当前位置:文档之家› 基于ANSYS-LS-DYNA薄壁零件冲压成形过程数值仿真分析

基于ANSYS-LS-DYNA薄壁零件冲压成形过程数值仿真分析

基于ANSYS-LS-DYNA薄壁零件冲压成形过程数值仿真分析
基于ANSYS-LS-DYNA薄壁零件冲压成形过程数值仿真分析

冲压件的工艺分析与计算

广东工业大学 华立学院 课程设计(论文) 一、课程设计(论文)的内容

1.冲压件的工艺分析与计算 1.1工艺分析 产品零件图如下所示 图1-1-1产品零件外形 1)此工件只有落料和冲孔两个工序。工件结构相对简单,有2个Φ10的孔,孔与孔,孔与边缘之间的最小C距离满足C>1.5t要求,最小壁厚为7mm,尺寸精度较低,普通冲裁完全能满足要求。 2)正方形部分清角(不带圆角R),异形凸模加工困难,且容易折断,所以应分步冲裁;正方形部分有尖叫,查表夹角部分应设计R0.4。 3)冲裁件质量是指断面状况、尺寸精度和形状误差。断面状况尽可能垂直、光洁、毛刺小,尺寸精度应该保证在图纸规定的公差范围之内,零件外形应该满足图纸要求,表面尽可能平直,即拱弯小。本产品在断面粗糙度和毛刺高度没有严格要求,所以要模具达到一定要求,冲裁件的断面质量可以保证。 4)本产品的材料为10钢(普通碳素钢,未退火),具有良好的冲压性能,适合冲裁,抗剪强度为255~333t/MPa,抗拉强度为294~432бb/MPa,屈服强度为206бs/MPa,可见产品材料性能符合冲压加工要求。 5)产品批量为大批量,很适合采用冲压加工,最后采用连续模或复合模,加上自动送料装置,会提高生产率。 经上述分析,该零件的尺寸精度能够在冲裁加工中得到保证 孔落料级进冲裁模进行加工。 1.2冲裁工艺方案的确定 止动片冲裁工艺过程包括落料、冲孔两个基本工序,可有以下三种工艺方案:方案一:先冲孔,后落料。 特点:结构简单,但需要两道工序两副模具,成本高生产效率低,难以满足大批量生产的要求。 方案二:落料—冲孔复合冲模,采用复合模生产。 特点:只需要一副模具,工件精度及生产效率都较高,工件最小壁厚为7mm,模具强度较好,但模具制造比较复杂,调整维修较麻烦。 方案三:冲孔—落料级进冲模,采用级进模生产。特点:也只需要一副模具,生产效率高,操作方便,但是制造精度不如复合模,模具制造比较复杂,调整维修较麻烦。 通过对上述三种方案的分析比较,根据本零件的设计要求以及各方案的特点,采用方案三(级进模)最合理,即选用级进模具结构。 分析得到:止动片的形状为上下对称,下端水平,采用直对排效率较高。2.2选择搭边值 排样时冲裁件之间以及冲裁件与条料侧边之间留下的工艺废料叫搭边。搭边的作用一是补偿定位误差和剪板误差,确保冲出合格零件;二是增加条料刚度,方便条料送进,提高劳动生产率;同时,搭边还可以避免冲裁时条料边缘的毛刺被拉人模具间隙,从而提高模具寿命。搭边值由上表得到,工件间1a=2mm,沿边a=2.5mm。 2.3送料步距与条料宽度 制件步距的计算公式为:S=maxD+1a 式中:maxD——条料宽度方向冲裁件的最大尺寸 1a——搭边值

(完整版)第八章地下洞室围岩稳定性分析

第八章地下洞室围岩稳定性分析 第一节概述 1.地下洞室(underground cavity): 指人工开挖或天然存在于岩土体中作为各种用途的构筑物。 2.我国古代的采矿巷道,埋深60m,距今约3000年左右(西周)。 目前,地下洞室的最大埋深已达2500m,跨度已过50m,同时还出现有群洞。 3.分类: 按作用分类:交通隧洞(道)、水工隧洞、矿山巷道、地下厂房仓库、地铁等等; 按内壁有无水压力:有压洞室和无压洞室; 按断面形状为:圆形、矩形或门洞形和马蹄形洞室等; 按洞轴线与水平面间的关系分为:水平洞室、竖井和倾斜洞室三类; 按介质,土洞和岩洞。 4.地下洞室→引发的岩体力学问题过程: 地下开挖→天然应力失衡,应力重分布→洞室围岩变形和破坏→洞室的稳定性问题→初砌支护:围岩压力、围岩抗力(有内压时) (洞室的稳定性问题主要研究围岩重分布应力与围岩强度间的相对关系) 第二节围岩重分布应力计算 1.围岩:指由于人工开挖使岩体的应力状态发生了变化,而这部分被改变了应力状态的岩体。 2.地下洞室围岩应力计算问题可归纳的三个方面: ①开挖前岩体天然应力状态(一次应力、初始应力和地应力)的确定; ②开挖后围岩重分布应力(二次应力)的计算; ③支护衬砌后围岩应力状态的改善。 3.围岩的重分布应力状态(二次应力状态): 指经开挖后岩体在无支护条件下,岩体经应力调整后的应力状态。

一、无压洞室围岩重分布应力计算 1.弹性围岩重分布应力 坚硬致密的块状岩体,当天然应力()c v h σσσ2 1 ≤ 、,地下洞室开挖后围岩将呈弹性变形状态。这类围岩可近似视为各向同性、连续、均质的线弹性体,其围岩重分布应力可用弹性力学方法计算。重点讨论圆形洞室。 (1)圆形洞室 深埋于弹性岩体中的水平圆形洞室,可以用柯西求解,看作平面应变问题处理。 无限大弹性薄板,沿X 方向的外力为P ,半径为R 0的小圆孔,如图8.1所示。 任取一点M (r ,θ)按平面问题处理,不计体力。则: ……………………① 式中Φ为应力函数,它是x 和y 的函数,也是r 和θ的函数。 边界条件: ()()()()()??? ? ?? ???===>>-=??? ??--=>>+=-++=====003103131R b 0)(2sin 22sin 2)(2cos 222cos 22b r r b r r b r r b r r R b p R b p p θθτσθθσστθθσσσσσ ………………② 设满足方程①的应力函数φ为: () θ2cos ln 222F Dr cr Br r A ++++=Φ- ………………………………③ 由③代入①,并由②可得: 2 R F ,4-D ,4-c ,4B ,2204020p pR p p pR A = ===-= ???? ???????Φ ?-?Φ?=?Φ?= ?Φ ?+?Φ?=θθτσθσθθr r r r r r r r r 22 2 22 221111 图 8.1柯西课题分析示意图

冲压件工艺性分析与计算(doc 8页)

冲压件工艺性分析与计算(doc 8页)

一.冲压件工艺性分析 (1)材料分析 08F是优质沸腾钢,强度低和硬度、塑性、韧性好,易于拉伸和冲裁成形。 (2)结构分析 冲压件为外形为弧形和直边组成近似矩形的结构、有凸缘筒形浅拉深、冲三个圆孔的结构。零件上有3个孔,其中最小孔径为5.5mm,大于冲裁最小孔径d≥1.0t=1.2mm的要求。另外,孔壁与制件直壁之间的最小距离满足L=3.475 min ≥R+0.5t=1.6.的要求。所以,该零件的结构满足冲裁拉深的要求。 (3)精度分析 零件上有4个尺寸标注了公差要求,由公差表查得其公差要求都属于IT11~IT13,所以,普通冲裁可以满足零件的精度要求。 由以上分析可知,该零件可以用普通冲裁和拉深的加工方法制得。 二.冲压件工艺方案的确定 (1)冲压方案 完成此工件需要落料、拉深、冲孔三道工序。因此可以提出以下5种加工方案分: 方案一:先落料,再冲孔,后拉深。采用三套单工序模生产。 方案二:落料—拉深—冲孔复合冲压,采用复合模生产。 方案三:冲孔—拉深—落料连续冲压,采用级进模生产。 方案四:拉深—冲孔复合冲压,然后落料,采用级进模生产。 方案五:落料—拉深复合冲压,然后冲孔。采用两套模生产。 (2)各工艺方案的特点分析 方案一和方案五需要多套工序模,模具制造简单,维修方便,但生产成本较低,工件精度低,不适合大批量生产;方案二只需一副模具,冲压件的形状位置精度和尺寸精度易于保证,且生产效率高。方案三和方案四的级进模,生产效率高,但模具制造复杂,调整维修麻烦,工件精度较低; (3)工艺方案的确定

拉深尺寸计算 ,拉深基本公式为 d 0d δD D = 0p )(p Z D D δ-= 尺寸mm 0 33.030-φ,p δ=0.03 d δ=0.05,双边间隙Z=2.2t=2.64,则 d 0d δD D ==05.00 30 0p )(p Z D D δ-==003.0)64.230(-=05.0036.27 中心距尺寸计算 :零件上两孔中心距为L=mm 5.1709.009.0+ -mm (2)拉深凸、凹模圆角半径的计算 凹模圆角半径的计算:拉深凹模圆角半径的计算为 ()t d D r d -80.01= 此零件落料冲孔的周长L 为94mm ,材料厚度t 为1.2mm ,08F 钢的抗拉强度b σ取390MPa ,则零件所需拉深力为 ()()mm t d D r d 35.22.16.272.3680.080.01=?-=-= 凸模圆角半径的计算:拉深凸模圆角半径的计算为 18.01d r r p = 根据凹模圆角半径,计算凸模半径为 88.135.28.08.011=?=d r r p = 四.冲压力的计算及初选压力机 (1)落料工序冲压力的计算 冲裁力基本计算公式为τKLT F = 此零件落料的周长1L 为153mm ,材料厚度t 为 1.2mm ,08F 钢的抗剪强度τ取310MPa ,则冲裁该零件所需冲裁力为 kN 748.73990N 3102.11533.1≈=???=N F 落 模具采用弹性卸料装置和推件结构,所需卸料力X1F 和推件力T1F 为

装配结构工艺性分析

一、分析研究产品的零件图样和装配图样 在编制零件机械加工工艺规程前,首先应研究零件的工作图样和产品装配图样,熟悉该产品的用途、性能及工作条件,明确该零件在产品中的位置和作用;了解并研究各 项技术条件制订的依据,找出其主要技术要求和技术关键,以便在拟订工艺规程时采用适当的措施加以保证。 工艺分析的目的,一是审查零件的结构形状及尺寸精度、相互位置精度、表面粗糙度、材料及热处理等的技术要求是否合理,是否便于加工和装配;二是通过工艺分析,对零件的工艺要求有进一步的了解,以便制订出合理的工艺规程。 如图3-8 所示的汽车钢板弹簧吊耳,使用时,钢板弹簧与吊耳两侧面是不接触的,所以吊耳内侧的粗糙度可由原来的设计要求R a3.2 μm 建议改为R a12.5 μ m. 。这样在铣削时可只用粗铣不用精铣,减少

铣削时间。 再如图3-9 所示的方头销,其头部要求淬火硬度55~60HRC ,所选用的材料为T 8A ,该零件上有一孔φ2H7 要求在装配时配作。由于零件长度只有15mm ,方头部长度仅有4mm ,如用T 8A 材料局部淬火,势必全长均被淬硬,配作时,φ 2H7 孔无法加工。若建议材料改用20Cr 进行渗碳淬火,便能解决问题。 二、结构工艺性分析 零件的结构工艺性是指所设计的零件在满足使用要求的前提下,制造的可行性和经济性。下面将从零件的机械加工和装配两个方面,对零件的结构工艺性进行分析。 (一)机械加工对零件结构的要求 1 .便于装夹零件的结构应便于加工时的定位和夹紧,装夹次数要少。图3 -10a 所示零件,拟用顶尖和鸡心夹头装夹,但该结构不便于装夹。若改为图b 结构,则可以方便地装置夹头。 2 .便于加工零件的结构应尽量采用标准化数值,以便使用标准化刀具和量具。同时还注意退刀和进刀,易于保证加工精度要求,减少加工面积及难加工表面等。表3-8b 所示为便于加工的零件结构示例。

冲压工艺分析流程及要点

冲压工艺分析流程及要点 说明: 本规范为TG0数据设计指导。 该系列设计规范用于指导结构功能说明、结构布置与 尺寸控制的正向设计,尤其是在没有标杆车的状态下 的正向开发;基于本规范完成结构数据TG0版的设计 开发。 本规范是TG0版数据的设计指导。 [键入文字]

内容 一.冲压SE宏观流程 二.冲压SE流程详解 三.根据冲压工艺评审表对该数型进行分序的理解,理解压型或者拉延以及后序排布 四.根据分序理解,在项目负责人(冲压工艺负责人)协助下进行AF冲压方向确定,并导出TIP点五.根据冲压方向做成型工艺补充,压边圈按要求尽量平缓过渡光顺,并将修边线展出。调整分模线平滑光顺 六.根据项目提供信息及材料进行成型工艺模拟 七.对成型模拟结果进行分析,此过程需项目负责人(冲压工艺负责人)监督完成,根据模拟结果分析要求进行反复模拟验证 八.根据结果分析要求对该产品优化,并提出相应的ECR。(ECR格式和内容待商定) 九.经项目负责人(冲压工艺负责人)确认结果分析无误后,可开始进行UG建型。并开始正式UG 数据模拟计算并分析结果 十.根据结果进行局部小修改,直到模拟结果没问题,将数型数据交给精算人员进行PAM精算。根据PAM精算结果进行局部修改,同时准备后续翻边整形的粗算及数型数据。并交给精算人员进行精算 十一.准备工艺数型,根据要求完成数型优化和层的摆放 十二.制作DL图,并优化二维图 十三. 项目负责人(冲压工艺负责人)审核完工艺数型和DL图后,可提交给项目助理整理并最终按节点交付材料 注意:红色字体为推荐值

冲压SE分析流程及要点 一.冲压SE宏观流程: 1. 接到数据在项目负责人(冲压工艺负责人)协助下分析工艺数据宏观缺陷。 2. 根据冲压工艺评审表对该数型进行分序的理解,理解压型或者拉延以及后序排布。 3. 根据分序理解,在项目负责人(冲压工艺负责人)协助下进行AF冲压方向确定,并导出TIP 点,此过程根据分析结果需反复操作。 4. 根据冲压方向做成型工艺补充,压边圈按要求尽量平缓过渡光顺,并将修边线展出。调整分 模线平滑光顺。 5. 根据项目提供信息及材料进行成型工艺模拟。 6. 对成型模拟结果进行分析,此过程需项目负责人(冲压工艺负责人)监督完成,根据模拟结 果分析要求进行反复模拟验证。 7. 根据结果分析要求对该产品优化,并提出相应的ECR。 8. 经项目负责人(冲压工艺负责人)确认结果分析无误后,可开始进行建型。并开始正式数据 模拟计算并分析结果。 9. 根据结果进行局部小修改,直到模拟结果没问题,将数型数据交给精算人员进行PAM精算。 根据PAM精算结果进行局部修改,同时准备后续翻边整形的粗算及数型数据。并交给精算人员进行精算。 10. 准备工艺数型,根据要求完成数型优化和层的摆放。 11. 制作DL图,并优化二维图。 12. 项目负责人(冲压工艺负责人)审核完工艺数型和DL图后,可提交给项目助理整理并最终按 节点交付材料。 二.冲压SE流程详解: A. 接到数据在项目负责人(冲压工艺负责人)协助下分析工艺数据宏观缺陷。 在接受到客户输入的数据后,项目负责人(冲压工艺负责人)会做一次全面的工艺审查并分序,包括工艺数据各个方面的宏观缺陷,之后将按人力和资源将任务分配到个人。当个人接到数据后,将数据打开开始通过观察和经验进行分析该数据的宏观缺陷。宏观缺陷主要包括: ①.数据有无造型缺陷。如缺面,多面,残面,未倒角,等其他面品缺陷。 ②.数据有无拉延缺陷。如负角,拔模角度小,圆角过小(简算最小R≥3t),尖点,三面包 角等成型缺陷。 ③.数据有无修边冲孔缺陷。如孔离边缘太近(小于3mm),立修角度小,立壁缺口,三面包 角无缺口,模具强度弱,缺口距离小于4mm等缺陷。 ④.数据有无后序成型缺陷。如翻边有负角,翻边后拐角无缺口,翻边干涉,翻边后有无冲孔 等缺陷。 以上所有宏观缺陷基本由项目负责人(冲压工艺负责人)在全面工艺审查时已经提出,个人接到数据后在协助检查一下,务必做到问题提前发现,提前预防,在第一次ECR就将问题大部分消灭。 三.根据冲压工艺评审表对该数型进行分序的理解,理解压型或者拉延以及后序排布。 在做完宏观缺陷分析后,就可以根据工艺评审表对该数据的分序进行理解,弄清楚该产品是按拉延还是按压型做,以及后序的排布,明白后序分模线在什么地方,拉延或者压型该从什么地方开始做工艺补充。并确定是否对件。 四.根据分序理解,在项目负责人(冲压工艺负责人)协助下进行AF冲压方向确定,并导出TIP点,

塑件成型工艺性分析3

一、塑件成型工艺性分析 1、塑件的分析 (1)外形尺寸该塑件壁厚为3mm,塑件外形尺寸不大,塑件熔体流程不太长,适合于注射成型。 (2)精度等级每个尺寸的公差都不一样,有的属于一般精度,有的属于高精度,就按实际公差进行计算。 (3)脱模斜度 ABS属无定形塑料,成型收缩率较小,选择该塑件上型芯和凹模的统一脱模斜度为1度。 2、ABS的性能分析 (1)使用性能综合性能好,冲击强度、力学强度较高,尺寸稳定,耐化学性,电气性能好;易于成型和机械加工,其表面可镀铬,适合制作一般机械零件、减摩零件、传动零件和结构零件。 (2)成型性能 1)无定型塑料。其品种很多,各品种的机电性能及成型特性也各有差异,应按品种来确定成型方法及成型条件。 2)吸湿性强。含水量应小于0.3%(质量)。必须充分干燥,要求表面光泽的塑件应要求长时间预热干燥。 3)流动性中等。溢边料0.04mm左右。 4)模具设计时要注意浇注系统,选择好进料口位置、形式。推出力过大或机械加工时塑件表面呈白色痕迹。 (3)ABS的主要性能指标其性能指标见下表

ABS 性能指标 密度/g ·3cm 1.02~1.08 屈服强度/MPa 50 比体积/13-?g cm 0.86~0.96 拉伸强度/MPa 38 吸水率(%) 0.2~0.4 拉伸弹性模量/MPa 1.4×310 熔点/C ο 130~160 抗弯强度/MPa 80 计算收缩率(%) 0.4~0.7 抗压强度/MPa 53 比热熔/1)(-??C kg J ο 1470 弯曲弹性模量/MPa 1.4310? 3、ABS 的注射成型过程及工艺参数 (1)注射成型过程 1)成型前的准备。对ABS 的色泽、粒度和均匀度等进行检验,由于ABS 吸水性较大,成型前应进行充分的干燥。 2)注射过程。塑件在注射机料和筒内经过加热、塑化达到流动状态后,由模具的浇注系统进入模具型腔成型,其过程可分为充模、压实、保压、倒流和冷却五个阶段。 3)塑件的后处理。的介质为空气和水,处理温度为60~75C ?,理时间为16~20s 。 (2)注射工艺参数 1)注射机:螺杆式,螺杆转数为30r/min 2)料筒温度(C O ):后段150~170; 中段160~180;

隧道围岩及支护结构稳定性分析方法综述

隧道围岩及支护结构稳定性分析方法综述 伍华刚 (贵州省交通规划勘察设计研究院,贵州贵阳,550001) 摘 要:以隧道围岩与支护结构的相互关系为主要研究对象,以特长公路隧道围岩及支护结构稳定性分析方法为依托,对隧道掌子面所揭露围岩岩体、结构特征进行调查、记录,分析掌子面围岩等级,并与设计资料进行对比,对不同级别不同地质条件下的围岩与支护结构稳定性进行比较分析,总结围岩及支护结构稳定性分析的方法。 关键词:特长隧道;围岩;支护结构;稳定性分析中图分类号:U 452.1+2 文献标识码:A 文章编号:1004-6429(2010)04-0072-03 ●应用技术 收稿日期:2010-05-14 作者简介:伍华刚,男,1959年出生,1983年毕业于云南广播电视大学,工程师,550001,贵州省贵阳市云岩区中山东路69号山西科技SHANXI SCIENCE AND TECHNOLOGY 2010年第25卷第4期 随着深埋特长隧道的不断涌现,所遇到的问题也越来越多,现行的设计与施工规范已不能满足设计与施工要求,虽然国内外有关深埋特长隧道的研究成果不少,但由于深埋特长隧道地形、 地质条件复杂,设计制约因素多,并且常伴有断裂带、破碎带、 岩爆、突泥、涌水等地质灾害,给设计和施工带来了很大的盲目性。加上深埋特长隧道埋深大、隧道长、地质条件复杂,使地质勘察也不可能全面精确地探清每一段的具体情况,很多时候勘察结果与隧道施工中实际遇到的地质条件相差很远,漏掉的一些不良地质体给施工带来许多预想不到的困难。1 公路隧道围岩稳定性分析方法 隧道围岩的稳定性分析主要包括隧道的整体稳定性分析和局部块体的稳定性分析,分析方法大致可归纳为工程地质类比法、岩体结构分析法、岩体稳定性力学分析法和模拟试验法等,其中,模拟试验法包括物理模拟和数值模拟。1.1 工程地质类比法 根据拟建地下洞室的工程地质条件、岩体特性和监测资料,结合具有类似条件的已建工程,开展资料的综合分析和对比,从而判断工程区岩体的稳定性。由大量工程实例总结出来的各级围岩分类标准,如RQD 分类(Deer ,1969)、RMR 分类(Bieniawiski ,1973)、Q 系统分类(Barton ,1974)、Z 系统分类(谷德振,1979),以及我国的《工程岩体分级标准》(GB 50218—94)等,都是工程地质类比法在稳定性评价中的具体应用。这些围岩分类系统可以对不同类型围岩按定量地给出其围岩压力值及支护衬砌的形式和厚度,对于一般性工程隧道实现地下工程(结构)设计标准起到了重要的作用,也是地质工程工作者的基本方法之一。1.2 岩体结构分析法 在岩体结构及其特性研究的基础上,考虑工程力作用方向 以及结构面与开挖临空面之间的空间组合关系,借助于赤平极射投影分析法、实体比例投影分析法和块体坐标投影法进行图解分析,从而判断岩体的稳定性。1.3 力学分析法 从19世纪人类对松散地层(主要是土层)围岩稳定和围岩压力理论进行研究开始到现在,围岩压力理论主要经历了古典压力理论、散体压力理论及现在广泛应用的弹性力学理论、塑性力学理论。 实际工程中,隧道开挖后,由于卸荷作用使围岩应力进行重分布,并出现应力集中,如果围岩应力处处小于岩体弹性极限强度,这时围岩处于弹性状态。反之,围岩将部分进入塑性状态,但局部区域进入塑性状态并不意味着围岩将发生坍落或失稳。因而,研究围岩稳定就不能不考虑塑性问题,芬纳(Fenner )—塔罗勃(Talo-bre .J )和卡斯特奈(Kaster.H )等给出了围岩的弹塑性应力图形。1.4 数值计算方法 岩体不仅为一般材料,更重要的是本身就是一种复杂的地质结构体,它具有非均质、非连续、非线性以及复杂的加卸载条件和边界条件,这使得岩体力学的问题通常无法用解析法简单地求解,数值方法不仅能模拟岩体的复杂力学和结构特征,也可以方便地分析各种边值问题和施工过程,并对工程进行预测和预报,因此,数值分析方法是解决岩土体工程问题的有效工具之一。常用的数值方法有:有限元法(FEM )、有限差分法(FLAC ,FDM )、离散元法(DEM )反分析法、边界元法(BEM )、不连续变形分析法(DDA )、流形方法等,这些方法在地下洞室和边坡稳定等均有较多的应用,取得了较好的效果。1.5 模型试验 模型试验是隧道及地下工程研究中使用较多的一种方法,其理论基础是相似理论。模型试验具有直观、全面的优点,20世 纪80年代,国内许多学者作了大量的实验研究,谷兆琪教授等(1981)进行了层状砂岩地下洞室稳定性的研究,朱维中、冯光北等(1983,1984)研究了单排裂隙岩体模型的抗剪强度研究,杨淑 72··

冲压工艺过程设计的内容及步骤

第二章冲压件工艺过程设计的内容及步骤 不论冲压件的几何形状和尺寸大小如何,其生产过程一般都是从原材料剪切下料开始,经过各种冲压工序和其他必要的辅助工序(如退火,酸洗,表面处理等)加工出图纸所要求的零件。对于某些组合冲压件或精度要求较高的冲压件,还需要经过切削,焊接或铆接等加工,才能完成。冲压件工艺过程的制定和模具设计是冷冲压课程设计的主要内容。进行冲压设计就是根据已有的生产条件,综合考虑影响生产过程顺利进行的各方面因素,合理安排零件的生产工序,最优地选用,确定各工艺参数的大小和变化范围,设计模具,选用设备等,以使零件的整个生产过程达到优质,高产,低耗,安全的目的。 2.1 工艺过程设计的基本内容 冲压工艺规程是模具设计的依据,而良好的模具结构设计,又是实现工艺过程的可靠保证,若冲压工艺有改动,往往会造成模具的返工,甚至报废。冲制同样的零件,通常可以采用几种不同方法。工艺过程设计的中心就是依据技术上先进,经济上合理,生产上高效,使用上安全可靠的原则,使零件的生产在保证符合零件的各项技术要求的前提下,达到最佳的技术效果和经济效益。 冲压件工艺过程设计的主要内容和步骤是: 一. 分析零件图(冲压件图) 产品零件图是分析和制定冲压工艺方案的重要依据,设计冲压工艺过程要从分析产品的零件图人手。分析零件图包括技术和经济两个方面: 1. 冲压加工的经济性分析 冲压加工方法是一种先进的工艺方法,因其生产率高,材料利用率高,操作简单等一系列优点而广泛使用。由于模具费用高,生产批量的大小对冲压加工的经济性起着决定性作用,批量越大,冲压加工的单件成本就越低,批量小时,冲压加工的优越性就不明显,这时采用其他方法制作该零件可能有更好的经济效果。例如在零件上加工孔,批量小时采用钻孔比冲孔要经济;有些旋转体零件,采用旋压比拉深会有更好的经济效果。所以,要根据冲压件的生产纲领,分析产品成本,阐明采用冲压生产可以取得的经济效益。 2. 冲压件的工艺性分析 冲压件的工艺性是指该零件在冲压加工中的难易程度。在技术方面,主要分析该零件的形状特点,尺寸大小,精度要求和材料性能等因素是否符合冲压工艺的要求。良好的工艺性应保证材料消

分析零件图——零件图的审查

分析零件图——零件图的审查 在制订零件的机械加工工艺规程之前,对零件进行工艺性分析,以及对产品零件图提出修改意见,是制订工艺规程的一项重要工作。 首先应熟悉零件在产品中的作用、位置、装配关系和工作条件,搞清楚各项技术要求对零件装配质量和使用性能的影响,找出主要的和关键的技术要求,然后对零件图样进行分析。 (1) 检查零件图的完整性和正确性 在了解零件形状和结构之后,应检查零件视图是否正确、足够,表达是否直观、清楚,绘制是否符合国家标准,尺寸、公差以及技术要求的标注是否齐全、合理等。 (2) 零件的技术要求分析 零件的技术要求包括下列几个方面:加工表面的尺寸精度;主要加工表面的形状精度;主要加工表面之间的相互位置精度;加工表面的粗糙度以及表面质量方面的其它要求;热处理要求;其它要求(如动平衡、未注圆角或倒角、去毛刺、毛坯要求等)。 要注意分析这些要求在保证使用性能的前提下是否经济合理,在现有生产条件下能否实现。特别要分析主要表面的技术要求,因为主要表面的加工确定了零件工艺过程的大致轮廓。 (3) 零件的材料分析 即分析所提供的毛坯材质本身的机械性能和热处理状态,毛坯的铸造品质和被加工部位的材料硬度,是否有白口、夹砂、疏松等。判断其加工的难易程度,为选择刀具材料和切削用量提供依据。所选的零件材料应经济合理,切削性能好,满足使用性能的要求。 (4) 合理的标注尺寸 ①零件图上的重要尺寸应直接标注,而且在加工时应尽量使工艺基准与设计基准重合,并符合尺寸链最短的原则。如图4-1中活塞环槽的尺寸为重要尺寸,其宽度应直接注出。

②零件图上标注的尺寸应便于测量,不要从轴线、中心线、假想平面等难以测量的基准标注尺寸。如图4-2中轮毂键槽的深度,只有尺寸c的标注才便于用卡尺或样板测量。 ③零件图上的尺寸不应标注成封闭式,以免产生矛盾。如图4-3所示,已标注了孔距尺寸a±δ和角度α±δα,则则x、y轴的坐标尺寸就不能随便标注。有时为了方便加工,可按尺寸链计算出来,并标注在圆括号内,作为加工时的参考尺寸。 ④零件上非配合的自由尺寸,应按加工顺序尽量从工艺基准注出。如图4-4的齿轮轴,图(a)的表示方法大部分尺寸要经换算,且不能直接测量。而图(b) 图4-1 直接标注重要尺寸图4-2 键槽深度的标注图4-3 孔中心距的标注 (a) (b)

ABS塑料特性、成型工艺、用途

ABS塑料特性、成型工艺、用途 ABS 丙烯腈-丁二烯-苯乙烯共聚物化学和物理特性ABS是由丙烯腈、丁二烯和苯乙烯三种化学单体合成。每种单体都具有不同特性:丙烯腈有高强度、热稳定性及化学稳定性;丁二烯具有坚韧性、抗冲击特性;苯乙烯具有易加工、高光洁度及高强度。从形态上看,ABS是非结晶性材料。三中单体的聚合产生了具有两相的三元共聚物,一个是苯乙烯-丙烯腈的连续相,另一个是聚丁二烯橡胶分散相。 ABS的特性主要取决于三种单体的比率以及两相中的分子结构。这就可以在产品设计上具有很大的灵活性,并且由此产生了市场上百种不同品质的ABS材料。这些不同品质的材料提供了不同的特性,例如从中等到高等的抗冲击性,从低到高的光洁度和高温扭曲特性等。 ABS材料具有超强的易加工性,外观特性,低蠕变性和优异的尺寸稳定性以及很高的抗冲击强度。 注塑模工艺条件 干燥处理:ABS材料具有吸湿性,要求在加工之前进行干燥处理。建议干燥条件为80~90C下最少干燥2小时。材料温度应保证小于0.1%。 熔化温度:210~280C;建议温度:245C。模具温度:25…70C。(模具温度将影响塑件光洁度,温度较低则导致光洁度较低)。 注射压力:500~1000bar。 注射速度:中高速度。典型用途汽车(仪表板,工具舱门,车轮盖,反光镜盒等),电冰箱,大强度工具(头发烘干机,搅拌器,食品加工机,割草机等),电话机壳体,打字机键盘,娱乐用车辆如高尔夫球手推车以及喷气式雪撬车等。 PA12 聚酰胺12或尼龙12 典型应用范围: 水量表和其他商业设备,电缆套,机械凸轮,滑动机构以及轴承等。 注塑模工艺条件: 干燥处理:加工之前应保证湿度在0.1%以下。如果材料是暴露在空气中储存,建议要在 85C热空气中干燥4~5小时。如果材料是在密闭容器中储存,那么经过3小时温度平衡即可 直接使用。 熔化温度:240~300C;对于普通特性材料不要超过310C,对于有阻燃特性材料不要超过270C。模具温度:对于未增强型材料为30~40C,对于薄壁或大面积元件为80~90C,对于增强型材料为

成型零件设计

成型零件的设计 成型零件的结构设计主要是指构成模具型腔的零件,通常有凹模、型芯、各种成形杆和成形环。 模具的成型零件主要是凹模型腔和底板厚度的计算,塑料模具型腔在成型过程中受到熔体的高压作用,应具有足够的强度和刚度,如果型腔侧壁和底板厚度过小,可能因强度不够而产生塑性变形甚至破坏;也可能因刚度不足而产生挠曲变形,导致溢料飞边,降低塑件尺寸精度并影响顺利脱模。因此,应通过强度和刚度计算来确定型腔壁厚,尤其对于重要的精度要求高的或大型模具的型腔,更不能单纯凭经验来确定型腔壁厚和底板厚度。 注射模具的成型零件是指构成模具型腔的零件,通常包括了凹模、型芯、成型杆等。凹模用以形成制品的外表面,型芯用以形成制品的内表面,成型杆用以形成制品的局部细节。成形零件作为高压容器,其内部尺寸、强度、刚度,材料和热处理以及加工工艺性,是影响模具质量和寿命的重要因素。 设计时应首先根据塑料的性能、制件的使用要求确定型腔的总体结构、进浇点、分型面、排气部位、脱模方式等,然后根据制件尺寸,计算成型零件的工作尺寸,从机加工工艺角度决定型腔各零件的结构和其他细节尺寸,以及机加工工艺要求等。此外由于塑件融体有很高的压力,因此还应该对关键成型零件进行强度和刚度的校核。 在工作状态中,成型零件承受高温高压塑件熔体的冲击和摩擦。在冷却固化中形成了塑件的形体、尺寸和表面。在开模和脱模时需要克服于塑件的粘着力。在上万次、甚至上几十万次的注射周期,成型零件的形状和尺寸精度、表面质量及其稳定性,决定了塑件制品的相对质量。成型零件在充模保压阶段承受很高的型腔压力,作为高压容器,它的强度和刚度必须在容许范围内。成型零件的结构,材料和热处理的选择及加工工艺性,是影响模具工作寿命的主要因素。 一、成型零件的选材 对于模具钢的选用,必需要符合以下几点要求: 1、机械加工性能良好。要选用易于切削,且在加工以后能得到高精度零件的钢种。 2、抛光性能优良。注射模成型零件工作表面,多需要抛光达到镜面,Ra≤0.05μm。要求钢材硬度在HRC35~40为宜。过硬表面会使抛光困难。钢材的显微组织应均匀致密,极少杂质,无疵斑和针点。 3、耐磨性和抗疲劳性能好。注射模型腔不仅受高压塑料熔体冲刷,而且还受冷热温度交变应力作用。一般的高碳合金钢可经热处理获得高硬度,但韧性差易形成表面裂纹,不以采用。所选钢种应使注塑模能减少抛光修模次数,能长期保持型腔的尺寸精度,达到所计划批量生产的使用寿命期限。 4、具有耐腐蚀性。对有些塑料品种,如聚氯乙稀和阻燃性的塑料,必须考虑选用有耐腐蚀性能的钢种。

冲压件工艺性分析讲解

一、止动件冲压件工艺性分析 1、零件材料:为Q235-A 钢,具有冲裁; 2、零件结构良好的冲压性能,适合:相对简单,有2个φ20mm 的孔;孔与孔、孔与边缘之间的距离也满足要求,最小壁厚为14mm (φ20mm 的孔与边框之间的壁厚) 3、零件精度:全部为自由公差,可看作IT14级,尺寸精度较低,普通冲裁完全能满足要求。 查表得各零件尺寸公差为: 外形尺寸:0 1130-、062.048-、074.060-、03.04-R 、074.060-R 内型尺寸:052.0020+ 孔中心距:60±0.37 二、冲压工艺方案的确定 完成该零件的冲压加工所需要的冲压基本性质的工序只有落料、冲孔两道工序。从工序可能的集中与分散、工序间的组合可能来看,该零件的冲压可以有以下几种方案。 方案一:落料-冲孔复合冲压。采用复合模生产。 方案二:冲孔-落料级进冲压。采用级进模生产。 方案一只需一副模具,工件的精度及生产效率都较高,工件最小壁厚14mm 大于凸凹模许用最小壁厚3.6mm--4.0mm ,模具强度好,制造难度中等,并且冲压后成品件可通过卸料板卸下,清理方便,操作简单。

方案二也只需一副模具,生产效率高,操作方便,工件精度也能满足要求,但是模具结构复杂,制造加工,模具成本较高。 结论:采用方案一为佳 三、模具总体设计 (1)模具类型的选择 由冲压工艺分析可知,采用复合模冲压,所以模具类型为复合模。(2)定位方式的选择 因为该模具采用的是条料,控制条料的送进方向采用导料板,无侧压装置。控制条料的送进步距采用挡料销定距。而第一件的冲压位置因为条料长度有一定余量,可以靠操作工目测来定。 (3)卸料、出件方式的选择 因为工件料厚为1.5mm,相对较薄,卸料力也比较小,故可采用弹性卸料。又因为是倒装式复合模生产,所以采用上出件比较便于操作与提高生产效率。 (4)导向方式的选择 为了提高模具寿命和工件质量,方便安装调整,该倒装式模采用导柱导向方式。 四、排样方案确定及材料利用率 (1)排样方式的确定及其计算 设计倒装式复合模,首先要设计条料排样图,采用直排。 方案一:搭边值取2mm和3mm(P33表2-9),条料宽度为135mm

机械零件结构工艺性分析与工艺路线的拟定

目录 一、零件结构工艺性分析2 1. 零件的技术要求2 2.确定堵头结合件的生产类型3 二、毛坯的选择4 1.选择毛坯4 2.确定毛坯的尺寸公差4 三、定位基准的选择6 1.精基准的选择6 2.粗基准的选择6 四、工艺路线的拟定7 1.各表面加工方法的选择7 2.加工阶段的划分8 3.加工顺序的安排8 4.具体技术方案的确定9 五、工序内容的拟定10 1.工序的尺寸和公差的确定10 2.机床、刀具、夹具及量具的选择12 3.切削用量的选择及工序时间计算12 六、设计心得35 七、参考文献36

一、零件结构工艺性分析 1.零件的技术要求 1.堵头结合件由喂入辊轴和堵头焊接在一起。其中喂入辊 轴:材料为45钢。堵头:材料为Q235-A。且焊缝不得有夹渣、气孔及裂纹等缺陷。 2.零件的技术要求表:

2. 确定堵头结合件的生产类型 根据设计题目年产量为10万件,因此该左堵头结合件的生产类型为大批量生产。

二、毛坯的选择 1.选择毛坯 由于该堵头结合件在工作过程中要承受冲击载荷,为增强其的强度和冲击韧度,堵头选用锻件,材料为Q235-A,因其为大批大量生产,故采用模锻。喂入辊轴由于尺寸落差不大选用棒料,材料为45钢。 2.确定毛坯的尺寸公差 喂入辊轴: 根据轴类零件采用精轧圆棒料时毛坯直径选择可通过零件的长度和最大半径之比查的毛坯直径 206 L8.24 == R25 查表得毛坯直径为:φ55 根据其长度和直径查得端面加工余量为2。故其长度为206+2+2=210mm

堵头: 1.公差等级: 由于堵头结合件用一般模锻工艺能够达到技术要求,确定该零件的公差等级为普通级。 2.重量: 锻件重量的估算按下列程序进行: 零件图基本尺寸-估计机械加工余量-绘制锻件图-估算锻件重量。并按此重量查表确定公差和机械加工余量 据粗略估计锻件质量: 11.6f Kg M = 3.形状复杂系数: 锻件外廓包容体重量按公式:2N d h 4 M π ρ= g g 计算 293 186.5101104 7.851021.65Kg N M π -= ?????= 形状复杂系数: f 11.6 0.5421.6M S M N === 故形状复杂系数为S2(一般)级。 4.锻件材质系数: 由于该堵头材料为Q235-A 所含碳元素的质量分数分别为C=0.14%—0.22%,小于0.65% 所含合金元素的质量分数分别为Si 0.3%≤、S 0.05%≤、P 0.045%≤故合金元素总的质量分数为0.3%0.05%0.045%0.395%3%++≤<%。故该锻件的材质系数为M1级。 5.锻件尺寸公差 根据锻件材质系数和形状复杂系数查得锻件尺寸公差为 ( 2.41.2+-) 。 6.锻件分模线形状: 根据该堵头的形装特点,选择零件轴向方向的对称平面为分模面,属于平直分模线。

塑料成型的工艺性分析

一、塑料成型的工艺性分析 该塑件是外壳产品,其零件图如下图所示。本塑件的材料采用聚氯乙烯PVC, 1.1.1塑件的原材料分析 P50 塑件注射成型工艺参数的确定: 根据该塑件的结构特点和得成型性能,查相关手册得到ABS塑件的成型工艺参数: 塑件的注射成型工艺参数

二.分型面位置的确定 根据塑件结构形式分型面应选在I上,如下图: 三.确定型腔数量和排列方式 1.该塑件精度要求不高,批量大,可以采用一模多腔,考虑到模具的制造费用和设备的运转费用,定为一模两腔。 四.模具结构形式的确定 从上面的分析中可知本模具采用一模两腔,直排,推干推出,流道采用平衡式,浇口采用侧浇口,动模部分需要一块型芯,固定板,支撑板。 五.注射机型号的选定 1.通过测量,塑件的质量为6.5gPVC的密度为1.4g/cm3 V= 草稿本上 4、注射机有关参数的校核 型腔数校核合格。 式中,K—-注塑机最大注射量的利用系数一般取0.8

m—注射机的额定塑化量(10.5g/s) T—成型周期取30s 3、开模行程校核 开模行程是指从模具中取出塑料所需要的最小开合距离,用H表示,它必须小于注射机移动模板的最大行程S。所需开模行程为:六.浇注系统的设计 6.1 主流道设计 1)主流道尺寸设计 根据所选注射机,则主流道小端尺寸为 d=注射机喷嘴尺寸+1 =5 2)主流道球面半径为 SR=喷嘴球面半径+(1-2)=13mm 3)球面配合高度 h=3mm-5mm,取h=4mm 4)主流道长度,尽量小于60,由标准模架结合该模具的结构,取L=20+20=40mm 5)主流道大端直径 D=d+2Ltana=8.5mm(半锥角a为,取a= )取D=10mm 6.2 主流道衬套的形式 主流道小端入口处与注射机喷嘴反复接触属易损性,对材料要求严格,因而模具主流道部分常设计可拆卸更换的主流道衬套形式即浇口

分析影响隧道围岩稳定性因素

分析影响隧道围岩稳定性因素 习小华 摘要:主要对影响隧道围岩稳定性的自然因素如岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水进行了详细的分析。 关键词:围岩稳定性;天然应力状态;地质构造 毫无疑问,隧道围岩的稳定性对隧道的正常运营是至关重要的。从许多隧道发生的交通事故中可以知道,隧道围岩的稳定性不仅与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关,而且还与隧道的开挖方式及支护的形式和时间等因素有关。但其中起主导作用的还是岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水等自然因素。因此了解这些因素对围岩稳定性的影响和机理,才能够客观实际的采取相应的维护隧道围岩稳定的措施。 1 岩石性质及岩体的结构 围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类粘土质岩石、粘土岩类、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆性围岩主要各类坚硬体,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩的强度主要取决于岩体的结构,岩性本身的影响不是很显著。从围岩的完整性(围岩完整性可以用岩石质量指标RQD、节理组数J n、节理面粗糙程度J y、节理变质系数Ja、裂隙水降低系数Jw、应力降低系数SRF 八类因素进行定量分析) 角度,可以将围岩分为五级即:完整、较完整、破碎、较破碎、极破碎。如果隧道围岩的整体性质良好、节理裂隙不发育(如脆性围岩) 即围岩为完整或较完整,那么,隧道开挖后,围岩产生的二次应力一般不会使岩体发生破坏,即使发生破坏,变形的量值也是较少的。这种情况下,围岩岩性对围岩的稳定性的影响是很微弱的,即一般是稳定的,可以不采取支护,能适应各种断面形状及尺寸的隧道。如果隧道围岩的整体性质差、强度低,节理裂隙发育或围岩破碎(如塑性围岩)即围岩为破碎、较破碎或极破碎,则围岩的二次应力会产生较大的塑性变形或破坏区域,同时节理裂隙间的岩层错动会使滑移变形增大,势必给围岩的稳定带来重大的影响,不利于隧道洞室稳定;软硬相间的岩体,由于其中软岩层强度低,有的因层间错动成为软弱围岩而对围岩的稳定性不利。 从岩体的结构角度,可将岩体结构划分为整体块状结构(整体结构和块状结构) 、层状结构(薄层状结构和厚层状结构) 、碎裂结构(构镶嵌结构和层状碎裂结构) 、散体结构(破碎结构和松散结构) 。松散结构及破碎结构岩体的稳定性最差;薄层状结构岩体次之;厚层状块体最好。对于脆性的厚层状和块状岩体,其强度主要受软弱结构面的分布特点和较弱夹层的物质成分所控制,结构面对围岩的影响,不仅取决于结构面的本身特征,还与结构面的组合关系及这种组合与临空面的交切关系密切相关。一般情况下,当结构面的倾角≤30°时,就会出现不利于围岩稳定的分离体,特别是当分离体的尺寸小于隧道洞跨径时,就有可能向洞内产生滑移,造成局部失稳;当倾角> 30°时,将不会出现不利于围岩稳定性的分离体。而软弱夹层对围岩稳定性的影响主要取决于它的性状和分布。一般认为软弱夹层的矿物成分、粗细颗粒含量、含水量、易溶盐和有机质等的含量是决定其性质的主要因素,对不同类型的软弱夹层,这些因素是不大相同的。由于软弱夹层的抗强度较低,故它不利与隧道围岩的稳定。 围岩岩体的变形和破坏的形式特点,不仅与岩体内的初始应力状态和隧道形状有关,而且还与围岩的岩性及岩体结构有关,但主要的是和围岩的岩性及结构有关(见表1) 。

冲压件工艺性分析

冲压件工艺性分析Prepared on 21 November 2021

一、止动件冲压件工艺性分析 1、零件材料:为Q235-A 钢,具有冲裁; 2、零件结构良好的冲压性能,适合:相对简单,有2个φ20mm 的孔;孔与孔、孔与边缘之间的距离也满足要求,最小壁厚为14mm (φ20mm 的孔与边框之间的壁厚) 3、零件精度:全部为自由公差,可看作IT14级,尺寸精度较低,普通冲裁完全能满足要求。 查表得各零件尺寸公差为: 外形尺寸:01130-、062.048-、074.060-、03.04-R 、074.060-R 内型尺寸:052 .0020+ 孔中心距:60± 二、冲压工艺方案的确定 完成该零件的冲压加工所需要的冲压基本性质的工序只有落料、冲孔两道工序。从工序可能的集中与分散、工序间的组合可能来看,该零件的冲压可以有以下几种方案。 方案一:落料-冲孔复合冲压。采用复合模生产。 方案二:冲孔-落料级进冲压。采用级进模生产。 方案一只需一副模具,工件的精度及生产效率都较高,工件最小壁厚14mm 大于凸凹模许用最小壁厚,模具强度好,制造难度中等,并且冲压后成品件可通过卸料板卸下,清理方便,操作简单。 方案二也只需一副模具,生产效率高,操作方便,工件精度也能满足要求,但是模具结构复杂,制造加工,模具成本较高。

结论:采用方案一为佳 三、模具总体设计 (1)模具类型的选择 由冲压工艺分析可知,采用复合模冲压,所以模具类型为复合模。 (2)定位方式的选择 因为该模具采用的是条料,控制条料的送进方向采用导料板,无侧压装置。控制条料的送进步距采用挡料销定距。而第一件的冲压位置因为条料长度有一定余量,可以靠操作工目测来定。 (3)卸料、出件方式的选择 因为工件料厚为,相对较薄,卸料力也比较小,故可采用弹性卸料。又因为是倒装式复合模生产,所以采用上出件比较便于操作与提高生产效率。 (4)导向方式的选择 为了提高模具寿命和工件质量,方便安装调整,该倒装式模采用导柱导向方式。 四、排样方案确定及材料利用率 (1)排样方式的确定及其计算 设计倒装式复合模,首先要设计条料排样图,采用直排。 方案一:搭边值取2mm和3mm(P33表2-9),条料宽度为135mm

相关主题
文本预览
相关文档 最新文档