当前位置:文档之家› Regulation, evolution, and functionality of flavonoids in cereal crops

Regulation, evolution, and functionality of flavonoids in cereal crops

REVIEW

Regulation,evolution,and functionality of?avonoids in cereal crops

Zehou Liu?Yaxi Liu?Zhien Pu?Jirui Wang?

Youliang Zheng?Yanhong Li?Yuming Wei

Received:21February2013/Accepted:21June2013/Published online:24July2013

óSpringer Science+Business Media Dordrecht2013

Abstract Flavonoids are plant secondary metabolites that contribute to the adaptation of plants to environ-mental stresses,including resistance to abiotic and biotic stress.Flavonoids are also bene?cial for human health and depress the progression of some chronic diseases. The biosynthesis of?avonoids,which belong to a large family of phenolic compounds,is a complex metabolic process with many pathways that produce different metabolites,controlled by key enzymes.There is limited knowledge about the composition,biosynthesis and regulation of?avonoids in cereals.Improved under-standing of the accumulation of?avonoids in cereal grains would help to improve human nutrition through these staple foods.The biosynthesis of?avonoids,scope for altering the?avonoid composition in cereal crops and bene?ts for human nutrition are reviewed here.

Keywords Cereal cropáEvolutionáFlavonoidsáHealtháRegulationáStructural genes

Abbreviations

4CL4-Coumarate-CoA ligase

ANS Anthocyanidin synthase

C4H Cinnamate-4-hydroxylase

CHI Chalcone-?avanone isomerase

CHS Chalcone synthase

DFR Dihydro?avonol-4-reductase

F3H Flavanone-3-hydroxylase

F30H Flavonoid-30-hydroxylase

FLS Flavonol synthase

PAL Phenylalanine ammonia-lyase

UFGT UDP-?avonoid glucosyltransferase

Zehou Liu and Yaxi Liu contribured equally.

Z.LiuáY.LiuáZ.PuáJ.Wang(&)á

Y.ZhengáY.Wei(&)

Triticeae Research Institute,Sichuan Agricultural University,Chengdu-Wenjiang611130,Sichuan,China e-mail:wangjirui@https://www.doczj.com/doc/4c8053757.html,

Y.Wei

e-mail:ymwei@https://www.doczj.com/doc/4c8053757.html,

Z.Liu

e-mail:zehouliu@https://www.doczj.com/doc/4c8053757.html,

Y.Liu

e-mail:yaxi.liu@https://www.doczj.com/doc/4c8053757.html,

Z.Pu

e-mail:puzhien@https://www.doczj.com/doc/4c8053757.html, Y.Zheng

e-mail:ylzheng@https://www.doczj.com/doc/4c8053757.html,

J.Wang

Department of Plant Science,University of California, Davis,CA95616,USA

Y.Li

Department of Chemistry,University of California,Davis, CA95616,USA

e-mail:lyanhong@https://www.doczj.com/doc/4c8053757.html,

Biotechnol Lett(2013)35:1765–1780 DOI10.1007/s10529-013-1277-4

Introduction

Flavonoids are involved in protecting cereal crops against various biotic and abiotic stresses through mechanisms including UV protection(Kootstra1994; Agati et al.2011;Kim et al.2012),seed insect resistance(Abdel-Aal et al.2001)and physiological developmental functions(Debeaujon et al.2000; Finkelstein et al.2008),tissue-pigmentation(Gu et al.2011;Himi et al.2011)and auxin-regulation (Murphy et al.2000;Buer and Muday2004). Flavonoids play an important role in the interaction of plants with environmental conditions,such as light, temperature and soil(Havaux and Kloppstech2001; Taleon et al.2012;Porter2013).Moreover,?avo-noids are bene?cial for human nutrition and health (Hollman and Katan1999;Graf et al.2005;Kaur et al.2012).Clinical studies have indicated that ?avonoids may be the bioactive substances found in fruit,vegetables and cereal grains that may be responsible for the alleviation of many diseases, including cancer and coronary heart disease,associ-ated with the consumption of these foods(Gani et al. 2012).

Studies on the analysis of?avonoid components and mechanisms for the genetic regulation of?avonoid biosynthesis have mainly focused on Arabidopsis (Lepiniec et al.2006).Currently,there is little known about the?avonoid content and biosynthesis mecha-nisms in cereal grains,such as rice,wheat,maize, sorghum and oat.More attention has been paid to the pigment deposition in grains due to abundant?avonoid composition and bene?ts for human health(Abdel-Aal et al.2006).Cereals are staple foods both directly for human consumption and indirectly via livestock feed. Hence,growing more commercial cereal varieties containing?avonoids would help to improve human nutrition.This review discusses recent advances in our understanding of the genetics,metabolic physiology and evolution of?avonoids in cereal grains and their contribution to human health.

Metabolic physiological function of?avonoids Flavonoids are thought to be indispensable for various physiological metabolic processes during the lifespan of plants.Studies have demonstrated that intermediate metabolites formed during?avonoid biosynthesis might regulate different physiological processes in cereal crops.

Physiological development functions

It has been suggested that?avonoids,particularly the red pigments in cereal grains,are associated with seed dormancy.In red-grained wheat and rice,the red pigments affecting pericarp color(Table1)were associated with seed dormancy(Mares et al.2005; Gu et al.2011),and also affected seed germination and storability(Debeaujon et al.2000).Accumulation of red pigments in the seed coat enhances seed dormancy because of the link between the red-testa(R)gene that controls the accumulation of red pigments and other genes that affect pre-harvest sprouting(Noldin et al. 2006;Groos et al.2002;Fofana et al.2009).Thus,red-grained morphology has been used to select cultivars for resistance to pre-harvest sprouting.Recently,a weedy rice gene SD7-1,encoding bHLH(basic helix-loop-helix)transcription factors that regulate seed dormancy through abscisic acid(ABA)biosynthesis and pigmentation,was determined(Gu et al.2011).

There is evidence that?avonoids are endogenous regulators of hormone auxin and signal transduction carriers.Flavonoids have been observed to bind synthetic auxin transport inhibitors in vitro and affect the polar transport of auxin in plants(Brown et al. 2001;Buer and Muday2004).Quercetin,kaempferol and naringenin are the intermediates produced during ?avonoid biosynthesis that have the greatest activity and correct the lesion in auxin transport in the ?avonoid-de?cient Arabidopsis mutant,transparent testa(tt)4.Altered patterns of auxin distribution that resulted from higher auxin ef?ux than normal could also be detected(Murphy et al.2000;Buer and Muday 2004).In addition,?avonol-induced modi?cation of auxin transport resulted in increased accumulation of auxin in Arabidopsis mutant rol1-2(repressor of lrx1) (Kuhn et al.2011)and?ower?avonoid transporter1 (fft-1)(Thompson et al.2010a,b).Flavonoids also act as inhibitors of auxin transport that regulate nodule development in the legume,Medicago truncatula (Wasson et al.2006).Nodule formation and?avonoid accumulation could be enhanced by the supplementa-tion of plants with the precursor?avonoids,naringenin and liquiritigenin and the?avonoid-de?cient roots showed increased auxin transport compared with control roots(Wasson et al.2006).Flavonoids also

play essential roles in signaling of symbiotic bacteria in Rhizobium symbiosis(Weston and Mathesius 2013).

Abiotic and biotic stress physiology

Flavonoids are also believed to be UV-B absorbing compounds(Tossi et al.2012),which provide UV radiation protection in response to‘‘excess light’’stress(Bashandy et al.2009;Agati et al.2011;Kim et al.2012).One hypothesis is that?avonoid pigment deposition in grain coat tissue is in?uenced by the environment signal(i.e.,light intensity).The adapta-tion to UV irradiation or the spectral composition is altered throughout the developmental stages of a plant’s lifespan and the accumulation of?avonoid is also different.During?avonoid biosynthesis,accu-mulation of quercetin increases with increasing amounts of UV-B radiation,while the accumulation of kaempferol derivatives decreases(Go¨tz et al.2010).Activation of genes involved in?avonoid biosynthesis depends on levels of UV-B radiation predominantly at the immature green stage in tomato(Calvenzani et al. 2010).In addition,?avonoids have anti-fungal activ-ity:proanthocyanidins and dihydroquercetin are involved in the defense against Fusarium species in barley mutants and naringenin,kaempferol,quercetin and dihydroquercetin can inhibit the fungal blast pathogen Pyricularia oryzae with differential sensi-tivity(Skadhauge et al.1997;Padmavati et al.1997; Treutter2006).

Flavonoid compounds

More than10,000?avonoids have been reported and belong to a large family of secondary metabolic compounds(Kim et al.2008).Most?avonoids have a core C6–C3–C6skeleton structure composed of15 carbons,with two aromatic rings connected by a

Table1Presence of different kinds of?avonoids in cereal pigmented-grains

Species Color Main?avonoid compounds TFC

(l g/g)

Location References

Wheat Blue De-3-Glu,Cy-3-Glu,De-3-Rut,

Cy-3-Rut 212Aleurone Abdel-Aal et al.(2006),Knievel et al.

(2009)

Purple Cy-3-Glu,Cy-3-Rut95.8Pericarp Knievel et al.(2009)

Rice Black Cy-3-Glu,Pn-3-Glu3276Pericarp Abdel-Aal et al.(2006),Kim et al.

(2010a,2010b)

Red Cy-3-Glu,Ap94Abdel-Aal et al.(2006),Kim et al.

(2010a,2010b)

Maize Purple Cy-3-Glu,Pg3-Glu,Pn-3-Glu1277Abdel-Aal et al.(2006),Moreno et al.

(2005)

Blue Cy-3-Glu,Ma322.7Pericarp Moreno et al.(2005)

Red Cy-3-Glu607.1Pericarp and

Aleurone Moreno et al.(2005),Abdel-Aal et al. (2006)

Pink Pg-3-Glu163.9Abdel-Aal et al.(2006)

Sorghum Black Ap,Lut,5-Meo-Lut,7-Meo-Ap679.7Pericarp Dykes et al.(2009),Taleon et al.(2012) Purple Lut,5-Meo-Lut630.5Dykes et al.(2009)

Red Ap,7-Meo-Ap139.2Dykes et al.(2011)

Lemon-

yellow

Er,Na,Lut,Ap1504Pericarp Dykes et al.(2009)

Barley Black De-3-Glu158.7Pericarp Siebenhandl et al.(2007),Kim et al.

(2007)

Blue Cy,Cy-3-Glu,De,Pg,Pe-3-Glu34.6Abdel-Aal et al.(2006)

Purple Qu,Ka124.8Yang et al.(2013)

TFC total?avonoids content,Cy cyanidin,Ma malvidin,Glu glucoside,Mal malonyl,Pg pelargonidin,Pn peonidin,Pe petunidin,De delphinidin,Gal galactoside,Rut rutinoside,Ka kaempferol,Qu quercetin,Ap apigenin,Lut luteolinidin,Meo-Ap methoxyapigeninidin,Meo-Lut methoxyluteolinidine,Er eriodictyol,Na naringenin

3-carbon bridge (Jaganath and Crozier 2011)(Fig.1),except for the aurones that have a C 6–C 2–C 6skeleton (Hichri et al.2011).They can be divided into distinctive structural classes including ?avonols (myricetin,kaempferol and quercetin),?avanones (pentahydroxy ?avanone,naringenin and eriodictyol),?avanols (leucodelphinidin,leucopelargonidin and leucocyanidin),anthocyanins (delphinidin,pelargon-idin and cyanidin)and iso?avones according to the chemical modi?cations of the central C-ring (e.g.,hydroxylation,methylation and glycosylation)(Lepi-niec et al.2006).

The class,amount and tissue location of ?avonoids in cereal crops during different developmental stages have received increasing attention.Flavonols,antho-cyanins and proanthocyanidins are the major types of ?avonoids found in cereal grains (Table 1);the ?rst two compounds are the main ?avonoids located in the pericarp and contribute to grain pigmentation and protection against UV-B radiation.Interestingly,?avonols,which contribute to male fertility in higher plants,are the most abundant subgroup of ?avonoids (Ferreyra et al.2012).Flavonols and anthocyanins frequently exist in cereal pigmented-grains as glycoside

derivatives,including cyanidin-3-glucoside,penidin-3-glucoside and delphinidin-3-glucoside (Abdel-Aal et al.

2006;Knievel et al.2009;Z

ˇilic ′et al.2012).Because of post-translational modi?cation by oxygenases,methyl-transferases and glycosyltransferases,?avonoids dis-play a wide diversity of types in plant species.

Generally,the content of ?avonoids in cereal grains is proportional to the degree of color depth,and black and purple grains have more ?avonoids than red and pink grains in each cereal crop (Table 1).Overall,black rice grains possess the most ?avonoid content,*3,300l g/g (Table 1).Sorghum and maize (which are mainly coarse cereals)have subgroups with diverse pigmented-grains,whose accumulation of ?avonoids are superior to the global staple foods,rice and wheat.

Genetic regulation of ?avonoid biosynthesis The biosynthesis of ?avonoids is greatly in?uenced and controlled by genetic regulation,which can produce different metabolites and is controlled by key enzymes,including CHS,CHI,F3H,FLS,F30

H,

Fig.1Generic structures of the major ?avonoids (Jaganath and Crozier 2011)

DFR,ANS and UFGT (Fig.2).CHS,which converts phenylpropanoid-CoA and malonyl-CoA into chal-cones,is the ?rst and most pivotal enzyme in the ?avonoid biosynthesis pathway (Liu et al.2010).The structural genes are mainly from two classes,early biosynthesis genes (EBGs:CHS ,CHI ,and F3H )and late biosynthesis genes (LBGs:DFR ,ANS ,and UFGT )(Shih et al.2008;Ahmed et al.2009).Importantly,there is a strong correlation between the ?avonoid biosynthesis pathway and the general phenylalanine biosynthesis pathway via PAL,C4H and 4CL (Fig.2).The regulation of ?avonoid biosynthesis in Ara-bidopsis is relatively well understood.Various mutants with a single mutation of a ?avonoid biosyn-thesis gene present a different seed color,which has been used to study the genetic character of each structural enzyme in terms of pigmentation accumu-lation in seed coat,pericarp or aleurone layer.Struc-tural genes that have been isolated and characterized in Arabidopsis include tt1,tt3,tt4,tt5,tt6,tt7,tt18,and ban .Most mutants have a different pigmentation phenotype of seed coat and each mutant gene encodes the corresponding structural enzyme (DFR,CHS,CHI,F3H,F30H,LDOX and ANS,respectively)(Lepiniec et al.2006).In barley,ant 17and 18are the structural genes for F3H and DFR enzymes,respectively and ant 19is most likely the structural gene encoding leucoanthocyanidin reductase (Strid 1991,1993).The further development and use of such plant mutants would be useful to understand the mechanisms of genetic regulation of ?avonoid biosynthesis in more detail.

In cereal crops,study of the ?avonoid biosynthesis has predominantly focused on genetic mapping on chromosomes (Tables 2,3).A genome sequencing project using Oryza sativa has provided valuable information regarding structural genes and their char-acterization has been conducted in vitro (Kim et

al.

Fig.2Schematic overview of major ?avonoids biosynthesis pathway in plant (Lepiniec et al.2006;Brockington et al.2011).Key enzymes are indicated in abbreviated as follows:PAL phenylalanine ammonia-lyase,C4H cinnamate-4-hydrox-ylase,4CL 4-coumarate-CoA ligase,CHS chalcone synthase,CHI chalcone isomerase,F3H ?avanone-3-hydroxylase,F30H

?avonoid-30-hydroxylase,F3050H ?avonoid-30,50-hydroxylase,DFR dihydro?avonol-4-reductase,FLS ?avonol synthase,ANS anthocyanidin synthase,LDOX leucoanthocyanidindioxidase,UFGT UDP ?avonoid glucosyltransgerse,3GT 3-glucosyl transferase,ANR anthocyanidin reductase

2008).Most structural genes have been mapped and cloned in rice by analyzing mutants and wild germ-plasm resources.Among them,the OsFNS gene encoding?avone synthase has1,027-bp nucleotides, encodes a38.7kDa protein and has high similarity with the OsF3H gene.The OsIBF1gene,mapped on chromosome9,is regarded as a novel suppressive gene,which inhibited the expression of the OsANS1 gene dramatically and repressed brown pigment deposition(Shao et al.2012).The OsIBF1gene also performs a negative role similar to the ZmIN1gene and I locus in soybean.Interestingly,the mutant strain of rice,gh1,exhibits a reddish-brown pigmentation in the hull due to mutation of the chalcone isomerase gene (OsCHI)and the total content of?avonoids in gh1hulls is increased three times compared with the wild type (Hong et al.2012).

Some structural genes related to?avonoid bio-synthesis have been reported(Tables2,3).Mutants, of course,are excellent materials to study the metabolic mechanism of?avonoid biosynthesis. Several regulatory factors have also been isolated and characterized in maize mutants recently.Muta-tions in the purple aleurone1(pr1)locus led to the accumulation of pelargonidin(red)rather than cyanidin(purple)pigments in aleurone cells where anthocyanin biosynthesis is active(Sharma et al.2011).Therefore,the pr1locus has been used as a phenotypic marker in maize.ZmFLS enzyme was found to be localized in the ER and the perinuclear region in different maize(Zea mays)tissues(Fer-reyra et al.2012).

Because of their allopolyploid nature,the large genomes of wheat make it dif?cult to obtain detailed sequence and genomic information related to?avo-noid biosynthesis.Recently,the?avonoid biosyn-thesis genes were cloned and located on wheat chromosomes(Table2).Other regulatory genes encoding transcription activators that are involved in regulating red pigment deposition and activating the expression of structural genes are the R and Rc genes,which,in wheat,were located on chromosome groups3and7,respectively(Ahmed et al.2006; Himi et al.2005;Khlestkina et al.2008,2010).The Rc-A1gene is regarded as an activator that regulates the expression of LBGs.Rc-A1,Rc-B1and Rc-D1 were reported to activate the transcriptional level of the F3H gene in pigmented coleoptiles in wheat (Khlestkina et al.2008,2010).Moreover,using SSR markers,it was shown that Rc-D1turned the grain red and was located on chromosome3DL(Li et al. 2010).Compared with Rc genes,the R gene is involved in the activation of EBGs(Himi et al. 2005).Red pigment deposition is regulated by the

Table2Location of structural genes on chromosomes in cereal crops

Genes Wheat Rice Maize Barley Sorghum

CHS Group1;Group2Chromosome11Chromosome4Chromosome2H Chromosome5 Li et al.(1999)Reddy et al.(1996)Reddy et al.(1996)Korff et al.(2005)Liu et al.

(2010)

CHI Group5Chromosome3L Chromosome1L;2L;5S Chromosome7H Chromosome1

Khlestkina et al. (2009)Druka et al.(2003)Grotewold and Peterson

(1994)

Korff et al.(2005)Liu et al.

(2010)

F3H Group2Chromosome4Chromosome2S Chromosome2HS Chromosome6

Khlestkina et al. (2008)Shih et al.(2008)Deboo et al.(1995)Khlestkina et al.

(2011)

Liu et al.

(2010)

DFR Group3Chromosome1Chromosome3_Chromosome3

Himi and Noda(2004)Furukawa et al.

(2007)McMullen et al.(2001)Liu et al.

(2010)

ANS Group6Chromosome1__Chromosome4 Himi et al.(2005)Reddy et al.(2007)Liu et al.

(2010) Mapping information of OsF3H gene was derived from Rice Genome Annotation Project(http://rice.plantbiology. https://www.doczj.com/doc/4c8053757.html,/cgi-bin/ORF_infopage.cgi)

R gene located on the homologous chromosome group 3in wheat.

Transcription regulation

Flavonoid biosynthesis is principally regulated by transcription factors,including MYB,basic helix-loop-helix (bHLH)and WD40proteins (Romano et al.2012).MYB transcription factors are characterized by the N -terminal MYB domain,which consists of one to three imperfect repeats of almost 52amino acids (R1,R2and R3).The MYB N -terminal domain is involved in DNA binding and dimerization,whereas the C -terminal region regulates target gene expression (Dubos et al.2010).Shen et al.(2012)reported that the MYB gene structure is highly conserved in plants.The bHLH proteins,with 60amino acids and 19conserved amino acids,are the main transcriptional regulators of ?avonoid biosynthesis.WD40proteins (WD repeats)are characterized by a peptide motif with 44–60amino acids that are tandemly repeated 4–16times within a protein (Hichri et al.2011;Allan et al.2008;Schaart et al.2013).The complex consisting of MYB-bHLH-WD40(MBW)regulator proteins has been characterized and determined to be involved in regulating ?avonoid biosynthesis during development of the plant (Streisfeld et al.2011).

MYB regulates the expression of structural genes during the entire life of the plant.In maize,the essential gene encoding the MYB protein is Colorless (C1)(Cone et al.1986).Subsequently,many MYB genes have been isolated and characterized in maize and other plants.Research on the MYB gene family is of current interest both in monocotyledonous and dicotyledonous plants particularly in the larger family of R2R3-MYB,including the three R2R3-MYB proteins (MYB11,MYB12and MYB111).R2R3-MYB transcription factors are the main contributors to the accumulation of ?avonoid pigments,but are not part of the MBW complex that mainly regulate expression of EBGs and Flavonol synthase 1(FLS1)(Dubreucq et al.2010).R2R3-MYB genes are highly conserved;a total of 158open reading frames encoding R2R3-MYBs have been identi?ed,most of which have not yet been functionally https://www.doczj.com/doc/4c8053757.html,pared with Zea mays ,the TaMYB gene family has not been well characterized in wheat (Khlestkina et al.2012).Little is known about the detailed genetic and regulatory function of the whole TaMYB gene

T a b l e 3P a r a m e t e r s o f e a c h k e y s t r u c t u r e e n z y m e s d u r i n g ?a v o n o i d s b i o s y n t h e s i s i n c e r e a l c r o p s

S p e c i e s C H S

C H I

F 3H

D F R

A N S /L D O X

A c c e s s i o n M W

A A

A c c e s s i o n

M W

A A

A c c e s s i o n

M W

A A

A c c e s s i o n

M W

A A

A c c e s s i o n

M W

A A

W h e a t

Q 6W G P 8

43,198

394

A K 330782.1

23,629

229

B 5M 698

42,135

378

Q 84J I 1

38,464

355

Q 0W Y I 4

47,488

438

R i c e

Q 2R 3A 1

43,265

398

A 2X N F 0

23,893

233

X M _474226.1

41,559

377

Q 9S 7C 3

40,403

372

P 93403

40,599

375

M a i z e

Q 4Q W Z 6

43,196400Q 0870424,250

231Q 4326241,193

372B 6U E I 0

38,798

357

P 41213

43,356

395

B a r l e y B 5L X Z 943,195394Q 8S 3X 023,704231B 5L Y 0144,517398P 51106

38,435354B A J 89402.1

37,790

347

S o r g h u m Q 9X G X 243,745401X P _002463631.123,798231D 2Y 4P 141,737380

E E S 19023.138,942

362

E E R 87904.1

37,708

345

S i m i l a r i t y 94.11%86.47%81.12%81.21%

52.14%

T h e a c c e s s i o n s a r e r e p o r t e d i n t h e U n i P r o t p r o t e i n d a t a b a s e (h t t p ://w w w .u n i p r o t .o r g /)o r N C B I (h t t p ://w w w .n c b i .n l m .n i h .g o v /p r o t e i n /?S I T E =N c b i H o m e &s u b m i t =G o ).A K 330782.1,X M _474226.1,B A J 89402.1,X P _002463631.1,E E R 87904.1,E E S 19023.1a r e t h e a c c e s s i o n o f t h e p r e d i c t e d p r o t e i n s i n N C B I d a t a b a s e ,t h e o t h e r s a r e t h e a c c e s s i o n o f t h e p r o t e i n s i n U n i P r o t d a t a b a s e

C H S c h a l c o n e s y n t h a s e ,C H I c h a l c o n e -?a v o n o n e i s o m e r a s e ,F 3H ?a v a n o n e 3-h y d r o x y l a s e ,A N S A n t h o c y a n i d i n s y n t h a s e ,L

D O X l e u c o a n t h o c y a n i d i n r e d u c t a s e ,D F R D i h y d r o ?a v o n o l 4-r e d u c t a s e ,M W m o l e c u l a r w e i g h t (D a l t o n ),A A a m i n o a c i d

family at the molecular level.The completion of the wheat genome sequence project should enable com-parative genomics studies and the identi?cation of new TaMYB genes.The molecular characterization of TaMYB genes during abiotic stress was comprehen-sively reported by Zhang et al.(2011).Several chromosomal loci for TaMYB genes are related to R genes.TaMYB10genes,including TaMYB10-A1,TaMYB10-B1and TaMYB10-D1,encode the R2R3-type MYB domain protein,which is located on chromosomes 3A,3B and 3D,respectively (Himi et al.2011).Currently,genome data mining of MYB transcription factors in cereal crops is crucial to understand the roles of MYB transcription factors in physiological and biochemical processes.

In rice,a large number of candidate genes (*2,617)are predicted to be potentially related to anthocyanin biosynthesis as determined using 135K rice microarray (Kim et al.2010a ,b ).Nine genes,including up-regulation genes (Os01g0781600,Os10g0315400,Os01g0633500,Os08g0389700,Os01g0615050,Os01g0959100,Os01g 0748150)and down-regulation genes (Os01g0246400,Os02g0113800),were recognized to play a regulatory role in the anthocyanin biosynthesis pathway.In addition,a 135K Oryza sativa microarray was used to identify 137transcription factor genes and 17candidate genes including 10up-and 7down-regulated genes (Kim et al.2011),but the detailed biological function of these new genes needs to be further investigated.

Domain evolution in CHS,CHI,F3H,DFR and ANS

Flavonoids contribute to evolutionary processes (Lepiniec et al.2006)such as protection against biotic and abiotic stresses.The ecological and physiological functions of these unique secondary metabolites might once have helped the plant to adapt from an aquatic to a terrestrial environment.

Structural and regulatory genes related to ?avonoid biosynthesis have served as a model system for investigation into a variety of evolutionary processes.In cereal crops,structural enzymes show correspond-ing evolutionary diversity.Structural genes have been poorly understood in terms of the evolution of genetic regulation in various cereal crops.Different structural genes are activated at different stages in a plant’s development.Light activation results initially in the

T a b l e 4T h e c o m p a r i s o n o f p h y s i c a l a n d c h e m i c a l p r o p e r t i e s o f s t r u c t u r e e n z y m e s i n ?a v o n o i d b i o s y n t h e s i s p a t h w a y i n c e r e a l c r o p s ,t h e d a t a a r e f r o m t h e d a t a b a s e o f E x P A S y -P r o t P a r a m t o o l (h t t p ://w e b .e x p a s y .o r g /p r o t p a r a m /)a n d N e t N G l y c 1.0S e r v e r (h t t p ://w w w .c b s .d t u .d k /s e r v i c e s /N e t N G l y c /)

S p e c i e s

C H S

C H I

F 3H

D F R

A N S /L D O X

P I

I I

G S

P I

I I

G S

P I

I I

G S

P I

I I

G S

P I

I I

G S

W h e a t

6.02

41.66

339

5.12

22.99

N o n e

5.76

49.78

6

5.42

33.45

1464.87

46.49

N o n e

U n s t a b l e

N M S S

S t a b l e

U n s t a b l e

N E T F

S t a b l e

N W S D

U n s t a b l e

R i c e

5.85

41.61

339

5.15

28.82

N o n e

5.66

42.94

N o n e

5.35

36.97

N o n e

5.52

35.68

136

U n s t a b l e

N M S S

S t a b l e

U n s t a b l e

S t a b l e

S t a b l e

N A S G

M a i z e

6.33

33.54

84;340

5.82

43.87

N o n e

5.96

46.6

N o n e

5.48

35.53

N o n e

5.941.85

N o n e

S t a b l e

N P S M ;N M S S

U n s t a b l e

U n s t a b l e

S t a b l e

U n s t a b l e

B a r l e y

5.9140.09

339

5.33

24.53

N o n e 5.65

45.8665.0937.13

146

5.48

43.80

200

U n s t a b l e

N M S S S t a b l e U n s t a b l e N E T F S t a b l e N M S D U n s t a b l e N I T I S o r g h u m 6.23

36.57

339

5.1628.51N o n e 5.76

45.5N o n e 5.53

33.18

N o n e 5.55

45.70

198

S t a b l e N M S S S t a b l e U n s t a b l e S t a b l e U n s t a b l e

N I T I

P I p r o t e i n i s o e l e c t r i c p o i n t ,I I t h e i n a b i l i t y i n d e x o f p r o t e i n ,u n s t a b l e i s m o r e t h a n 40,a n d s t a b l e i s l e s s t h a n 40,G S N -g l y c o s y l a t i o n s i t e s a n d a m i n o a c i d g r o u p s i n a m i n o a c i d s e q u e n c e s

Fig.3Sequence alignment of amino acid of main structural enzyme proteins in?avonoidspathway:CHS,CHI,F3H,DFR and ANS.The amino acid sequences in red frame are the active sites of each protein.Among these structural enzymes,the active sites of CHS,F3H and ANS have been detected by the ExPASy–PROSITE program(https://www.doczj.com/doc/4c8053757.html,/),but the active sites of CHI and DFR were not detected

expression of CHS,CHI,F3H,and FLS genes. Subsequently,DFR and ANS genes are activated (Ahmed et al.2006).However,there are variations in the nucleotides in each gene,and consequently variations in the proteins,between cereal species (Table3).This variation results in some unusual physical and chemical properties in different cereal crops(Table4).The structural genes of CHS,CHI, F3H,DFR,and ANS have94,86.5,81,81and52% similarity,respectively(Table3;Fig.3).The EBGs have greater similarity than LBGs especially at the active sites of the corresponding proteins.The high degree of variation in LBGs may be advantageous for ecological adaption in evolutional processes in nature.

Nevertheless,the domestication of cereal crops has resulted in the genetic diversity among current cereal varieties becoming limited.In wheat breed-ing,for example,the white-grained varieties have been preferred because of their higher?our extrac-tion rates and greater economic value compared with the deeply pigmented varieties,including red-, black-and blue-grained varieties.Therefore,white-grained varieties have predominated for years.It has resulted in reduced genetic diversity in commer-cially grown wheat.However,in the future black and blue wheat varieties may prove attractive to wheat producers because they contain more nutrient-rich

?avonoids. Fig.3continued

Contribution to human health

Flavonoids,as bioactive compounds,may promote human health,including reducing the risk of chronic diseases and enhancing the immune system.Since the 1990s,many epidemiological studies have shown a positive correlation between high dietary intake of ?avonoids and risk-reduction of degenerative diseases (Riboli and Norat2003;Lindeberg2012)including cardiovascular disease(Li et al.2013),type-2diabetes (Gani et al.2012),atherosclerosis and some cancers (Wedworth and Lynch1995;Geleijnse et al.1999; Angst et al.2013)(Table5).Furthermore,growing evidence suggests that?avonoids are associated with free radical scavenging and damage caused by free radicals can result in neoplasia,atherosclerosis and neurodegenerative disease(Heim et al.2002).High dietary?avonoid intake is also bene?cial for bone health(Hardcastle et al.2011;Macdonald-Clarke and Macdonald2013).In addition,some individual?avo-noid subgroups could be contributed to risk-reduce of speci?c cancers.Chang et al.(2013)reported that the intake of?avonols and?avones but not other subclasses?avonoids could reduce risk of breast cancer,especially in post-menopausal women.Flav-ones and proanthocyanidins were inversely associated with colorectal cancer risk(Zamora-Ros et al.2013).

Medicinally-bioactive?avonoids that may protect the human skin from the damaging effects of solar UV radiation are widely distributed in grains,fruit, vegetables and?owers(Afaq and Katiyar2012).The ?avone,luteolin(LUT),for instance,is a?avonoid compound,that can inhibit diverse aspects of the sunburn response(Verschooten et al.2010).Further-more,the LUT-rich Reseda extract may be applied to protect human skin under UV irradiation conditions and the potential of LUT in the prevention of UV-induced erythema has been investigated(Casetti et al.2009;Verschooten et al.2010).

Currently,anthocyanins are the essential colorants in commercial production,especially in the food processing industry but natural anthocyanin colorants are mainly concentrated from grape skin and red cabbages(Abdel-Aal et al.2006).However,cereal grains,including rice,wheat and maize,are the staple foods of humans and livestock around the world and have a relatively low?avonoid and polyphenol content compared with fruits and vegetables.Hence, additional research into the composition of?avonoids in grains and the genetic mechanism of?avonoid biosynthesis may help to improve crop breeding and human nutrition through intake of?avonoids in these stable foods.

Conclusion and future prospects

Flavonoids play an important role during the adaptive evolution of plants and are also bene?cial to human health.Studies of?avonoid biosynthesis may help us to understand more about plant metabolic mechanisms in physiology and genetics.

Table5Contribution of various?avonoids for human cancer prevention

Category of

?avonoids

Contribution for health References

Iso?avones Reduce incidence of all cancers Cutler et al.(2008)

Proanthocyanidins Reduce risk of colorectal cancer and lung cancer

incidence among current or former smokers Rossi et al.(2006),Theodoratou et al.(2007), Carnesecchi et al.(2002),Zamora-Ros et al.(2013)

Flavanones Reduce risk of oral,pharyngeal,laryngeal,esophageal

cancer and lung cancer incidence among current or

former smokers

Garavello et al.(2007),Rossi et al.(2007a,b)

Flavonols Decrease risk of lung,pancreatic and breast cancer Marchand et al.(2000),Wright et al.(2004),Angst

et al.(2013),Chang et al.(2013)

Flavanols Inhibit growth of human colonic cancer cells Carnesecchi et al.(2002)

Anthocyanins Inhibit colon cancer cell and skin tumor development,

decrease the risk of esophageal and lung cancer,

bene?t bone health Jing et al.(2008),Wang and Stoner(2008), Macdonald-Clarke and Macdonald(2013)

Domestication has favored white-grained cereal varieties because the white mutant characteristic is associated with a pleasant appearance of the grain because of the absence of proanthocyanidins in the pericarp tissue(Sweeney et al.2007).This phenotype is caused by the inactivation of a functional pleiotropic gene downstream of the?avonoid biosynthetic path-way.Thus,crop breeders need to evaluate grain color in multiple environments to identify genotypes with stable and high levels of speci?c?avonoids(Taleon et al.2012).

Flavonoids can regulate physiological processes of plant under disadvantageous conditions.In addition, there is strong evidence that MYB genes such as TaMYB33,TaMYB56-B and TaPIMP1are involved in enhancing the resistance to fungal,drought and salt stresses via regulating?avonoid biosynthesis(Qin et al.2012;Zhang et al.2012a,b).The grain color may be used as a phenotype trait or standard,to help breeders to improve cereal varieties contributing to human health.In Tibet,there is a high incidence of congenital heart defect(Miao et al.1988;Chen et al. 2008)because of the climate and geographical envi-ronment,with low oxygen,high altitude,and strong UV radiation.Tibetan wheat and barley,the main staple foods(excluding meat)in Tibet,have low yields and quality.Breeding Tibetan wheat and barley varieties with high levels of?avonoids may improve everyday nutrition and protect against heart disease in Tibet.

In cereal crops,most of the genes controlling pigment deposition probably are derived from related species or wild varieties.The blue aleurone trait was introgressed into common wheat from blue-pigmented Triticum boeoticum,Thinopyrum,Agropyron trichol-phorum and Agropyron glaucum and most frequently from Agropyron elongatum(Knievel et al.2009; Zheng et al.2009).Purple wheat grains were discov-ered in tetraploid durum in east African areas such as Ethiopia,which was a donor of common wheat (Knievel et al.2009).More and more exogenous genes from related species have been introgressed into wheat cultivars,which could help to improve?avo-noid composition via breeding pigmented cultivars from wide cross between common wheat and related species.The introduction of exogenous genes has provided fresh insight into engineering pigmented-grain cereal cultivars,including the development of synthetic wheat.However,the type,accumulation and location of?avonoids in cereal grains have not been comprehensively characterized.Along with the devel-opment of biotechnology and the completion of genome sequencing,new genes discovered by micro-array technology could provide comprehensive and in-depth insights to further the study of?avonoids in cereal crops.

References

Abdel-Aal ESM,Hucl P,Sosulski FW,Graf R,Gillott C, Pietrzak L(2001)Screening spring wheat for midge resistance in relation to ferulic acid content.J Agric Food Chem49:3559–3566

Abdel-Aal ESM,Young JC,Rabalski I(2006)Anthocyanin composition in black,blue,pink,purple,and red cereal grains.J Agric Food Chem54:4696–4704

Afaq F,Katiyar SK(2012)Dietary phytochemicals and che-moprevention of solar ultraviolet radiation-induced skin cancer.In:Sarkar FH(ed)Nutraceuticals and Cancer.

Springer,Birmingham,pp295–321

Agati G,Biricolti S,Guidi L,Ferrini F,Fini A,Tattini M(2011) The biosynthesis of?avonoids is enhanced similarly by UV radiation and root zone salinity in L.vulgare leaves.J Plant Physiol168:204–212

Ahmed N,Maekawa M,Utsugi S,Rikiishia K,Ahmad A,Noda K(2006)The wheat Rc gene for red coleoptile colour codes for a transcriptional activator of late anthocyanin biosyn-thesis genes.J Cereal Sci44:54–58

Ahmed N,Maekawa M,Noda K(2009)Anthocyanin accumu-lation and expression pattern of anthocyanin biosynthesis genes in developing wheat coleoptiles.Biol Plantarum 53:223–228

Allan AC,Hellens RP,Laing WA(2008)MYB transcription factors that colour our fruit.Trends Plant Sci13:99–102 Angst E,Park JL,Moro A,Lu QY,Lu X,Li G,King J,Chen M, Reber HA,Go VLW,Eibi G,Hines OJ(2013)The?avo-noid quercetin inhibits pancreatic cancer growth in vitro and in vivo.Pancreas42:223–229

Bashandy T,Taconnat L,Renou JP,Meyer Y,Reichheld JP (2009)Accumulation of?avonoids in an ntra ntrb mutant leads to tolerance to UV-C.Mol Plant2:249–258 Brockington SF,Walker RH,Glover BJ,Soltis PS,Soltis DE (2011)Complex pigment evolution in the Caryophyllales.

New Phytol190:854–864

Brown DE,Rashotte AM,Murphy AS,Normanly J,Tague BW, Peer WA,Taiz L,Muday GK(2001)Flavonoids act as negative regulators of auxin transport in vivo in Arabid-opsis.Plant Physiol126:524–535

Buer CS,Muday GK(2004)The transparent testa4mutation prevents?avonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light.Plant Cell16:1191–1205

Calvenzani V,Martinelli M,Lazzeri V,Giuntini D,Dall’Asta C, Galaverna G,Tonelli C,Ranieri A,Petroni K(2010) Response of wild-type and high pigment-1tomato fruit to UV-B depletion:?avonoid pro?ling and gene expression.

Planta231:755–765

Carnesecchi S,Schneider Y,Lazarus SA,Coehlo D,Gosse F, Raul F(2002)Flavanols and procyanidins of cocoa and chocolate inhibit growth and polyamine biosynthesis of human colonic cancer cells.Cancer Lett175:147–155 Casetti F,Jung W,Wo¨l?e U,Reuter J,Neumann K,Gilb B, Wa¨hling A,Wagner S,Merfort I,Schempp CM(2009) Topical application of solubilized Reseda luteola extract reduces ultraviolet B-induced in?ammation in vivo.

J Photochem Photobiol B96:260–265

Chang H,Xie Q,Zhang Q,Peng X,Zhu J,Mi M(2013)Flavo-noids,?avonoid subclasses and breast cancer risk:a meta-analysis of epidemiologic studies.PLoS ONE8:e54318 Chen QH,Wang XQ,Qi SG(2008)Cross-sectional study of congenital heart disease among Tibetan children aged from 4to18years at different altitudes in Qinghai Province.

Chin Med J24:2469–2472

Cone KC,Burr FA,Benjamin B(1986)Molecular analysis of the maize anthocyanin regulatory locus c1.Proc Natl Acad Sci USA83:9631–9635

Cutler GJ,Nettleton JA,Ross JA,Harnack LJ,Jacobs DR Jr, Scrafford CG,Barraj LM,Mink PJ,Robien K(2008) Dietary?avonoid intake and risk of cancer in postmeno-pausal women:the Iowa Women’s Health Study.Int J Cancer123:664–671

Debeaujon I,Kloosterziel KM,Koornneef M(2000)In?uence of the testa on seed dormancy,germination,and longevity in Arabidopsis.Plant Physiol122:403–414

Deboo GB,Albertsen MC,Taylor LP(1995)Flavanone 3-hydroxylase transcripts and?avonol accumulation are temporally coordinate in maize anthers.Plant J7:703–713 Druka A,Kudrna D,Rostoks N,Brueggeman R,Wettstein D, Kleinhofs A(2003)Chalcone isomerase gene from rice (Oryza sativa)and barley(Hordeum vulgare):physical, genetic and mutation mapping.Gene302:171–178 Dubos C,Stracke R,Grotewold E,Weisshaar B,Martin C, Lepiniec L(2010)MYB transcription factors in Arabid-opsis.Trend Plant Sci15:1360–1385

Dubreucq B,Baud S,Debeaujon I,Dubos C,Marion-Poll A, Miquel M,North H,Rochat C,Routaboul JM,Lepiniec L (2010)Seed development.In:Pua EC,Davey MR(eds) Plant developmental biology—biotechnological perspec-tives.Springer,Berlin,pp341–359

Dykes L,Seitz LM,Rooney WL,Rooney LW(2009)Flavonoid composition of red sorghum genotypes.Food Chem 116:313–317

Dykes L,Peterson GC,Rooney WL,Rooney LW(2011)Fla-vonoid composition of lemon-yellow sorghum genotypes.

Food Chem128:173–179

Ferreyra MLF,Casas MI,Questa JI,Herrera AL,DeBlasio S, Wang J,Jackson D,Grotewold E,Casati P(2012)Evolu-tion and expression of tandem duplicated maize?avonol synthase genes.Front Plant Sci3:101

Finkelstein R,Reeves W,Ariizumi T,Steber C(2008)Molec-ular aspects of seed dormancy.Annu Rev Plant Biol 59:387–415

Fofana B,Humphreys DG,Rasul G,Cloutier S,Bru?le′-Babel A, Woods S,Lukow OM,Somers DJ(2009)Mapping quan-titative trait loci controlling pre-harvest sprouting resis-tance in a red9white seeded spring wheat cross.Euphytica 165:509–521Furukawa T,Maekawa M,Oki T,Sude I,Iida S,Shimada H, Takamure I,Kadowaki K(2007)The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp.

Plant J49:91–102

Gani A,Wani SM,Masoodi FA,Hameed G(2012)Whole-grain cereal bioactive compounds and their health bene?ts:a review.J Food Process Technol3:3

Garavello W,Rossi M,McLaughlin JK,Bosetti C,Negri E, Lagiou P,Talamini R,Franceschi S,Parpinel M,Maso LD, Vecchia CL(2007)Flavonoids and laryngeal cancer risk in Italy.Ann Oncol18(6):1104–1109

Geleijnse JM,Launer LJ,Hofman A,Pols HAP,Witteman JCM (1999)Tea?avonoids may protect against atherosclerosis.

Arch Intern Med159(18):2170–2174

Go¨tz M,Albert A,Stich S,Heller W,Scherb H,Krins A, Langebartels C,Seidlitz HK,Ernst D(2010)PAR modu-lation of the UV-dependent levels of?avonoid metabolites in Arabidopsis thaliana(L.)Heynh.leaf rosettes:cumu-lative effects after a whole vegetative growth period.Pro-toplasma243:95–103

Graf BA,Milbury PE,Blumberg JB(2005)Flavonols,?avones,?avanones,and human health:epidemiological evidence.

J Med Food8:281–290

Groos C,Gay G,Perretant MR,Gervais L,Bernard M,Dedryver F,Charmet G(2002)Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white9red grain bread-wheat cross.Theor Appl Genet104:39–47

Grotewold E,Peterson T(1994)Isolation and characterization of a maize gene encoding chalcone?avonone isomerase.

Mol Gen Genet242:1–8

Gu XY,Foley ME,Horvath DP,Anderson JV,Feng J,Zhang L, Mowry CR,Ye H,Suttle JC,Kadowaki K,Chen Z(2011) Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates ABA and?a-vonoid synthesis in weedy red rice.Genetics189:1515–1524 Hardcastle AC,Aucott L,Reid DM,Macdonald HM(2011) Associations between dietary?avonoid intakes and bone health in a Scottish population.J Bone Miner Res26:941–947 Havaux M,Kloppstech K(2001)The protective functions of carotenoid and?avonoid pigments against excess visible radiation at chilling temperature investigated in Arabid-opsis npq and tt mutants.Planta213:953–966

Heim KE,Tagliaferro AR,Bobilya DJ(2002)Flavonoid anti-oxidants:chemistry,metabolism and structure-activity relationships.J Nutr Biochem13:572–584

Hichri I,Barrieu F,Bogs J,Kappel C,Delrot S,Lauvergeat V (2011)Recent advances in the transcriptional regulation of the?avonoid biosynthetic pathway.J Exp Bot62:2465–2483

Himi E,Noda K(2004)Isolation and location of three homo-eologous dihydro?avonol-4-reductase(DFR)genes of wheat and their tissue-dependent expression.J Exp Bot 55:365–375

Himi E,Nisar A,Noda K(2005)Colour genes(R and Rc)for grain and coleoptile upregulate?avonoid biosynthesis genes in wheat.Genome48:747–754

Himi E,Maekawa M,Miura H,Noda K(2011)Development of PCR markers for Tamyb10related to R-1,red grain color gene in wheat.Theor Appl Genet122:1561–1576

Hollman PC,Katan MB(1999)Dietary?avonoids:intake, health effects and bioavailability.Food Chem Toxicol 37:937–942

Hong L,Qian Q,Tang D,Wang K,Li M,Cheng Z(2012)A mutation in the rice chalcone isomerase gene causes the golden hull and inter node1phenotype.Planta236:141–151

Jaganath IB,Crozier A(2011)Flavonoid biosynthesis.In: Ashihara H,Crozier A,Komamine A(eds)Plant metabo-lism and biotechnology.Wiley,New York,pp293–320 Jing P,Bomser JA,Schwartz SJ,He J,Magnuson BA,Giusti MM(2008)Structure–function relationships of anthocya-nins from various anthocyanin-rich extracts on the inhibi-tion of colon cancer cell growth.J Agric Food Chem 56:9391–9398

Kaur KD,Jha A,Sabikhi L,Singh AK(2012)Signi?cance of coarse cereals in health and nutrition:a review.J Food Sci Technol.doi:10.1007/s13197-011-0612-9

Khlestkina EK,Ro¨der MS,Salina EA(2008)Relationship between homoeologous regulatory and structural genes in allopolyploid genome—a case study in bread wheat.BMC Plant Biol8:88

Khlestkina EK,Tereshchenko OY,Salina EA(2009)Antho-cyanin biosynthesis genes location and expression in wheat-rye hybrids.Mol Genet Genomics282:475–485 Khlestkina EK,Ro¨der MS,Pshenichnikova TA,Bo¨rner A (2010)Functional diversity at Rc(red coleoptile)locus in wheat(Triticum aestivum L.).Mol Breed25:125–132 Khlestkina EK,Salina EA,Matthies IE,Leonova IN,Bo¨rner A, Ro¨der MS(2011)Comparative molecular marker-based genetic mapping of?avanone3-hydroxylase genes in wheat,rye and barley.Euphytica179:333–341 Khlestkina EK,Tereshchenko O,Salina E(2012)Flavonoid biosynthesis genes in wheat and wheat alien hybrids: studies into gene regulation in plants with complex gen-omes.In:Monthersill CE(ed)Radiobiology and environ-mental security,radiobiology and environmental security, 4th edn.Springer,Novosibirsk,pp31–41

Kim MJ,Hyun JN,Kim JA,Park JC,Kim MY,Kim JG,Lee SJ, Chun SC,Chung IM(2007)Relationship between phenolic compounds,anthocyanins content and antioxidant activity in colored barley germplasm.J Agric Food Chem55: 4802–4809

Kim JH,Cheon YM,Kim BG,Ahn JH(2008)Analysis of ?avonoids and characterization of the OsFNS gene involved in?avone biosynthesis in rice.J Plant Biol51:97–101

Kim CK,Kikuchi S,Hahn JH,Park SC,Kim YH,Lee BW (2010a)Computational identi?cation of anthocyanin-spe-ci?c transcription factors using a rice microarray and maximum boundary range algorithm.Evol Bioinform 6:133–141

Kim JK,Lee SY,Chu SM,Lim SH,Suh SC,Lee YT,Cho HS,Ha SH(2010b)Variation and correlation analysis of?avonoids and carotenoids in Korean pigmented rice(Oryza sativa L.) cultivars.J Agric Food Chem58:12804–12809

Kim CK,Cho MA,Choi YH,Kim JA,Kim YH,Kim YK,Park SH(2011)Identi?cation and characterization of seed-speci?c transcription factors regulating anthocyanin bio-synthesis in black rice.J Appl Genet52:161–169

Kim BG,Lee ER,Ahn JH(2012)Analysis of?avonoid contents and expression of?avonoid biosynthetic genes in Populous

euramericana Guinier in response to abiotic stress.

J Korean Soc Appl Biol Chem55:141–145

Knievel DC,Abdel-Aal EM,Rabalski I,Nakamura T,Hucl P (2009)Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat(Triticum aestivum L.).J Cereal Sci50:113–120 Kootstra A(1994)Protection from UV-B-induced DNA damage by?avonoids.Plant Mol Biol26:771–774

Korff MV,Wang H,Leon J,Pillen K(2005)AB-QTL analysis in spring barley.I.Detection of resistance genes against powdery mildew,leaf rust and scald introgressed from wild barley.Theor Appl Genet111:583–590

Kuhn BM,Geisler M,Bigler L,Ringli C(2011)Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis.Plant Physiol156:585–595

Lepiniec L,Debeaujon I,Routaboul JM,Baudry A,Pourcel L, Nesi N,Caboche M(2006)Genetics and biochemistry of seed?avonoids.Annu Rev Plant Biol57:405–430

Li WL,Faris JD,Chittoor JM,Leach JE,Hulbert SH,Liu DJ,Chen PD,Gill BS(1999)Genomic mapping of defense response genes in wheat.Theor Appl Genet 98:226–233

Li J,Wei H,Hu X,Lu B,Yang W(2010)Locus R-D1conferring red-grain-color in synthetic derivative wheat chuanmai42 mapped with SSR markers.Mol Plant Breed1:3

Li G,Zhu Y,Zhang Y,Lang J,Chen Y,Ling W(2013)Esti-mated daily?avonoid and stilbene intake from fruits, vegetables,and nuts and associations with lipid pro?les in Chinese adults.J Acad Nutr Diet113:786–794 Lindeberg S(2012)Dietary shifts and human health:cancer and cardiovascular disease in a sustainable world.J Gastroin-test Cancer43:8–12

Liu HJ,Du YG,Chu H,Shih CH,Wong YW,Wang MF,Chu IK,Tao YZ,Lo C(2010)Molecular dissection of the pathogen-inducible3-deoxyanthocyanidin biosynthesis pathway in sorghum.Plant Cell Physiol51:1173–1185 Macdonald-Clarke CJ,Macdonald HM(2013)Dietary antho-cyanidins and bone health.In:Burchhardt P et al(eds) Nutritional in?uences on bone health.Springer,London, pp177–187

Marchand LL,Murphy SP,Hankin JH,Wilkens LR,Kolonel LN(2000)Intake of?avonoids and lung cancer.J Natl Cancer Inst92:154–160

Mares D,Mrva K,Cheong J,Williams K,Watson B,Storlie E, Sutherland M,Zou Y(2005)A QTL located on chromosome 4A associated with dormancy in white-and red-grained wheats of diverse origin.Theor Appl Genet111:1357–1364 McMullen MD,Snook M,Lee EA,Byrne PF,Kross H,Musket TA,Houchins K,Coe EH(2001)The biological basis of epistasis between quantitative trait loci for?avones and 3-deoxyanthocyanin synthesis in maize(Zea mays L.).

Genome44:667–676

Miao CY,Zuberbuhler JS,Zuberbuhler JR(1988)Prevalence of congenital cardiac anomalies at high altitude.J Am Coll Cardiol12:224–228

Moreno YS,Sa′nchez GS,Herna′ndez DR,Lobato NR(2005) Characterization of anthocyanin extracts from maize ker-nels.J Chromatogr Sci43:483–487

Murphy A,Peer WA,Taiz L(2000)Regulation of auxin transport by aminopeptidases and endogenous?avonoids.

Planta211:315–324

Noldin JA,Chandler JM,McCauley GN(2006)Seed longevity of red rice ecotypes buried in soil.Planta Daninha24:611–620 Padmavati M,Sakthivel N,Thara KV,Reddy AR(1997)Dif-ferential sensitivity of rice pathogens to growth inhibition by?avonoids.Phytochemistry46:499–502

Porter SS(2013)Adaptive divergence in seed color camou?age in contrasting soil environments.New Phytol197:1311–1320 Qin Y,Wang M,Tian Y,He W,Han L,Xia G(2012)Over-expression of TaMYB33encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis.Mol Biol Rep39:7183–7192

Reddy AR,Schef?er B,Madhuri G,Srivastava MN,Kumar A, Sathyanarayanan PV,Nair S,Mohan M(1996)Chalcone synthase in rice(Oryza sativa L.):detection of the CHS protein in seedling and molecular mapping of the chs locus.

Plant Mol Biol32:735–743

Reddy AM,Reddy VS,Schef?er BE,Wienand U,Reddy AR (2007)Novel transgenic rice over expressing anthocyani-din synthase accumulates a mixture of?avonoids leading to an increased antioxidant potential.Metab Eng9:95–111 Riboli E,Norat T(2003)Epidemiologic evidence of the pro-tective effect of fruit and vegetables on cancer risk.Am J Clin Nutr78:559S–569S

Romano JM,Dubos C,Michael BP,Wilkins O,Hong H,Poole M,Kang K-Y,Li E,Douglas CJ,Western TL,Mans?eld SD,Campbell MM(2012)AtMYB61,an R2R3-MYB transcription factor,functions as a pleiotropic regulator via

a small gene network.New Phytol195:774–786

Rossi M,Negri E,Talamini R,Bosetti C,Parpinel M,Gna-gnarella P,Franceschi S,Maso LD,Montella M,Giacosa A,Vecchia CL(2006)Flavonoids and colorectal cancer in Italy.Cancer Epidemiol Biomarkers Prev15:1555–1558 Rossi M,Garavello W,Talamini R,La Vecchia C,Franceschi S, Lagiou P,Zambon P,Maso LD,Bosetti C,Negri E(2007a) Flavonoids and risk of squamous cell esophageal cancer.

Int J Cancer120:1560–1564

Rossi M,Garavello W,Talamini R,Negri E,Bosetti C,Maso LD,Lagiou P,Tavani A,Polesel J,Barzan L,Ramazzotti J, Franceschi S,Vecchia CL(2007b)Flavonoids and the risk of oral and pharyngeal cancer:a case-control study from Italy.Cancer Epidemiol Biomarkers Prev16:1621 Schaart JG,Dubos C,Fuente IRDL,von Houwelingen AMML, de Vos RCH,Jonker HH,Xu W,Routaboul J-M,Lepiniec L,Bovy AG(2013)Identi?cation and characterization of MYB-bHLH-WD40regulatory complexes controlling proanthocyanidin biosynthesis in strawberry(fragar-ia9ananassa)fruits.New Phytol194:454–467

Shao T,Qian Q,Tang D,Chen J,Li M,Cheng Z,Luo Q(2012)

A novel gene IBF1is required for the inhibition of brown

pigment deposition in rice hull furrows.Theor Appl Genet 125:381–390

Sharma M,Cortes-Cruz M,Ahern KR,McMullen M,Brutnell TP,Chopra S(2011)Identi?cation of the Pr1gene product completes the anthocyanin biosynthesis pathway of maize.

Genetics188:69–79

Shen H,He X,Poovaiah CR,Wuddineh WA,Ma J,Mann DG, Wang H,Jackson L,Tang Y,Stewart CN,Chen F,Dixon RA(2012)Functional characterization of the switch grass (Panicum virgatum)R2R3-MYB transcription factor PvMYB4for improvement of lignocellulosic feedstocks.

New Phytol193:121–136Shih CH,Chu H,Tang LW,Sakamoto W,Maekawa M,Chu IK, Wang MF,Lo C(2008)Functional characterization of key structural genes in rice?avonoid biosynthesis.Planta 228:1043–1054

Siebenhandl S,Grausgruber H,Pellegrini N,Rio DD,Fogliano V,Pernice R,Berghofer E(2007)Phytochemical pro?le of main antioxidants in different fractions of purple and blue wheat,and black barley.J Agric Food Chem55:8541–8547 Skadhauge B,Thomsen K,Wettstein D(1997)The role of barley testa layer and its?avonoid content in resistance to Fusarium infections.Hereditas126:147–160

Streisfeld MA,Liu D,Rausher MD(2011)Predictable patterns of constraint among anthocyanin regulating transcription factors in Ipomoea.New Phytol191:264–274

Strid JB(1991)Gene-enzyme relations in the pathway of?a-vonoid biosynthesis in barley.Theor Appl Genet81:668–674

Strid JB(1993)Genetic control of?avonoid biosynthesis in barley.Hereditas119:187–204

Sweeney MT,Thomson MJ,Cho YG,Park YJ,Williamson SH, Bustamante CD,McCouch SR(2007)Global dissemina-tion of a single mutation conferring white pericarp in rice.

PLoS Genet3:e133

Taleon V,Dykes L,Rooney WL,Rooney LW(2012)Effect of genotype and environment on?avonoid concentration and pro?le of black sorghum grains.J Cereal Sci56: 470–475

Theodoratou E,Kyle J,Cetnarskyj R,Farrington SM,Tenesa A, Barnetson R,Porteous M,Dunlop M,Campbell H(2007) Dietary?avonoids and the risk of colorectal cancer.Cancer Epidemiol Biomarkers Prev16:684–693

Thompson EP,Davies JM,Glover BJ(2010a)Identifying the transporters of different?avonoids in plants.Plant Signal Behav5(7):860–863

Thompson EP,Wilkins C,Demidchik V,Davies JM,Glover BJ (2010b)An Arabidopsis?avonoid transporter is required for anther dehiscence and pollen development.J Exp Bot 61:439–451

Tossi V,Lombardo C,Cassia R,Lamattina L(2012)Nitric oxide and?avonoids are systemically induced by UV-B in maize leaves.Plant Sci193–194:103–109

Treutter D(2006)Signi?cance of?avonoids in plant resistance:

a review.Environ Chem Lett4:147–157

Verschooten L,Smaers K,Kelst SV,Proby C,Maes D,Declercq L,Agostinis P,Garmyn M(2010)The?avonoid luteolin increases the resistance of normal,but not malignant keratinocytes,against UVB-induced apoptosis.J Invest Dermatol130:2277–2285

Wang LS,Stoner GD(2008)Anthocyanins and their role in cancer prevention.Cancer Lett269:281–290

Wasson AP,Pellerone FI,Mathesius U(2006)Silencing the ?avonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia.Plant Cell18:1617–1629

Wedworth SM,Lynch S(1995)Dietary?avonoids in athero-sclerosis prevention.Ann Pharmacother29:627–628 Weston LA,Mathesius U(2013)Flavonoids:their structure, biosynthesis and role in the rhizosphere,including alle-lopathy.J Chem Ecol39:283–297

Wright ME,Mayne ST,Stolzenberg-Solomon RZ,Li Z,Pietinen P,Taylor PR,Virtamo J,Albanes D(2004)Development of

a comprehensive dietary antioxidant index and application

to lung cancer risk in a cohort of male smokers.Am J Ep-idemiol160:68–76

Yang T,Duan C,Zeng Y,Du J,Yang S,Pu X,Yang S(2013) HPLC analysis of?avonoids compounds of purple,normal barley grain.Adv Mater Res634–638:1486–1490 Zamora-Ros R,Carla N,Guino′E,Luja′n-Barroso L,Garc?′a RM, Biondo S,Salazar R,Moreno V(2013)Association between habitual dietary?avonoid and lignin intake and colorectal cancer in a Spanish case-control study(the bellvitge colorectal cancer study).Cancer Causes Control 24:549–557

Zhang L,Zhao G,Jia J,Liu X,Kong X(2011)Molecular characterization of60isolated wheat MYB genes and analysis of their expression during abiotic stress.J Exp Bot 63:203–214Zhang L,Zhao G,Xia C,Jia J,Liu X,Kong X(2012a)Over-expression of a wheat MYB transcription factor gene, TaMYB56-B,enhances tolerances to freezing and salt stresses in transgenic Arabidopsis.Gene505:100–107 Zhang Z,Liu X,Wang X,Zhou M,Zhou X,Ye X,Wei X (2012b)An R2R3MYB transcription factor in wheat, TaPIMP1,mediates host resistance to Bipolaris sorokini-ana and drought stresses through regulation of defense-and stress-related genes.New Phytol196:1155–1170

Zheng Q,Li B,Li H,Li Z(2009)Utilization of blue-grained character in wheat breeding derived from Thinopyrum poticum.J Genet Genomics36:575–580

Zˇilic′S,Serpen A,Ak?ll?og?lu G,Go¨kmen V,Vancˇetovic′J(2012) Phenolic compounds,carotenoids,anthocyanins,and antioxidant capacity of colored maize(Zea mays L.)Ker-nels.J Agric Food Chem60:1224–1231

青岛市重点用能企业名单

南车四方机车车辆股份有限公司 青岛喜盈门集团公司 青岛广源发集团有限公司 青岛美高集团有限公司 济南山水集团有限公司青岛水泥分公司青岛正进集团有限公司 青岛大农服装有限公司 山东黄岛发电厂 青岛金晶股份有限公司 青岛恒源热电有限公司 青岛浮法玻璃有限公司 青岛压花玻璃有限公司 青岛市圣戈班韩洛玻玻璃有限公司 青岛高合有限公司 青岛浦项不锈钢有限公司 青岛北海船舶重工有限责任公司 青岛经济技术开发区热电燃气总公司 青岛赛轮子午线轮胎信息化生产示范基地 1 即墨市热电厂 青岛即发集团控股有限公司 青岛新源热电有限公司 青岛三湖制鞋有限公司 青岛正大有限公司 青岛高丽钢线有限公司 青岛北汇玻璃有限公司 即墨市双春水泥有限公司 青岛红领服饰股份有限公司 青岛恒光热电有限公司 青岛恒源化工有限公司 青岛天元化工股份有限公司 青岛海王纸业股份有限公司 青岛琅琊台酒业(集团)股份有限公司青岛胶南明月海藻工业有限责任公司 胶南易通热电有限责任公司 青岛泰发集团股份有限公司 青岛东亚轮胎有限公司

青岛康大外贸集团有限公司 胶南供电公司 胶南市水泥厂 2 胶南市海龙福利板纸有限公司 青岛振华工业集团有限公司 青岛德固萨化学有限公司 青岛龙发热电有限公司 青岛恒祥化肥有限公司 青岛世原鞋业有限公司 青岛华威建材有限公司 青岛广源发玻璃有限公司 青岛大明皮革有限公司 青岛昌新鞋业有限公司 青岛衣东纺织有限公司 青岛海尔金塑制品有限公司 山东金湖水泥有限公司青岛分公司 青岛福生食品有限公司 青岛信五皮革有限公司 青岛多福康食品有限公司 胶州天成玻璃工艺品厂 胶州市新纪元帘子布有限公司 青岛昌华集团股份有限公司 青岛热电集团金莱热电有限公司 青岛金浪热电有限公司 3 青岛泰光制鞋有限公司 青岛现代人热力发展有限公司 青岛金浪化工集团有限公司 青岛凤凰东翔印染有限公司 青岛九联集团股份有限公司 青岛海升果业有限责任公司 青岛交河技工塑料有限公司 青岛东方化工股份有限公司 海尔集团公司 青岛崂山玻璃有限公司 青岛啤酒第五有限公司

青岛恒源热电

注意:以下内容请进一步总结! 青岛恒源热电有限公司 目标公司主要从事蒸汽、热水的生产及供应、蒸汽余热发电业务,同时提供供热管道及设施维修、安装业务。据介绍,目标公司开发了循环水供热工程项目,该项目是青岛市获批的第一个清洁发展机制(CDM)项目;前处该项目处于施工建设阶段,预计将于2009年上半年内正式投产。据介绍,目标公司主要负责临港工业区辖区内的蒸汽供应及热网管理,发电业务,对居民的用热服务。 公司成立于2001年,主要从事蒸汽、热水的生产及供应、蒸汽余热发电业务。 青岛恒源热电有限公司位于开发区B区供热范围,拥有12MW的抽凝式汽轮发电机组1台及12MW的背压机组1台,75t/h循环流化床锅炉3台和150t/h锅炉1台,最大供热能力是355t/h,担负着B区的生产、民用供热负荷,主要满足热电厂东部居民小区供热和山东科技大学供热。 青岛恒源热电有限公司位于青岛经济技术开发区临港工业区的中北部,海尔大道与渭河路交界处东北角,渭河路777号。厂区所在地东侧隔宽约100m绿化地为鑫龙物流公司,该公司东侧、距离本项目最近300m处为澳柯玛人才公寓;厂区南侧隔渭河路、绿化带100m处为东小庄村(原村庄平房已搬迁,现建有多座两层复式楼房),该村庄南侧、距离本项目约420m处为山孚日水食品有限公司;项目隔渭河路东南方向约200m处为澳柯玛工业园;西及西南方向隔海尔大道、渭河路均为浦项制铁有限公司;北侧与开发区消防大队以及正友砼业相邻。 企业所在地厂址东南距市中心约8km,东面距前湾港区约4.5km。 现有工程内容:青岛恒源热电有限公司主要服务于黄岛供热分区B 区(齐长城路以北、疏港高速以南、镰湾河以西、柳花泊和珠山以东片区(包括柳花泊),总占地面积约60平方公里)。企业现有锅炉规模为3×75t/h+1×130t/h 循环流化床蒸汽锅炉,总计约355t/h锅炉容量;发电机组规模为1×12MW C12-34.9/0.98(抽凝)+1×12MW B12-4.9/0.98(背压),总计发电装机容量24 MW。 近几年,恒源热电强化能源管理,合理调整运行方式,加强节能技术改造,企业能源管理工作上了一个新台阶,先后通过了“企业能源审计”、“热电联产机组认定”等审核认证工作,被评为“青岛市清洁生产企业”,2007年度“山东省节能先进企业”。 为进一步加强企业能源管理,完善优化企业节能减排工作,公司在本年度开始推行循环经济试点工作。目前,作为试点工作重点项目之一的企业冷渣机改造项目已基本完成,初步具备投运条件,预计本年度六月份正式投入运行。该项目是将循环流化床锅炉的人工排渣(温度一般在900℃),通过加装冷渣机把炉渣余热加热除盐水,将锅炉效率提高1-3%,同时解决人工放渣存在安全隐患、能源浪费以及不环保等问题,项目投资为85万元,年可节标煤700吨。

认识实习报告(青岛东亿热电厂)

热能与动力工程专业制热方向认识 实习报告 学院:机电工程学院 班级:热能一班 姓名:徐国庆 学号:201240502013

一.认识实习的目的和任务 1.认识实习的目的: (1)认识实习是四年制高等学校教学活动的实践环节之一; (2)认识实习是对学生进行火力发电厂主机(锅炉、汽轮机)、辅机(换热器、风机、水泵)及其制造厂的设备系统、生产工艺进行认识性训 练,对发电厂热力系统进行整体初步了解。 2.认识实习的任务: (1)对火力发电厂主机的认识实习 实习对象:锅炉本体、汽轮发电机本体。锅炉形式包括煤粉锅炉、循 环流化床锅炉、链条炉、余热锅炉等。汽轮机形式包括凝气式汽轮机、 背压式汽轮机、调节抽汽式汽轮机。 认识内容:设备外形特点、摆放位置、主要性能参数、安全生产常识。 (2)对火力发电厂辅助机械设备的认识实习 实习对象:制粉系统、除尘除灰系统、烟风系统、回热系统、润滑冷 却系统、水油净化系统等。 认识内容:设备外形特点、摆放位置、主要性能参数、安全生产常识。 (3)对火力发电厂设备系统的认识实习 实习对象:火力发电厂主机和辅机工程的系统。 认识内容:设备之间的空间关系、安全生产常识。 3.认识实习的意义 (1)强化学生对专业基础课程的理解 (2)国内火力发电厂的技术发展出现了新进展 CFB锅炉、燃气轮机、余热锅炉、超临界机组、烟气脱硫、布袋除尘、集中控制运行等新技术。 (3)认识实习有利于培养学生的职业精神 (4)认识实习有利于了解机组 (5)认识实习有利于了解机组建设过程 二.捷能汽轮机厂 (1)简介:汽轮机是火力发电厂三大主要设备之一。它是以蒸汽为工质,将热能转变为机械能的高速旋转式原动机。它为发电机的能量转换提供机 械能。 青岛捷能汽轮机集团股份有限公司始建于1950年,是我国汽轮机行业重 点骨干企业。拥有各种数控、数显等机械加工设备2200余台,以200MW 及以下“捷能牌”汽轮机为主导产品,拥有电站汽轮机和工业拖动汽轮 机两大系列产品,能够满足发电、石化、水泥、冶金、造纸、垃圾处理、燃气-蒸汽联合循环、城市集中供热等领域需求,年产能达500台/600万 千瓦以上。中小型汽轮机市场占有率居国内同行业首位,是目前国内中 小型汽轮机最大最强的设计制造供应商和电站成套工程总包商。 公司积极推进品牌战略,率先在汽轮机行业内取得了美国FMRC公司双重 ISO9001国际质量体系认证和ISO1400环境管理体系认证,率先在汽轮机 行业内第一个获得了“中国名牌产品”称号,先后获得了“全国AAA级 信用企业”、“中国优秀诚信企业”、“全国用户满意产品”、“山东

供热管网检修作业指导手册[青岛热电集团]

供热管网检修作业指导手册[青岛热电集团] 供热管网检修作业指导手册[青岛热电集团] 供热管网检修作业指导手册[青岛热电集团] 作者:佚名更新时间:2008-12-5 15:55:38 字体: 供热管网检修作业指导手册 1 总则 1.1 为使公司供热管网的维护、检修工作更为规范和科学合理,确保安全运行,制定作业指导手册。 1.2 本作业指导手册适用于公司供热管网的维护、检修及事故抢修。 本作业指导手册供热管网的工作压力限定为: 工作压力不大于1.6MPa(表压),介质温度不大于300?的蒸汽供热管网。 1.3 管网的检修工作应符合原设计要求。 1.4 执行本作业指导手册时,尚应符合国家现行有关标准的规定。 2 术语 2.1 热网维修 热网的维护和检修。本作业指导手册中简称维修。 2.2 热网维护 供热运行期间,在不停热条件下对热网进行的维护工作。本作业指导手册中简称维护。 2.3 热网检修 在停热条件下对热网进行的检修工作。本作业指导手册中简称检修。 2.4 热网抢修

供热管道设备突发故障引起蒸汽大量泄漏,危及管网安全运行或对周边环境、人身安全造成威胁时进行的紧急检修工作。本作业指导手册中简称抢修。 2.5 供热管网 由热源向热用户输送和分配供热介质的管线系统。本作业指导手册中简称热网。 3 维护、检修机构设置、检修人员及设备 3.1 维护、检修机构设置及人员要求 3.1.1客户服务中心是公司高新区内供热管网运行、调度、维护、检修的责任机构,负责高新区内供热管网的维护、检修工作。 3.1.2 供热管冈的维护、检修人员必须经过培训和专业资格考 试合格后,方可独立进行维护、检修工作。供热管网维护、检修人员必须熟悉管辖范围内的管道分布情况、设备及附件位置。维护、检修人员必须掌握管辖范国内供热管线各种附件的作用、性能、构造以及安装操作和维护、检修方法。 3.1.3检修人员出门检修时应穿公司工作服,配戴上岗证,注意礼貌用语,维护公司形象。 3.2 维护、检修用主要设备与器材 3.2.1 供热管网的维护检修部门,应备有维护、检修及故障抢修时常用的设备与器材。 3.2.2检修设备、工具平时摆放在规定位置,检修设备和专用工具要有专人保管,所有设备、工具应保证完好,须保证检修时能够立即投入使用。检修物资也应分门别类码放整齐,方便查找,以保证检修、抢修时不会因为寻找物资配件而耽误时间。每次检修完后都应检查备品备件数量,发现不够时要及时与物质采购部联系进行必要地补充,确保检修时不会因无备品备件而影响检修时间与质量。

青岛西海岸公用事业集团易通热电有限公司新能源分公司_中标190922

招标投标企业报告 青岛西海岸公用事业集团易通热电有限公司新 能源分公司

本报告于 2019年9月22日 生成 您所看到的报告内容为截至该时间点该公司的数据快照 目录 1. 基本信息:工商信息 2. 招投标情况:中标/投标数量、中标/投标情况、中标/投标行业分布、参与投标 的甲方排名、合作甲方排名 3. 股东及出资信息 4. 风险信息:经营异常、股权出资、动产抵押、税务信息、行政处罚 5. 企业信息:工程人员、企业资质 * 敬启者:本报告内容是中国比地招标网接收您的委托,查询公开信息所得结果。中国比地招标网不对该查询结果的全面、准确、真实性负责。本报告应仅为您的决策提供参考。

一、基本信息 1. 工商信息 企业名称:青岛西海岸公用事业集团易通热电有限公司新能 源分公司 统一社会信用代码:91370211334195493K 工商注册号:370211120004502组织机构代码:334195493法定代表人:赵军田成立日期:2015-04-23 企业类型:有限责任公司分公司(非自然人投资或控股的法人 独资) 经营状态:注销 注册资本:/ 注册地址:山东省青岛市黄岛区相公山路723号 营业期限:2015-04-23 至 / 营业范围:为上级公司联系业务。(依法须经批准的项目,经相关部门批准后方可开展经营活动)联系电话:*********** 二、招投标分析 2.1 中标/投标数量 企业中标/投标数: 个 (数据统计时间:2017年至报告生成时间)

2.2 中标/投标情况(近一年) 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 2.3 中标/投标行业分布(近一年) 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 2.4 参与投标的甲方前五名(近一年) 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 2.5 合作甲方前五名(近一年) 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 三、股东及出资信息 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 四、风险信息 4.1 经营异常() 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 4.2 股权出资() 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 4.3 动产抵押() 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 4.4 税务信息() 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。

青岛热电集团有限公司简介

青岛热电集团有限公司成立于1993年,属于国有独资大型热电联产企业,主要担负着青岛市企、事业单位和居民供热及部分发电任务,同时,供热市场辐射黄岛、平度、莱西、即墨、城阳等县市区域。集团公司先后成立了工程公司和具有甲级设计资质的设计院,逐步形成了热电联产、区域锅炉、热网输配等多种供热形式并存,集供热、发电、热力设计、工程施工、热力产品制造经营为一体的完整产业链。 目前,热电集团为全省地方最大供热企业。企业资产总额48亿元,年销售收入16.2亿元,所属企业16个,职工2200余人,年供蒸汽312万吨,年发电能力9.3万千瓦,已建成蒸汽管网145.43公里,热水管网1552.93公里,供(换)热站294座,供热面积3561万平方米,拥有单位用户292家,居民用户28.8万余户。 集团公司先后被评为全国AAA级信用企业、全国建设系统文明服务示范窗口单位、思想政治工作先进单位、企业文化建设先进单位、精神文明建设先进单位;山东省文明单位、节能先进企业、思想政治工作优秀企业;青岛市和工商年度免检企业、安全生产先进单位、廉洁勤政先进单位;山东省供热协会副理事长单位。 自成立以来,公司始终秉承“关爱社会、服务民生”的企业宗旨和“励精图治、锲而不舍”的企业精神,贯彻科学发展,创新经营管理,实现了企业快速发展。1996年在全国供热行业首家推出社会服务责任赔偿制度,1997年在山东省供热行业首家进行了股份制改造,1998年在山东省供热行业首家成功地进行了集团产权制度改革,1999年在全国同行业中首家通过了ISO9001国际质量认证,并先后通过了ISO14001环境管理体系和GB/T28001-2001职业健康安全管理体系认证,2001年公司成为全国供热行业中首家申请注册服务商标的企业,推出“暖到家”服务品牌,并被评为山东省著名商标和服务名牌。“青岛热电”正在逐步步入标准化、规范化、品牌化的发展轨道。 招聘专业及人数: 1、结构专业1人(研究生); 2、建筑专业1人(研究生); 3、技经专业1人(研究生); 4、焊接技术与工程1人; 5、无损检测专业1人;

五大电力发电厂及下属详细

华能集团所属电厂: 华能丹东电厂华能大连电厂华能上安电厂华能德州电厂华能威海电厂华能济宁电厂华能日照电厂华能太仓电厂华能淮阴电厂华能南京电厂华能南通电厂华能上海石洞口第一电厂华能上海石洞口第二电厂华能长兴电厂华能福州电厂华能汕头燃煤电厂华能汕头燃机电厂华能玉环电厂华能沁北电厂华能榆社电厂华能辛店电厂华能重庆分公司华能井冈山电厂华能平凉电厂华能岳阳电厂华能营口电厂华能邯峰电厂 大唐集团所属: 长山热电厂湖南省石门电厂鸡西发电厂洛阳首阳山电厂洛阳热电厂三门峡华阳发电公司河北马头电力公司唐山发电总厂北京大唐张家口发电总厂兰州西固热电有限公司合肥二电厂田家庵发电厂北京大唐高井发电厂永昌电厂北京大唐陡河电厂南京下关发电厂安徽淮南洛河发电厂保定热电厂略阳发电厂微水发电厂峰峰发电厂含岳城电站天津大唐盘山发电公司内蒙大唐托克托发电公司保定余热电厂华源热电有限责任公司阳城国际发电有限公司辽源热电有限责任公司四平发电运营中心长春第二热电有限公司晖春发电有限责任公司鸡西热电有限责任公司佳木斯第二发电厂台河第一电厂江苏徐塘发电有限公司安徽省淮北发电厂安徽淮南洛能发电公司安阳华祥电力有限公司许昌龙岗发电有限公司华银电力株洲发电厂华银株洲发电公司金竹山电厂华银金竹山火力发电厂湘潭发电有限责任公司湖南省耒阳发电厂灞桥热电有限责任公司灞桥热电厂陕西渭河发电厂陕西延安发电厂陕西韩城发电厂永昌发电厂甘肃甘谷发电厂甘肃八0三发电厂甘肃连城发电厂甘肃兰西热电有限公司广西桂冠电力股份公司桂冠大化水力发电总厂广西岩滩水电厂陈村水力发电厂王快水电厂张家界水电开发公司贺龙水电厂鱼潭水电厂陕西石泉水力发电厂石泉发电有限责任公司甘肃碧口水电厂百龙滩电厂华电所属: 1中国华电工程(集团)有限公司2华电煤业集团有限公司3华电财务有限公司4华电招标有限公司5华信保险经纪有限公司6北京华信保险公估有限公司7河北热电有限责任公司8包头东华热电有限公司(在建)9内蒙古华电乌达热电有限公司(在建)10华电国际电力股份有限公司11华电国际电力股份有限公司邹县发电厂(扩建)12华电国际电力股份有限公司莱城发电厂13华电国际电力

(集团发布)青岛热电集团有限公司关于实施供热计量收费工作的意见

青热电〔2010〕121号 青岛热电集团有限公司 关于实施供热计量收费工作的意见 各单位、处室: 为全面贯彻《山东省物价局、山东省住房和城乡建设厅关于推进供热计量改革的指导意见》,根据青热办【2010】25号文件要求,自2010年开始,新供热建筑及完成供热计量改造的既有居住建筑,取消以面积计价收费,实行按用热量计价收费,为做好供热计量收费工作,经研究确定以下实施意见: 一、实施计划 (一)对已经改造完成的既有居住建筑实施供热计量收费,明细如下:第一热力海信慧谷、丰华园、弘信花园、都市名家小区;第二热力公司天宝苑小区;金河热力公司荣馨苑小区。

(二)对新竣工非居住建筑全面按用热量计量收费。 二、实施措施: (一)加强组织领导,责任到位。 职责明确,责任到人。集团成立以董事长为组长,总经理为副组长的供热计量工作领导小组,工程开发处、生安处、财务处、服务处各司其职,全力做好供热计量收费实施工作。各所属生产单位必须成立工作领导小组,将宣传、收费、数据公示、政策答疑等工作落实到位,各单位要有专门的供热计量工作负责人。 (二)措施到位,计划周密。 责任部门要全力做好实施热计量收费工作的计划安排,配合相关科室做好用户协调、宣传、合同签订、数据公示以及收、退费工作。 (三)做好新建、竣工项目供热计量设施的管理工作。各相关部门要严格新建、在建、新竣工项目供热计量设施的审核、把关、验收和问题汇总工作。 三、工作要求 (一)做好用户宣传、解释工作。在张贴用户通知进行宣传的同时,相关人员要明确供热计量工作实施相关要求规定,收费方式以及供热调节方式等,做好对用户的宣传解释工作,让用户明白调节方式和收退费方式、时间等。 (二)做好用户结算工作。用户的供热计量数据要真实、准确,各单位要认真做好用户仪表底数(正式供热时间和停止供热时间)确认工作,并定时张贴通知公开热量数据。 (三)做好数据分析和总结。对供热数据按周期进行定

青岛钢铁公司城市钢厂环保搬迁项目环境影响报告书

1建设项目概况 1.1建设项目背景及建设地点 1.1.1建设项目背景 青岛钢铁有限公司(以下简称青钢)始建于1958年,位于青岛市北李沧区,属城市钢铁厂。厂区东邻重庆路、南渠村;西围墙距胶济铁路约85m;北距流亭国际机场约3.8km;南靠遵义路。距市中心约15km,厂内铁路专线与胶济铁路娄山站接轨,全厂总占地面积不足1.3km2。 青钢是集焦化、烧结、炼铁、炼钢、轧钢、发电等为一体的钢铁联合企业,是山东省重要的优质棒线材生产基地,山东省三大钢铁支柱企业。 目前,青钢已形成年产铁、钢、材各400×104t的生产能力。其主要生产设施有:60×104t焦化厂;2×50m2烧结机,2×105m2烧结机;5×500+1×625m3高炉;一炼钢有4×35t转炉,5座30tLF精炼炉,3台4机4流R5m小方坯连铸机和1台4机4流R8m连铸机;二炼钢有2×80t 顶底复吹转炉,3座90tLF精炼炉,1座90tRH精炼炉,2台6机6流R9m 连铸机;轧钢车间有1#、2#、3#高速线材车间,复二重线材车间,半连续小型车间,横列式小型车间,还有与之配套的相应公辅设施。 青钢产品有:热轧盘条,热轧带肋钢筋、圆钢、扁钢等型钢。主要品种有:焊接用钢盘条、汽车用弹簧扁钢、硬线盘条、冷镦钢、PC钢棒用线材、拉丝线材、易切削钢、优质碳素结构圆钢、建筑用线材与螺纹钢等。2011年,青钢生产生铁330.69×104t、钢318.27×104t、钢材301.99×104t。2011年工业总产值297.79亿元,工业销售产值299.47亿元。青钢现有产品以优特钢为主,品种结构具有特色,产品附加值高。青钢现有职工1万余人,其中各类工程技术人员约1500余人。 自1997年以来,青钢经过不断的技术改造,其生产能力和经济效益均有了较大幅度的提高,但由于历史原因,还存在许多问题,如产品结构性矛盾仍

相关主题
文本预览
相关文档 最新文档