当前位置:文档之家› 课程设计指导书-离心泵叶轮水力设计

课程设计指导书-离心泵叶轮水力设计

课程设计指导书-离心泵叶轮水力设计
课程设计指导书-离心泵叶轮水力设计

1

离心泵叶轮的水力设计

叶轮是泵的核心部分,泵的性能、效率、抗汽蚀性能、特性曲线的形状均与叶轮的水力设计有重要关系。因此,叶轮水力设计的质量决定着所设计出来的泵的质量。

整个设计的设计流程图如下图 1所示

图1 设计流程图

1泵主要设计参数和结构方案的确定

本设计给定的设计参数为:

流量Q=3363

m h =0.09333

m s ,扬程H=55m ,装置汽蚀余量 3.3a NPSH m =。

2确定泵的总体结构形式和泵进出口直径

泵吸入口直径 泵的吸入口直径由合理的进口流速确定,而泵的入口流速一般为3m s 。暂取2.7m s

泵的吸入口直径按下式确定

209s D mm =

=

=

取标准值210mm

泵的排出口直径为0.8168t s D D mm == (因设计的泵扬程较低) t D —泵吸入口直径

s D —泵排出口直径

2

将选定的标准值210t D mm =代入上式,得泵的进出口流速为2.69m s 。

3泵转速的确定

考虑到泵的转速越高,泵的体积越小,重量越轻,理应选择较高的转速,但又因为转速和比转速有关,而比转速有和效率有关,综合考虑各方面因素,取n=2900 min

r

4汽蚀计算

a 泵的安装高度

a v g c a p p

h h NPSH g g

ρρ=

---=10.33-0.5-0.24-3.3=6.29m 常温清水

v

p g

ρ=0.24m b 泵的汽蚀余量

r a NPSH NPSH k =-=3.3-0.5=2.8m

c 泵的汽蚀比转速

C =

34

5.6229002.8

?=1150

5确定比转速s n 和泵的水力方案

根据比转速公式

s n =

根据以往的运行经验,当s n 在120~210的区间时,泵的效率最高。依算得的s n =160,

宜采用单级单吸的水力结构方案。

6估算泵的效率和功率

查《泵的理论和设计》手册,根据经验公式得

a 水力效率计算

10.083h η=+

=1+=0.875 取h η=0.87 b 容积效率

3

23

1

10.68v s

n η-=

+=23110.68160-+?=0.977 取v η=0.97

c 圆盘损失效率 76

110.07()100

m s n η=-=76

110.07

160

()100

m η=-=0.88

d 机械效率

假定轴承填料损失约为2% ,则m η=0.88×0.98=0.86 f 总效率

m v h ηηηη= =0.86×0.97×9.87=0.73 g 轴功率 1000rQH N η

=

=9.8110000.093355

10000.73????=68.7KW

h 计算配套功率

'N =KN=1.2×68.7=82.5KW K 取1.2

7叶轮主要参数的选择和计算

叶轮主要几何参数有叶轮进口直径0D 、叶片进口直径1D 、叶轮轮毂直径h d 、叶片进口角1β、叶轮出口直径2D 、叶轮出口宽度2b 、叶片出口角2β和叶片数Z 。叶轮进口几何参数对汽蚀具有重要影响,叶轮出口几何参数对性能(H 、Q )具有重要影响,而两者对效率均有影响。因此,泵的主要尺寸的确定精确与否,直接影响泵的效率和性能。

图 2 轴面投影图

a 轴径和轮毂直径的确定 根据扭矩计算公式,轴径为

4

d =

=

取[]2535010N m τ=?

上式中'

3

9.5510n N M n

=??=382.59.55102900??=271.68N·m

d 取标准值40mm n M - 扭矩(N·

m ) 'N —计算功率(KW ) 'N =KW

K —工况变化系数

[]τ—泵轴材料的许用切应力(2

N m

本离心泵采用悬臂叶轮,因此,轮毂直径n d =0

b 叶轮进口直径0D 的确定

实践证明,泵在相应增加0v 很广的范围内运转时能保持水力效率不变,所以如果所设计的泵对抗汽蚀性能要求不高,可选择较小的有叶轮进口直径0D 以减小密封环的泄漏量,提高容积效率。

根据有叶轮进口直径0

D 的计算公式得

0D K

= 0K 取3.45

c 叶轮出口直径2D 的初步计算

叶轮外径2D 和叶片出口角2β等出口几何参数是影响泵扬程的最重要因素。另外影响泵扬程的有限叶片数的修正系数也与2D 和2β及叶片等参数有关。可见,2D 的精确与否,间接影响着泵的性能。

根据经验公式得

2D D K

= (初步计算值) 上式中 1

2

2

9.35()100

s

D n

K -==1

21609.35(

)100

-=7.4 d 叶轮出口宽度2b 计算与选择 根据经验公式

2b b K

=

5

上式中 5620.64()100s b n K ==5

6160

0.64()100

=0.947 e 叶片数Z 的计算与选择

叶片数对泵的扬程、效率、汽蚀性能都有一定的影响。选择叶片数一方面考虑尽量减小叶片的排挤和表面的摩擦,另一方面又要使流道有足够的长度以保证液流的稳定性和叶片对液体的充分作用

根据公式得

Z=1212

216.5sin

2

D D D D ββ++-=23510220306.5sin 2351022++- =7.1

取Z=7

其中100.93D D ==0.93×110=102mm, 120β= ,230β=

8叶轮外径2D 或叶片出口角2β的精确计算

前面的叶轮主要尺寸是利用经验系数来确定的,因为这些系数来源于实践,在一般情况下是比较可靠的。但速度系数多是按一般情况得出的,设计泵时,在保证相同性能情况下,可以选用不同的参数组合,这样就增加了速度系数的近似性。因为2D 是最主要尺寸,按速度系数法算得2D 之后,最好以按此算得的2D 为基础进行理论计算。因此,下面就以基本方程式为基础对2D 进行精算

a 理论扬程

t h

H

H η=

=

55

0.87

=63.2m b 修正系数P

2

(1)60a βψ=+ =300.65(1)60

+

=0.94 (a 取0.65)

静矩

S=i i S R ?∑=0.01×(0.055+0.065+0.075+0.084+0.95+0.105)=0.0479 有限叶片数的修正系数

2

2r P ZS ψ==2

0.940.11770.0479

??=0.37

c 无限叶片数理论扬程

(1)t t H P H ∞=+=(1+0.37)×63.2=86.6m d 叶片出口排挤系数

6

21K =

1f 出口轴面速度

2222m v Q

v D b K πη=

=0.09333.140.2350.030.9240.97

????=4.7m s

g 出口圆周速度

2222m v u tg β=

4.7230tg =33.48m s 外圆直径

2D =

260u n π=6033.483.142900

??=219mm 因精算值与经验公式的结果相差较大,现进行第二次精算 叶片出口排挤系数

21K =

1=0.917 出口轴面速度

2222m v Q

v D b K πη=

=0.09333.140.2190.030.9170.97

????=5.07m s

出口圆周速度

2222m v u tg β=

+

5.07230tg m s 外圆直径

2D =

260u n π=6033.8

3.142900

??=220mm 与假定值相近,不再进行下一次精算。取2D =220mm

9计算出口速度

a 出口圆周速度 2260D n u π==0.22 3.142900

60

??=33.4m s b 出口轴面速度

叶片出口排挤系数

21K =

1=0.917

7

2222m v Q

v D b K πη=

=0.09333.140.220.030.9170.97

????=5.07m s

c 出口圆周分速度

22

t u H g v u =

=63.29.8

33.4?=18.54m s

d 无穷叶片出口圆周分速度

22

t u H g u u ∞∞=

=86.69.833.4?=25m s

10计算叶轮进口速度和进口安放角

叶型轴面投影图的具体尺寸如下图3.3:

图 3 叶型轴面投影图的具体尺寸

a 流线: 1a D =140.24mm=0.14024m

1160a a D n u π=

=0.14024 3.14290060

??=21.26m s 12a a a F R πσ==2

2 3.1460.27()3

s ρ???+=0.01533㎡

111m a v a a Q

v F k η=

=0.09330.970.015330.85

??=7.38m s (1a k 预设0.85)

所以 '111m a a a v tg u β=

=7.38

21.26

=0.347 ? '1a β=19.14 为了使液流更平稳的流动和提高效率,液流进口角一般有一微小的正冲角β? 因此 '111a a a βββ=+?=19.14 1.8621+= 取β?=1.86

a 流线叶片进口排挤系数

8

11a K =

=1=0.85 与假定值相符

b 流线: 1b D =117.66mm=0.11766m

1160b b D n u π=

=0.11766 3.142900

60

??=17.85m s 由 1111a

b a

b

u tg tg u ββ=得 121.26

2117.85

b tg tg β=

?124.56b β= (实际值) b 流线叶片进口排挤系数

11b K =

=112b b b F R πσ==2 3.1454.1643.94???=0.014947㎡

111m b v b b Q

v F k η=

=0.09330.970.0149470.84

??=7.66m s

'111m b b b v tg u β=

=7.66

17.85

=23.22 (计算值) 所以 1b β?='11b b ββ-=24.5623.22 1.34-= c 流线: 1c D =102.16mm=0.10216m

1160c c D n u π=

=0.10216 3.142900

60

??=15.5m s 由 1111a

c a

c

u tg tg u ββ=得 121.26

2115.5

c tg tg β=

?127.76c β= (实际值) c 流线叶片进口排挤系数

11c K =

1=0.84 2122 3.1452.2245.30.014857c c c F R m πσ==???=

111m c v c c Q

v F k η=

=0.09330.970.0148570.84

??=7.71m s

9

'111m c c c v tg u β=

=7.7

15.5

=26.4 (计算值) 所以 1c β?='11c c ββ-=27.7626.4 1.36-=

11轴面液流过水断面面积变化检查

如图 4和表 1所示

图 4 轴面液流过水断面面积变化图

表 1 轴面液流过水断面面积

12分流线

根据同一过水断面上的流速相等的原则,要求流过相邻流线所组成的微小流道的流量相等。

中间流线进口处半径:

2b 38.8mm R ==

在具体份流线时,先分进出口。出口边等分即可,进口边流线,适当延长后使之与轴线平行。按每个圆环相等确定分点。

有始末分点,凭经验画出中间流线,画流线时应力求光滑准确,以减少修改的工作量。而后沿整个流道取若干组过水断面,检查同一过水断面两流线间的过水断面面积是否相等。

10 不相等时,应修改,直到相等或相差在3﹪以内为止。

具体检查如下表 2所示

13确定进口边的位置

进口边一般不希望放在流道急剧拐弯处,同时与三条流线的夹角有如下要求:

,90 =a λ 60

,b λ> 70,c λ>

进口边与前后盖板交点连线与叶轮轴心线的夹角 4530-=δ,且有

1

0.77 1.0D D =-

1D :叶轮叶片中间流线进口直径

本设计叶轮进口直径0110D mm =,100.93D D ==0.93×110=102mm ,为了满足,90 =a λ在轴面投影图上量得140.24,a D mm = 117.64,b D mm = 102.16c D mm =。

14流线分段

分段的实质就是在流面上画特征线,组成扇形格网。因为流面是轴面流线绕中心旋转一周所得的曲面。流面是轴对称的,一个流面上的全部轴面流线均是相同的,所以只要分相应的一条轴面流线,就等于在整个流面上绘出了方格网。具体方法是在轴面投影图旁,画两条

夹角等于△ 5=θ的两条射线,这两条射表示夹角为△

5=θ的两个轴面。从出口开始,沿轴面流线试取长度△S ,若△S 中点半径所对应的两条射线间的弧长△u,与试取的△S 相等,则分点正确。如果不等,另取△S ,直到△S=△u 为止。第一点确定以后,用同样的方法去分2、3、………点。如下图 5所示。

11

图 5 分流线图

15绘制方格网

流面是个空间流面,直接在流面上画流线不容易表现形状和角度变化规律,因此要设法把流面展开成平面,在展开的平面上画流线,然后,在展开图上画流线,按预先做好的记号,返回到相应的流面上。通常这种作图,是借助特征线利用插入法进行的。具体计算过程见“计算叶轮出口速度”部分

绘制方格网的基本原理是保角变换原理。因为保角变换绘型是基于局部相似,而不追求局部相等,所以几个流面可以用一个平面方格网代替。方格网的大小任意选取,横线表示轴面流线的相应分点,竖线表示夹角为对应分点所用θ?的轴面。

本设计的叶型方格网图 6如下:

图 6 方格网图

在方格网上绘制流线,先画中间流线,流线进口处在方格网的位置应与轴面投影流线的分点对应,过进口点作角度等于计算的叶片进口安放角的直线,然后作光滑曲线与进出口相切。

16绘制轴面截线

方格网上画出的三条相对流线,就是表面的三条型线。用轴面(相当于方格网的竖线)截三条流线,相当于用轴面去截叶片,所得的三点的连线为叶片的一条轴面流线。把方格网中每隔一定角度的竖线和三条流线的交点,按对应分点的位置用插入法分别点到轴面投影的三条流线上,然后把所得的点连成光滑曲线,即为叶片的轴面截线。轴面截线应光滑,按一定规律变化。

轴面截线投影图如下图7所示:

图7 绘制轴面截线图

17叶片加厚

方格网保角变换绘型,一般在轴面投影图上按轴面截线进行加厚。相应的λ角从轴面截线图中量得,β角从方格网流线中量得。叶片厚度进出口一般按工艺要求给定。把算得的厚度,按流线和轴面截线,点到轴面图中,光滑连接,即得到叶片加厚后的轴面投影图。计算列表和叶片加厚后的轴面投影图如下表3和图8所示:

12

图8 叶片加厚

18画叶轮木模图

用一组等距(或不等距)的轴垂面去截叶片,每个叶片和叶面有两条交线(工作面和背面),把各个截面和叶片工作面与背面的交线画在平面中,即为木模截线,其具体作图步骤如下:

a. 画一组轴垂面,并编号0、1、3、4……,在平面图中,画出相应轴面投影图中轴面截线角度的轴面(一组射线)

b. 并相应编号0、Ⅰ、Ⅱ、Ⅲ、……

c. 根据叶片向凸面方向旋转,和去掉后盖板(从后面看)能看见叶片工作面,从前面看能看见叶片背面,决定工作面(背面)在俯视图中的位置。如在图右侧,画出后盖板与叶片的交面,是工作面的木模截线,左侧画出前盖板与叶片的交面,是背面的木模截线。该叶片从后面看去顺时针旋转,从后面去看为一逆时针旋转

d. 做叶片平面投影轮廓线:

①图中是画叶片工作面与前盖板的交线。它是轴面投影图中工作面截线和前盖板流线的交点,以相等的半径画到相应的轴面的射线上所得的点的连线,同样可以作出;

②叶片背面后后盖板的交线;

③叶片背面和前盖板的交线;

13

14 ④叶片工作面和后盖板的交线。 e. 画工作面、背面的木模截线:

把木模截线与工作面轴面截线的交点,按相等的半径画到相应的轴面射线上,并将所的

点连线,得工作面木摸截线1、2、3和背面截线321'''、、

。木摸截线面与前后盖板流线的交点的半径应和平面图木模截线始点(终)半径相等。木模截线应光滑连接。

本设计的离心泵的木模图如下图 9:

图 9 叶轮木模图

附录:设计成果图

附图1:轴面投影图

15

16

17

附图4:网格图

18

附图5:叶轮木模图

19

水泵及水泵站课程设计心得【模版】

水泵及水泵站课程设计 1基本设计资料 1.1 基本情况 本区地势较高,历年旱情比较严重,粮食产量低。根据规划,拟从附近河流扬水灌溉该区的10万亩农田,使之达到高产稳产的目的。 机电扬水灌区内主要作物有小麦、玉米、谷子和棉花等。灌区缺少灌溉制度,现参考附近老灌区的灌水经验,拟定出本灌区灌溉保证率为75%的灌溉制度。其设计灌水率如表1所示。 1.2地质及水文地质资料 根据可能选择的站址,布置6个钻孔。由地质柱状图明显的看出,3米以内表土主要是粘壤土,经土工试验,得到的有关物理指标为粘壤土的内摩擦角φ=35°,承载力为220kN/m2。 站址附近的地下水位多年平均在202.2m左右(系黄海高程)。 1.3气象资料 夏季多年平均旬最高气温34℃,春、秋季干旱少雨,年平均降雨量为524mm,降雨年内分配极不均匀,每年7、8、9月的降雨量占全年降雨量的80%以上。年平均无霜期为200天左右,多年平均最低气温为-8℃,最大冻土深度为o.44m。平均年地面温度为15℃,平均年日照时数为2600.4h。累积年平均辐射总量为527.4l kJ/cm,平均日照百分率为59 %。热量和积温都比较丰富,能满足一年两熟作物生长的需要。 1.4 水源 灌区南侧有一河流,是规划灌区的水源,其水量充沛。灌溉保证率为75 %时的河流月平均水位如表2所示。 达2l6.5m,夏季多年旬平均最高水温为20℃。 1.5其它 根据规划,为保证扬水后自流灌溉,出水池水位均不应低于234m。站址附近有8 kV高压电力线通过,已经有关部门批准,可供泵站使用。该地区劳动力充足,交通方便。除水泥、金属材料以及泵站建设中所需的特殊材料外,当地可提供砖、石、砂、瓦、木材等建筑用材。 根据机电设备的运行特性,每天按20h运行设计。

水泵课程设计

水泵课程设计 综合说明 1.1 兴建缘由 该排涝泵站的兴建是为了满足某市城市防洪需要。 1.2 工程位置、规模、作用 工程位置:该排涝泵站拟建在距该县城区以东15公里的新沟河上。 3工程规模:由泵站设计流量Q=8.0m/s,由《泵站设计规范GBT50265-97》可知该排涝泵站属于中型泵站。 工程作用:满足城市的防洪需求 1.3 基本资料 地面以下土质为中粉质壤土,夹铁锰质结核,贯入击数为24击,地基土容3重19.4 kN/ m,含水率26.8%,空隙比为0.833,允许承载力220kPa,内摩擦角 -723?,凝聚力19 kPa,渗透系数2.66×10,地下水埋深7.3m。 1.3.2水位特征值 泵站上下游水位资料见表1-1。 表1-1 泵站上下游水位资料 下游水位(m) 上游水位(m) 设计运行水最低运行水最高运行水设计运行水最低运行水最高运行水 位位位位位位 26.4 25.8 30.6 31.4 31.1 31.8 1.3.3工程布置和主要建筑物

泵站工程的主要建筑物有进水建筑物、站房和出水建筑物。进水建筑物包括前池、进水池和进水管道等。出水建筑物包括出水管路和出水池等。泵站站房内安装水泵、动力机和辅助设备以及泵站附属设备。 1.3.4其他 该站建筑物等级为?级,站址北首附近有10kV电源,水陆交通方便。已知该泵站上下游引水河道断面设计参数如表1-2所示。其中上下游河道堤顶高程自行设计,规定下游地面高程低于引水河道堤顶0.5m。 表1-2 泵站上下游引水河道断面设计参数 1 下游引水河道上游引水河道河底高程河底宽度堤顶宽河底高程河底宽度堤顶宽边坡边坡 (m) (m) (m) (m) (m) (m) 24.1 7 1:2.5 6 27.7 7 1:2.5 6 第2章设计参数确定 2.1 设计流量的确定 3 泵站设计流量Q=8.0m/s。 2.2 水位分析及特征扬程的确定 考虑此泵站的主要功能为排涝,则本设计的水位组合如表2-1所示。表2-1 排涝泵站水位组合 下游(m) 上游(m) 设计运行水位 26.4 设计运行水位 31.4 最低运行水位 25.8 最低运行水位 31.1 最高运行水位 30.6 最高运行水位 31.8 泵站各特征扬程为: 设计扬程:H=H, H=31.4 ,26.4=5m; 设设上设下 最大扬程:H=H,H=31.8,25.8 =6m; 高最高上最低下

水泵课设

第一章基本资料的分析与整理 第一节地形资料 图1:黄墩湖水系示意图 1.水文资料 (一)水位 内河设计水位:18.2m; 内河最低水位:17.0m; 内河最高水位:19.5m; 外河设计水位:21.5m; 外河最高水位:22.5m; 外河最低水位:19.8m。 (二)流量 设计流量为4.0m3/s。 第二节其他资料 (一)能源资料 泵站用电由徐州或宿迁电网供给,从徐州或宿迁电网接电,通过升压站变电后,进行泵站供电。 (二)交通、建材资料

本地交通方便,陆路可通汽车,水路可通船舶;建筑材料可以保证供应,砂石料更可就地取材。 第二章 工程规划 第一节 站址确定 一、选址原则 1.泵站站址应根据流域或城建建设总体规划,泵站工程规模、运行特点和综合利用要求,考虑地形、地质、水源或容泄区、电源、枢纽布置、对外交通、占地、拆迁、施工、管理等因素,并考虑扩建的可能性,经技术经济比较确定; 2.站址最好选在地形开阔、岸坡适宜,有利于工程布置的地点;宜选择在岩土坚实、抗渗性能良好的天然地基上,不应设在大的或活动性的断裂构造带及其他不良地质地段,如果当地不具备较好的地质条件,同时考虑到本次设计的泵站规模较小,可以在建站处进行地基处理; 3.站址应尽量选在交通方便和靠近电源的地方以方便机械设备、建筑材料的运输和减少输电线路的长度; 4.选址时还要特别注意进水水流的平稳和流速分布的均匀以及避免发生流向改变或形成回流、漩涡等现象。 根据这些原则可确定黄墩湖泵站的站址,其具体位置见图5:黄墩湖排涝泵站平面布置图。 第二节 泵站设计流量和扬程 一、泵站设计流量Q 设 本次设计根据设计书要求,取34.0/Q m s 设。 二、水泵的设计扬程H 设 1.根据所给的水文、地形等资料,可以确定内、外河最低水位、设计水位及最高水位分别为: 内河设计水位:18.2m ; 内河最低水位:17.0m ; 内河最高水位:19.5m ; 外河设计水位:21.5m ;

离心泵课程设计

离心泵课程设计 课程设计说明书 题目: 流体机械及工程课程设计______ 院(部):能源与动力工程学院_____ 专业班级: __________ 流体1002班________ 学号:3100201079 ___________ 学生姓名: _____________ 刘成强___________ 指导教师: _____________ 赵斌娟___________

离心泵课程设计 起止日期:2014.1.72012.1.17

流体机械及工程课程设计设计任务书 设计依 据: 流量Q:30m3/h 扬程H:18.5m 转 速n: 2900 r/min 效率:68% 任务要求: 1. 用速度系数法进行离心泵叶轮的水力设计。 2. 绘制叶轮的木模图和零件图,压出室水力设 计图。 3. 写课程设计说明书 4. 完成Auto CAD 出图

目录 第一章结构方案的确定 (5) 1.1确定比转数 (3) 1.2确定泵进、出口直径 (3) 1.3泵进出口流速 (3) 1.4确定效率和功率 (4) 1.5电动机的选择轴径的确定 (4) 第二章叶轮的水力设计 (5) 2.1叶轮进口直径D0的确定 (5) 2.2叶轮出口直径D2的确定 (6) 2.3确定叶片出口宽度b2 (6) 2.4确定叶片出口安放角 2 6 2.5确定叶片数Z (6) 2.6精算叶轮外径D (6) 2.7叶轮出口速度 (8) 2.8确定叶片入口处绝对速度M和圆周速度U1 (9) 第三章画叶轮木模图与零件图 (9) 3.1叶轮的轴面投影图 (9) 3.2绘制中间流线 (11) 3.3流线分点(作图分点法) (11) 3.4确定进口角1 (13) 3.5作方格网 (14) 3.6绘制木模图 (15) 第四章压水室的设计 (17) 4.1 基圆直径D3的确定 (17) 4.2压水室的进口宽度 (17) 4.3 隔舌安放角0 (17) 4.4隔舌的螺旋角0 (17) 4.5断面面积F (17) 4.6当量扩散角 (18) 4.7各断面形状的确定 (18) 4.8压出室的绘制 (20) 1. 各断面平面图 (20) 2. 蜗室平面图画 (20) 3. 扩散管截线图 (21)

水泵课程设计计算书

1 引水渠断面设计 设引水渠宽为b,矩形断面,i=0.0005,n=0.025,m=0,按最佳水力断面设计 b=2h Q 设=2.5m 3 /s 时 ( ) () ()()()m i m m nQ h m m m 354.12000/102225.2025.0]12[ 2 )1(28 /32/13/53 /28/32 /13/53 /22 2=? ? ?????++??=+++==-+=βββ h bh A 7.2== h h x A R 27.27.2+== 6.00005.027.27.2025.017.212 /13 /22/13/2=?? ? ? ??+?==h h h i R n A Q 试算得h=0.51m 渠底高程为23-0.51=22.49 m 校核最高水位为27m 时Q=s m /33 是否能通过 b A =11h =2.7×4.51=12.1772m R= m h b A 039.151 .427.2177 .12211=?+=+

() ()s m s m A i R n Q /3/436.11177.120005.0039.1025.0/1/1332/13 /212/13/2≥=??=?= 满足过水要求 2 进、出水池水位 2.1出水池水位确定 设计水位为 60m,断面形式同引渠,矩形断面 n=0.025,i=0.0005,当为设计水位时,设计流量 2.5时,s m /3采用水力最佳断面,b=2.7m ,h=1.354m ,灌区渠首的渠底高程为:60-1.354=58.646m 当Q=3时,s m /3 由试算得,h=1.51m Q=0.6时,s m /3由试算得,h=0.51m 所以出水池水位为:最高运行水位为 58.646+1.51=60.156m ,最低运行水位为 58.646+0.51=59.156m 渠顶高程为2.2进水池水位确定 引渠坡降i=0.0005数干渠出口 1ξ=0.1,拦污栅2ξ=0.3,前池进口3ξ=0.4 当Q=0.6m s /3 时 v 1= s m A Q /444.07 .25.06 .011=?= m g h v 008.08.92444.0)4.03.01.0(22 21 3 2 1=??++=++=) (局ξξξ Q=2.5m 时,s /3 s m A Q v /265.07 .25.35 .2222=?== m g h v 0029.08 .92265.0)4.03.01.0(22 2 2 3 2 1=??++=++=) (局ξξξ m h 0529.00029.01002000 1 =+?= 总

叶轮的水力设计

第三章 离心泵和混流泵叶轮的水力设计 泵是一种应用广泛的通用机械,著名的数学家欧拉在一些假设条件下,推出了叶片泵的Euler 方程,该方程建立了泵的理论扬程与叶轮进出口运动速度间的定量关系。近300年来,以致使叶片泵设计的理论基础。所以,Euler 方程也被称为叶片泵的基本方程。 在叶片泵内流体在叶轮中的流动都是三维空间的流动,为了简化计算,早期的研究把流体在叶轮内的流动看作是流体微团沿着叶轮流道中心线的运动。根据这一假设,建立了叶片泵一维流动理论,也称微元流束理论。根据这一设计理论建立的设计方法称为一元设计方法。 后来人们在轴对称流动理论的基础上提出了叶片式机械的二元流动理论。二元流动理论认为,叶轮内的流动是轴对称的,叶轮内的轴面速度沿过水断面是不均匀的,即轴面液流速为二元流动。二元流动较一元更为科学,更接近真实的流动状况,但二元理论在实际上应用并不多,仅适合于高比速混流泵的设计。 第一节 泵的主要设计参数和结构方案的确定 一、设计参数和要求 流量、扬程、转速(或由设计者确定)、装置汽蚀余量(或给出装置的使用条 件)、效率(要求保证的效率)、介质的性质(温度、重度、含杂质情况、腐蚀性等)、对特性曲线的要求(平坦、陡降、是否允许有驼峰等)。 二、确定泵的总体结构形式和泵的进出口直径 1. 进口直径 选取原则:经济流速;汽蚀要求。泵的进口流速一般取3m/s 左右。 s s v Q 4D π= 2.泵出口直径 s d D )7.0~1(D = 三、泵转速的确定 确定泵转速应考虑下面几个因素: (1)泵转速越高,泵的体积越小; (2)确定转速应考虑原动机的种类和传动装置; (3)提高转速受汽蚀条件的限制,从汽蚀比转数公式: 4 /3r NPSH Q n 62.5C = 四、计算比转数n s ,确定水力方案 4 /3s H Q n 65.3n =

(完整版)离心泵——叶轮设计说明书

主要设计参数 本设计给定的设计参数为: 流量Q=3 3 500.01389m m h s =,扬程H=32m ,功率P=15Kw ,转速 1450min r n =。 确定比转速s n 根据比转速公式 3 4 3.65145046.3632s n ?=== 叶轮主要几何参数的计算和确定 1. 轴径与轮毂直径的初步计算 1.1. 泵轴传递的扭矩 3 15 9.5510955098.81450 t P M N m n =?=?=? 其中P ——电机功率。 1.2泵的最小轴径 对于35号调质钢,取[]52 35010N m τ=?,则最小轴径 0.02424d m mm ==== 根据结构及工艺要求,初步确定叶轮安装处的轴径为40B d mm =,而轮毂直径为(1.2~1.4)h B d d =,取51h d mm = 2. 叶轮进口直径 j D 的初步计算 取叶轮进口断面当量直径系数0 4.5K =,则 0 4.50.09696D K m mm ==== 对于开式单级泵,096j D D mm == 3. 叶片进口直径1D 的初步计算

由于泵的比转速为46.36,比较小,故1k 应取较大值。不妨取10.85k =,则 110.859682j D k D mm ==?= 4. 叶片出口直径2D 的初步计算 2 20.5 0.5 246.369.359.3513.73 10010013.730.292292s D D n K D K m mm --???? ==?= ? ? ?? ?? ==== 5. 叶片进口宽度1b 的初步计算 ()00222 111 4/4//v v m j j h v Q Q V V D D d Q b DV ηηππηπ===-= 所以 220111 1 44j j v V D D b V D K D = = 其中,10v V K V =,不妨取0.8v K =,则 22 118535.42440.863.75j v D b mm K D ===?? 6. 叶片出口宽度2b 的初步计算 225/6 5/6 246.360.640.640.3373 1001000.33730.00727.2s b b n K b K m mm ?? ?? ==?= ? ? ?? ??==== 7. 叶片出口角2β的确定 取2β=15° 8. 叶片数Z 的计算与选择 取叶片数Z=8,叶片进口角0155.8β=。 9. 计算叶片包角? ()0 000360/360360 2.491128 t Z Z φλ??====

水泵课程设计

1泵站设计参数的确定 1.1水泵站流量确定 泵站工作时设计流量 ()3 ¢?80000*1.1/24*1.3/4766.7m 1324.1/S h Q L == 1.2水泵站的扬程确定 /m c o H Z H h h H 21432122 1.572.5=++∑+∑+=+++++=(泵站内) (安全) 水泵的涉及扬程; Zc ——地形高差; Ho ——自由水压; h ——总水头损失; h ——泵站内水头损失; 2选择泵站 可用管路特性曲线和型谱图进行选泵。管路特性曲线和水泵特性曲线交点为水泵工况点。 球馆路特性曲线失球管路特性曲线方程中的参数Hst 和S 因为 st H 4213257=++= ()()()2 5 2 2 /h .h /122/4766.7 6.27S m h Q E -=+=+=-∑∑泵站内 故管路特性曲线方程为 2 57 6.27*H E Q =+- 根据水泵扬程,与流量查手册选取型号为35075S 的单机双吸式水泵。然后,根据手册中所给出的水泵扬程曲线和效率曲线以及功率曲线。运用“抛物线”拟合法,在高效段内相距较远的曲线上选取两点A (900,80)和B (1400,68)运用两点法求出公式2Q x x H H S =-中的未知数x H ,x S 。由此求出x H 为88.42;x S 为1.04E-5。 及水泵扬程曲线方程为 H=88.42-1.04E-5*Q^2 运用“横加法”求出2台水泵,3台水泵,4台水泵的曲线。 在坐标纸上画出图形如下:

G : (4980.80,72.20) J : (4203.75,76.86)I : (3113.29,77.15) H : (1683.19,81.00)F : (4208.26,67.84)E : (3114.99,63.05)D : (1688.01,58.77) 然后根据此列表如下: 水量变化范围 运行水泵台数 水泵扬程 管路所需扬程 扬程浪费 水泵效率 4972~4206 4.00 76.89~72.25 67.86~72.25 9.03~0 85~83 4206~3116 3.00 77.10~67.86 63.03~67.86 14.07~0 83.5~83 3116~1688 2.00 80.94~63.03 58.77~63.03 22.17~0 83~74 该型号的水泵的性能参数如下: 型号为350S75 Q=972~1440,H=80~65;85%η=;n=1480r/min ;电机功率N=355Kw ;Hs=3.5m ;质量为1200Kg 。 4台水泵并联工作时其工况点G 点,G 点对应的流量和扬程为4998M^3/H,72.2M 。 满足4766M^3/H 和71.5M 再选一台同型号的350S75型水泵备用,泵站共有5台350S75型水泵,4用一备。 确定电机 根据水泵样本提供的配套可选电机,选定Y400-39-4(6KV )电机,其参数如下: 额定电压V=6000Kv ;N=355Kw ;n=1480r/min ;W=

离心泵的水力设计讲解

离心泵的水力设计 离心泵叶轮设计步骤 第一步:根据设计参数,计算比转速ns 第二步:确定进出口直径 第三步:汽蚀计算 第四步:确定效率 第五步:确定功率 第六步:选择叶片数和进、出口安放角 第七步:计算叶轮直径D2 第八步:计算叶片出口宽度b2 第九步:精算叶轮外径D2到满足要求 第十步:绘制模具图 离心泵设计参数 作为一名设计人员,在设计一台泵之前,需要详细了解该泵的性能参数、使用场合、特殊要求等。 下表为本章中叶轮水力设计教程中使用的一组性能要求。

确定泵进出口直径 右图为一台ISO单级单吸悬臂式离心泵的实物图和装配图。对于新入门的学习者,请注意泵的进出口位置,很多人会混淆。 确定泵的进口直径 泵吸入口的流速一般取为3m/s左右。从制造方便考虑,大型泵的流速取大些,以减小泵的体积,提高过流能力。而从提高泵的抗汽蚀性能考虑,应减小吸入流速;对于高汽蚀性能要求的泵,进口流速可以取到1.0-2.2m/s。 进口直径计算公式 此处下标s表示的是suction(吸入)的意思 本设计例题追求高效率,取Vs=2.2m/s Ds=77,取整数80 确定泵的出口直径 对于低扬程泵,出口直径可取与吸入口径相同。高扬程泵,为减小泵的体积和排出管直径,可小于吸入口径。一般的计算公式为:

D d=(0.7-1.0)D s 此处下标d表示的是discharge(排出)的意思 本设计例题中,取 D d = 0.81D s = 65 泵进口速度 进出口直径都取了标准值,和都有所变化,需要重新计算。 Vs = 2.05 泵出口速度 同理,计算出口速度= 3.10

汽蚀计算 泵转速的确定 泵的转速越高,泵的体积越小,重量越清。舰艇和军工装备用泵一般都为高 速泵,其具有转速高、体积小的特点。 转速与比转速有关,比转速与效率有关,所以选取转速时需和比转速相结合。 转速增大、过流不见磨损快,易产生振动和噪声。 提高泵的转速受到汽蚀条件的限制。 从汽蚀比转数公式可知,转速n和汽蚀基本参数和C有确定的关系。 按汽蚀条件确定泵转速的方法,是选择C值,按给定的装置汽蚀余量或几何安装高度,计算汽蚀条件允许的转速,所采用的转速应小于汽蚀条件允许的转速。 汽蚀的概念 水力机械特有的一种现象。当流道中局部液流压力降低到接近某极限值(目前多以液体在该 温度下的汽化压力作为极限值)时,液流中就开始发生空(汽)泡,这些充满着气体或蒸汽的空 泡很快膨胀、扩大并随液流至压力较高的地方后又迅速凝缩、溃灭。液流中空泡的发生、扩 大、渍灭过程涉及许多物理、化学现象,会有噪音,振动甚至对流道材料产生侵蚀作用(汽 蚀)。以上这些现象统称为汽蚀现象。 汽蚀会导致泵的噪声与振动,破坏过流部件,加快腐蚀,性能下降等。汽蚀一直是流体机械 研究的热点和难点。

单级离心泵设计

单级离心泵设计 摘要:本设计从离心泵的基本工作原理出发,进行了一系列的设计计算。考虑离心泵基本工作性能,流量范围大,扬程随流量而变化,在一定流量下只能供给一定扬程(单级扬程一般10~80m)。本设计扬程为50m,泵水力方案通过计算比转数(n=67.5)确定采用单级单吸结构;通过泵轴功率的计算确定选择三相异步电动机;由设计参数确定泵的吸入、压出口直径;通过叶轮的水力设计确定叶轮的结构以及叶轮的绘型;设计离心泵的过流部件,确定吸入室为直锥形吸入室,压出室为螺旋形压出室;设计轴的结构及进行强度校核;确定叶轮,泵体的密封形式及冲洗,润滑和冷却方式;通过查标准确定轴承,键以及联轴器,保证连接件的标准性。从经济可靠性出发,合理设计离心泵部件,选择标准连接件,保证清水离心泵设计的安全性,实用性,经济性。 关键词:离心泵工作原理;水力方案设计;叶轮和过流部件设计;强度校核;密封设计;键、轴承的选择

Centrifugal Pump Design Manua l Abstract : This design starting from the basic working principle of the centrifugal pump, conducted a series of design calculations. consider the basic centrifugal pump performance, flow in a wide range, lift varies with the flow, the flow can only supply some lift (single-stage lift is generally 10~80m).The design head is 50m ,the design of the pump hydraulic scheme by calculating the number of revolutions(n=67.5) to determine the single-stage single-suction structure; choice of motor shaft power calculation; design parameters to determine the pump suction outlet diameter; determine the structure of the impeller and the impeller of the drawing of the hydraulic design of the impeller; flow parts of the design of centrifugal pump suction chamber for straight conical suction chamber, pressed out of the spiral-shaped pressure chamber; the structure and strength check of the axis design; determine the impeller centrifugal pump seal design, pump closed form and washing, lubrication, cooling method; determined by checking the standard bearings, and coupling to ensure that the standard connection. Departure from the economic viability of the rational design of centrifugal pump components, select the standard connector, to ensure the water using a centrifugal pump design safety, practicality, economy. Keyword:Centrifugal pump working principle ;Hydraulic design;Component design of the impeller and the over current; Strength check; Seal design; The choice of key and bearing

长江大学毕业设计开题报告(离心泵的设计)

长江大学 毕业设计开题报告 题目名称离心泵设计及基于solidworks三维设计院(系)机械工程学院 专业班级装备11001 学生姓名胡强 指导教师门朝威 辅导教师门朝威 开题报告日期2014.04.10

离心泵设计及基于solidworks三维设计 学生:胡强机械工程学院 指导老师:门朝威机械工程学院 一、题目来源: 生产实际 二、研究目的和意义: 泵是一种通用的工业机械,特别是离心泵,可以说在是在工业生产中不可 缺少的一部分,而在工业生产中,研究泵往往是为了更加高效的液体介质输送水力和结构,能适合更多(甚至是苛刻)的工况条件,泵的生命周期成本更低,环 保等等。 三、阅读的主要参考文献及资料名称 [1] 关醒凡.现代泵技术手册[M].北京:宇航出版社,1995 [2] 濮良贵,纪名刚.机械设计[M].西安:高等教育出版社,2006 [3] 柴立平.泵选用手册[M].北京:机械工业出版社,2009 [4] 侯作富,胡述龙,张新红.材料力学[M].武汉:武汉理工大学出版社,2012 [5] 张锋,古乐.机械设计课程设计手册[M].北京:高等教育出版社,2002 [6] 李世煌,吴桐林.水泵设计教程[M].北京:机械工业出版社,1987 [7] 于慧力,冯新敏.轴系零部件设计与实用数据查询[M].北京.机械工业出版 社,2010 [8] 王朝晖.泵与风机[M].北京.中国石化出版社,2007 [9] 钱锡俊,陈弘.泵与压缩机[M].山东.石油大学出版社,1994 [10] 李云,姜培正.过程流体机械[M].北京.化学工业出版社,2008 [11] 汪云英,张湘亚.泵与压缩机[M].北京:石油工业出版社,1985 [12] 袁恩熙.工程流体力学[M].北京:石油工业出版社,2012 [13] 查森.叶片泵原理及水力设计[M].北京:机械工业出版社,1987 [14]Mario ?avar.Improving centrifugal pump efficiency by impeller

水泵课设

目录 第一章绪论——————————————————————————2 第二章水泵基础的初步选择———————————————————3 2.1 泵站设计参数的确定—————————————————————3 2.2 型号选择——————————————————————————3第三章消防校核———————————————————————5第四章泵房形式的选择————————————————————5第五章水泵机组的基础设计———————————————————6 5.1 设计要求——————————————————————————7 5.2 布置及选择配件———————————————————————7 5.3 管径计算——————————————————————————7 第六章水泵吸水管和压水管的计算————————————————9 6.1 设计要求——————————————————————————9 6.2 布置及选择配件———————————————————————9 6.3 管径计算——————————————————————————9第七章吸水井的设计—————————————————————10 第八章管道配件的选取————————————————————11 第九章泵房各工艺标高的确定水损校核——————————————12 9.1 泵轴安装高度———————————————————————12 9.2 其它各个工艺标高的计算——————————————————12 9.3 泵房形式的选择——————————————————————12 9.4 泵房高度的计算——————————————————————13第十章水泵机组的布置及泵房尺寸的确定—————————————14 10.1 机组布置—————————————————————————14 10.2 泵房尺寸—————————————————————————14第十一章水损校核——————————————————14 11.1 吸水管路水头损失—————————————————————15 11.2 压水管路水头损失—————————————————————15第十二章复核水泵和电机———————————————15 第十三章附属设备的选择———————————————16 13.1 起重设备—————————————————————————16 13.2 引水设备—————————————————————————16 13.3 排水设备—————————————————————————16 13.4 通风设备—————————————————————————17 13.5 计量设备—————————————————————————17 参考文献———————————————————————————17 设计心得———————————————————————————17 附录

离心泵水力设计流程

离心泵水力设计 课程设计及指导书 (一)离心泵水力设计任务书 1 设计目的 掌握离心式叶轮和进、出水室水力设计的基本原理和基本方法.加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。 2 设计参数及有关资料 (1)泵的设计参数:(可自选一组参数设计,也可参照给出的参数变更局部参数设计,每个人必须选择不同的参数进行设计)

1. m h rpm n m H h m Q a 3.3,2900,60,/373 =?=== 2. m h rpm n m H h m Q a 44.5, 1450, 16, /903 =?=== 3. 900 ,1430,24, /663 ====C rpm n m H h m Q 4. 900 %, 80,2900, 48,/1453 =====C rpm n m H h m Q η 5. m 5, 2970, 5.18,/12====SZ H rpm n m H s l Q 泵的安装高度 6. m h rpm n m H s l Q r 13.2, 2870,10,/3.2=?=== 7. m rpm n m H h m Q 6.2h , 1450,5.32,/170r 3 =?=== 8. % 60,2h , 2900, 20,/20r 3==?===ηm rpm n m H h m Q (2)工作条件:抽送常温清水。 (3)配用动力:用电动机作为工作动力。 3 设计内容及要求 (1)设计内容。包括以下几个方面: l )、离心泵结构方案的确定。 2)、离心泵水力过流部件(进水室、叶轮、压水室)主要几何参数的选择和计算。 3)、叶轮轴面投影图的绘制。 4)、螺旋形压水室水力设计。 (2)要求。包括以下几个方面: l )、用速度系数法和解析计算法进行离心泵水力设计。 2)、绘出压水室设计图。 3)、编写设计计算说明书。

离心泵水力设计

离心泵水力设计 课程设计及指导书 (一)离心泵水力设计任务书 1 设计目的 掌握离心式叶轮和进、出水室水力设计的基本原理和基本方法.加深对课堂知识的理解,培养学生进行产品设计、水泵改造及科学研究等方面的工作能力。 2 设计参数及有关资料 (1)泵的设计参数:(可自选一组参数设计,也可参照给出的参数变更局部参数设计,每个人必须选择不同的参数进行设计) 1. m h rpm n m H h m Q a 3.3,2900,60,/373=?=== 2. m h rpm n m H h m Q a 44.5,1450,16,/903=?=== 3. 900,1430,24,/663====C rpm n m H h m Q 4. 900%,80,2900,48,/1453=====C rpm n m H h m Q η 5. m 5,2970,5.18,/12====SZ H rpm n m H s l Q 泵的安装高度 6. m h rpm n m H s l Q r 13.2,2870,10,/3.2=?=== 7. m rpm n m H h m Q 6.2h ,1450,5.32,/170r 3=?=== 8. %60,2h ,2900,20,/20r 3==?===ηm rpm n m H h m Q (2)工作条件:抽送常温清水。 (3)配用动力:用电动机作为工作动力。 3 设计内容及要求 (1)设计内容。包括以下几个方面:

l )、离心泵结构方案的确定。 2)、离心泵水力过流部件(进水室、叶轮、压水室)主要几何参数的选择和计算。 3)、叶轮轴面投影图的绘制。 4)、螺旋形压水室水力设计。 (2)要求。包括以下几个方面: l )、用速度系数法和解析计算法进行离心泵水力设计。 2)、绘出压水室设计图。 3)、编写设计计算说明书。 4 设计成果要求 (1)计算说明书应做到字迹工整、书面整洁、层次分明、文理通顺。文中所引用的重要公式、论点及结论均应交待依据。 (2)设计说明书中应包括计算、表格和插图(图表统一编号)配以目录和参考文献目 录等内容统一装订成册。 (3)设计图纸要图面整洁、尺寸准确、线条匀称。 (4)手绘一张离心泵的总装简图,标注出主要的零部件的名称。 (二)离心泵水力设计指导书 设计者应根据设计任务书中给定的设计参数,参考有关设计资料,在规定的时间内完 成任务书中提出的具体要求。 提出以下设计步骤,供设计者参考。 (1)计算泵的比转数n s ,确定泵的结构方案。公式为 4 /365.3H Q n n s = (10-1) 式中 Q ——单吸叶轮泵的流量,m 3/s H ——单级叶轮泵的扬程,m 。 (2)确定泵的进出口直径 。吸入口直径D s 由进口流速v t (经济流速)决定,s t v Q D π4= 出口直径D t 按经验公式D t =(0.7~1.0)D s 确定。 D s 、D t 要求按标准直径选择。 (3)计算泵的允许汽蚀余量〔Δh 〕或允许吸上真空高度〔H s 〕.公式如下 3 /462.5??? ? ??=?c Q n h r (10-2) []k h h r +?=?(一般规定k =0.3m) [][]g v h g p g p H s v s 22 0+?--=ρρ (10—3) (4)泵转速n 的确定.按满足汽蚀要求校核转速.公式为

水泵课程设计

水泵与水泵站课程设计 任务书 福建工程学院建筑环境与设备系 给水排水教研室 2009年11月

《泵与泵站》课程设计任务书 一、教学目的与基本要求 泵和泵站课程设计,是给水排水工程专业的重要的集中性实践性环节之一。该课程的任务是使学生在掌握水泵及水泵站基本理论知识的基础上,进一步掌握给、排水泵站的工艺设计步骤和设计方法,使学生所获得的专业理论知识加以系统化,整体化,以便于巩固和扩大所学的专业知识。通过本课程设计还可以训练学生工程设计的基本技能,提高其设计计算能力、编写说明书的能力和工程图纸的表达能力。 基本要求: 1.培养学生严谨的科学态度,严肃认真的学习和工作作风,树立正确的设计思想,形成科学的研究方法。 2.培养学生独立工作的能力,包括收集设计资料、综合分析问题、理论计算、数据处理、工程制图、文字表达等能力。 3.通过课程设计,使学生得到较为全面的工程设计的初步训练。 4.掌握给、排水泵站设计的一般程序,学会灵活地处理复杂的工程问题。 5.学会编写“设计说明书”和“设计计算书”,按规范和标准绘制有关图纸。 6.本设计原则上是由学生在指导教师的指导下,独立完成。 二、设计内容 1.确定泵站的设计流量和扬程,拟定选泵方案。 2.选择水泵和电动机(包括水泵型号、电动机型号、工作和备用泵台数等); 3.确定水泵机组的基础尺寸; 4.吸水管路和压水管路的设计计算(包括进出水管内的流速、管径、阀门等,压水管长度计算至泵房外1m); 5.确定泵站内的附属设备,引水设备(如真空泵)、起重设备、排水泵等; 6.泵站的平面布置; 7.泵站的高程布置(包括水泵的基础、进出水管、泵轴、泵站地面等的标高); 8.根据起重设备的型号,确定泵房的建筑高度; 9.绘制泵站的平面图1张,剖面图1张,并列出主要设备表及材料表。 10.整理设计计算书1份,设计说明书1份。 最终的设计成果: (1)设计计算书和设计说明书各1份

离心泵设计

离心泵设计 目录 1 概述 (2) 2 工艺说明 (2) 2.1 工艺简介 (2) 2.2 物料性质 (2) 2.3 工作温度 (2) 2.4 工作压力 (2) 2.5 尺寸参数 (2) 2.6 其他说明................................. 错误!未定义书签。 3 机械设计....................................... 错误!未定义书签。 3.1 材料选择................................. 错误!未定义书签。 3.2 结构设计 (3) 3.3 设计参数 (3) 4 零部件的选型 (4) 4.1 法兰的选型 (4) 4.2 泵体的选型 (4) 4.3 叶轮的选型 (4) 4.4 其他零部件的选型 (4) 5 总结 (4) 参考文献 (5)

1 概述 本门课程是关于化工机械与设备的基础课程,完成一项相关设计是课程学习的主要目的,也是学好课程的重要方法。 目的是将论运用于实践,提高综合运用知识的能力。 本课程设计的目标是提高查阅资料、理论计算、工程制图、数据处理的能力。 完成本设计需要先学好理论知识再参考各类标准按照规范完成作品。 本设计的主要内容有确定工艺参数、确定材料与结构、完成相关计算以及零部件选型。 2 工艺说明 2.1 工艺简介 即合成氨的生产工艺,工艺大致流程如下: 造气→半水煤气脱硫→压缩机1,2工段→变换→变换气脱硫→压缩机3段→脱硫→压缩机4,5工段→铜洗→压缩机6段→氨合成→产品NH 3 本设备主要在其中起输送液体作用。 2.2 物料性质 水在70℃下的物性数据: 热导率:λ 2 = 0.624 W/(m?℃) 粘度:μ 2 = 0.742×10-3 Pa?s 2.3 工作温度 热流体进口温度70℃。 2.4 工作压力 根据工艺要求,设备允许压强不大于2×105Pa。 2.5 尺寸参数 外型尺寸 L: 352 H:320 a:80 h:180

离心泵叶轮切割方法的应用

离心泵叶轮切割方法的应用 摘要:离心泵使用过程中,由于泵选型不当或工艺发生改变,导致泵的扬程偏大,扬程富 余太多,泵出口阀门开度非常小,节流损失大,排量受到限制,造成工况不稳,调节困难, 轴承振动大,机械密封泄漏次数增多。为使泵满足现场工艺要求,可采用切割叶轮的方法 进行调整,离心泵采用切割叶轮的方法,可以改变泵的性能参数,解决泵的匹配性。适当 减小叶轮外径,在转速不变的条件下降低泵的流量、扬程和功率,改变泵的性能参数,从 而使泵在适当流量下使用,有利于降低检修率及起到节能效果。 关键词:离心泵;叶轮切割;机械性能曲线 0 引言 某炼厂硫磺收回装置半贫液泵为单级离心泵,泵的设计出口压力为0.7MPa,但运行压力为1.0MPa,实际泵出口压力5kg/cm2即可满足要求,设计流量Q=222m3/h,实际200 m3/h 即可满足要求。但该泵平时运行流量为80 m3/h,由于达不到泵的最小稳定连续流量要求,造成泵运行状态恶化,主要表现为:泵出口阀卡量过小,泵振动过大,密封泄漏频繁,造成能耗浪费等。为了优化操作,消除设备隐患,节能降耗,需针对该情况增变频电机或者进行叶轮切割。 1、叶轮切割计算 1.1、设计条件工作与实际条件工况的对比 泵的设计条件和性能参数 设计运行参数设计性能参数 流量Q=222 m3/h 扬程H=60m 温度T=119℃叶轮直径D=460mm 出口压力P =0.7MPa 效率η=72% 出 =0.3MPa 功率N=50.38KW 入口压力P 入 介质密度ρ=961kg/m3泵转速n=2950r/min 泵实际的运行的条件和性能参数 实际运行参数实际性能参数 流量Q=80 m3/h 扬程H=60m 温度T=119℃叶轮直径D=460mm =1.0MPa 效率η=72% 出口压力P 出 入口压力P =0.3MPa 功率N=50.38KW 入 介质密度ρ=961kg/m3泵转速n=2950r/min 由此参数可以看出,变化最大的为流量和入口压力,流量的偏低导致泵实际运行工况的改

离心泵课程设计

目 录 第一章 绪论…………………………………………………………………………3 1.1 泵的用途………………………………………………………………………3 1.2 泵的分类………………………………………………………………………3 1.3 离心泵主要部件………………………………………………………………4 第二章 结构方案的确定……………………………………………………………5 2.1 确定泵比转速…………………………………………………………………5 2.2 确定泵进、出口直径…………………………………………………………5 2.3 确定效率和功率以及电动机的选择…………………………………………5 2.4 联轴器处轴径的初步确定及轴的结构设计…………………………………6 第三章 叶轮的水力设计 …………………………………………………………7 3.1 叶轮进口直径D 0的确定 ……………………………………………………7 3.2 确定叶片入口边直径1D ………………………………………………………8 3.3 确定叶片入口处绝对速度1V 和入口宽度1b …………………………………8 3.4 确定叶片入口处圆周速度1u ………………………………………………8 3.5 确定叶片数Z …………………………………………………………………9 3.6 确定叶片入口轴面速度1 m V 和入口安放角1β (9) 3.7 确定叶片出口安放角2β和叶轮外径2D ..........................................9 3.8 确定叶片厚度S ........................................................................9 3.9 计算排挤系数1ε........................................................................9 3.10 确定叶片包角?.....................................................................10 3.11 确定叶片出口宽度2b (10) 3.12 计算有限叶片时,液体出口绝对速度2v 以及2v 与2u 的夹角' 2α............11 3.13 叶轮的轴面投影图以 ...............................................................12 第四章 压水室的设计 .....................................................................12 4.1 基圆直径3D 的确定.....................................................................13 4.2 压水室的进口宽度.....................................................................13 4.3 隔舌安放角3α ........................................................................13 4.4 泵舌安放角θ ........................................................................13 4.5 断面面积F ...........................................................................13 4.6 当量扩散角..............................................................................14 4.7 各断面形状的确定.....................................................................14 计算数据汇总 .................................................................................16 结束语 ....................................................................................17 参考文献 (18)

相关主题
文本预览
相关文档 最新文档