型/ 记录长度/ 存储地址/ (代码/数据) / 校验和 记录类型: 2个字符(即1个字节),用来描述记录的类型。记录供定义了8种类型: S0:S格式文件的第一个记录,表示文件名(含路径),存储地址部分没有使用,以0000置位。此记录表示记录的开始,无需下载到MCU。 S1: 地址长度为2字节(4个字符)的记录。记录类型是“S1”(0x5331)。地址场由2个字节地址来说明。数据场由可载入的数据组成。 S2: 地址长度为3字节的记录。记录类型是“S2”(0x5332)。地址场由3个字节地址来说

隐身材料发展历史综述和应用前景展望

1.绪论 1.1前言 随着无线电技术和雷达探测技术的迅速发展,电子和通信设备向着灵敏、密集、高频以及多样化的方向发展,这不仅引发电磁波干扰、电磁环境污染,更重要的是导致电磁信息泄漏,军用电子设备的电磁辐射有可能成为敌方侦察的线索。为消除或降低导弹阵地的电磁干扰、减少阵地的电磁泄漏,需要大大提高阵地在术来战争中的抗电磁干扰及生存能力。高放能、宽频带的电磁波吸波/屏蔽材料的研究开发意义重大。 吸波材料是一种重要的军事隐身功能材料,它的基本物理原理是,材料对入射电磁波进行有效吸收,将电磁波能量转化为热能或其他形式的能量而消耗掉。该材料应该具备两个特性,即波阻抗匹配性和衰减特性。波阻抗匹配特性即入射电磁波在材料介质表面的反射系数最小,从而尽可能的从表面进人介质内部;衰减特性指进入材料内部的电磁波被迅速吸收。损耗大小,可用电损耗因子和磁损耗因子来表征。对于单一组元的吸收体,阻抗匹配和强吸收之间存在矛盾,有必要进行材料多元复合,以便调节电磁参数,使它尽可能在匹配条件下,提高吸收损耗能力。吸波材料按材料的吸波损耗机理可分为电阻型、电介质和磁介质型。吸波材料的性能主要取决于吸波剂的损耗吸收能力,因此,吸波剂的研究一直是吸波材料的研究重点。 1.2隐身材料定义 随着人们生活水平的提高,各种电器的频繁使用,使我们周围的电磁辐射日益增强,电磁污染成为世界环境的第五害,严重的危害了人类的身体健康。电磁辐射对人的作用有5种:热效应、非热效应、致癌、致突变和致畸作用。因此,在建筑空间中,各类电子,电器以及各种无线通信设备的频繁使用,无时无刻不产生电磁辐射,电磁污染已经引起人们的广泛关注。 电磁吸波材料即隐身材料最早在军事上隐身技术中应用。隐身材料是实现武器隐身的物质基础。武器系统采用隐身材料可以降低被探测率,提高自身的生存率,增加攻击性,获得最直接的军事效益。因此隐身材料的发展及其在飞机、主战坦克、舰船、箭弹上应用,将成为国防高技术的重要组成部分。对于地面武器

相关主题
文本预览
相关文档 最新文档