当前位置:文档之家› 运用ANSYS对钢桁架桥进行

运用ANSYS对钢桁架桥进行

运用ANSYS对钢桁架桥进行静力分析以及模态分析

?如图所示:

已知下承式简支钢桁架桥桥长72cm,每个节段12m,桥宽10米,高16m。桥面为0.3m厚的混泥土版。桁架杆件规格有3种,见下表:

?如图所示:

已知下承式简支钢桁架桥桥长72cm,每个节段12m,桥宽10米,高16m。桥面为0.3m厚的混泥土版。桁架杆件规格有3种,见下表:

表1:桁架桥杆件规格

杆件截面号形状规格

端斜杆1工字行400*400*16*16上下弦2工字行400*400*12*12横向连接梁2工字行400*400*12*12其他腹杆3工字行400*300*12*12

所用材料属性件表2

表2:材料属性

参数钢材混泥土

弹性模量EX 2.1e11 3.5e10

泊松比PRXY0.30.1667

密度DENS78502500

定义单元类型?选择单元类型

梁单元截面

壳单元截面

创建半桥模型的节点

建立梁单元,桥面板单元生成板桥有限元模型

用镜像法生成全桥有限元模型

施加边界条件和荷载

位移:

左端固定

支座,

右端滑动

支座;

力:

跨中两节

点集中荷

载以及重

力荷载

结构变形结果图

总的位移云图

定义单元列表(显示结构内力图)

列表中的最大最小值

对刚桁架桥模态分析

?建模过程与上模型一样,施加的位移约束相同,但不要需要施加荷载,下面进行模态求解:

用子空间方法,提取6节模态(频率在0-100)

模态求解?列表显示频率

桁架桥课程设计

1. 选择木质桥板 2. 桥板自重产生的应力忽略不计。 3. 活荷载产生的应力计算: 木质桥板的受力简图如图所示: 桥板跨中最大的弯矩: (2)()8 K P M b c c b = -≤ 其中:50K P KN =;70b cm =;50c cm =; 所以: 50 (20.70.5) 5.625/8 M KN m = ?-= 查表得:东北红松14. 5w M Pa σ??=?? 又因为:21 6 M W bh nW σ= = 因为在木桥版上直接铺设横桥板,无车辙板,所以:1n =; 假设32b cm =; 由w σσ??≤??得:8.53h cm ≥;取9h cm =。 即: 22311 32943266 W bh cm = =??= 3 5.6251013.0432 w M M Pa nW σσ???===≤?? 所以所选木桥板符合要求,其长度为4m ;宽度为32cm ;厚度为9cm 。取东 北红松的密度为30.65/g cm ,则一块木桥板的质量为74.88Kg ;需要两个作业手。 则需要32cm 宽的板44块,另外加一块宽47cm 的板才能铺满整个桥面。 图1木质桥板受力图

1. 主桁架杆件的内力计算 1.1控制杆件的确定 由于拼装单元要考虑上、下、左、右可调换使用,所以桁架共有以下两种形式架设。 所以控制杆力为: 1.2各杆件的受力计算 静载桥跨自重470/q KN m =;因为共有六块桁架共同承受,所以单片桁架的静载为: 0.47 0.0783/6 q t m = = 图3 倒八字形 图2正八字形 1N - 1D - 1V - '2D - '0V - 表1 控制杆力表

架桥机计算书..

一.ik设计规范及参考文献 (一)重机设计规范(GB3811-83) (二)钢结构设计规范(GBJ17-88) (三)公路桥涵施工规范(041-89) (四)公路桥涵设计规范(JTJ021-89) (五)石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》(六)梁体按30米箱梁100吨计。 二.架桥机设计荷载 (一).垂直荷载 梁重:Q1=100t 天车重:Q2=7.5t(含卷扬机) 吊梁天车横梁重:Q3=7.3t(含纵向走行) 主梁、桁架及桥面系均部荷载:q=1.29t/节(单边) 1.29×1.1=1.42 t/节(单边) 0号支腿总重: Q4=5.6t 1号承重梁总重:Q5=14.6t 2号承重梁总重:Q6=14.6t 纵向走行横梁(1号车):Q7=7.5+7.3=14.8t 纵向走行横梁(2号车):Q8=7.5+7.3=14.8t 梁增重系数取:1.1 活载冲击系数取:1.2 不均匀系数取:1.1

(二).水平荷载 1.风荷载 a.设计取工作状态最大风力,风压为7级风的最大风压: q1=19kg/m2 b. 非工作计算状态风压,设计为11级的最大风压; q2=66kg/m2 (以上数据参照石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》) 2.运行惯性力:Ф=1.1 三.架桥机倾覆稳定性计算 (一)架桥机纵向稳定性计算 架桥机纵向稳定性最不利情况出现在架桥机悬臂前行阶段,该工况下架桥机的支柱已经翻起,1号天车及2号天车退至架桥机尾部作为配重,计算简图 P4=14.6t (2#承重横梁自重)

P5= P6=14.8t (天车、起重小车自重) P7为风荷载,按11级风的最大风压下的横向风荷载,所有迎风面均按实体计算, P7=ΣCKnqAi =1.2×1.39×66×(0.7+0.584+0.245+2.25+0.3+0.7+0.8+1.5) ×12.9=10053kg=10.05t 作用在轨面以上5.58m处 M抗=43.31×15+14.8×(22+1.5)+14.8×27.5+14.6×22=1725.65t.m M倾=5.6×32+45.44×16+10.05×5.58=962.319t.m 架桥机纵向抗倾覆安全系数 n=M抗/M倾=1725.65/(962.319×1.1)=1.63>1.3 <可) (二) 架桥机横向倾覆稳定性计算 1.正常工作状态下稳定性计算 架桥机横向倾覆稳定性最不利情况发生在架边梁就位时,最不利位置在1号天车位置,检算时可偏于安全的将整个架桥机荷载全部简化到该处,计算简图如图 图2 P1为架桥机自重(不含起重车),作用在两支点中心

钢桁架桥的结构设计与分析

钢桁架桥的结构设计与分析 1、概述 钢桁架桥以其跨越能力强、施工速度快、承载能力强、耐久性好普遍应用于铁路桥梁。长期以来,由于钢材价格高,材料养护费用高,钢桁架桥梁在公路领域应用较少。近年来,随着我国炼钢水平的提高,国产的钢材品质已经完全能满足结构安全的需要,同时随着钢结构防腐技术的提高,钢结构桥梁越来越多的在公路工程领域得到应用。 相比较我国当前100m左右中等跨径常用的桥型如连续梁、系杆拱、矮塔斜拉桥等结构,钢桁架桥梁虽然建筑成本高,但刨去成本控制的因素,钢桁架桥具有以下的几点优越性:1.建筑高度低,由于钢桁架结构主桁主要由拉杆和压杆构成,对杆件界面的抗弯刚度要求不大,因此钢桁架的建筑高度由横梁控制,在桥梁宽度不是非常大时可极大的降低桥梁建筑高度,尤其适用于对桥梁建筑高度有严格限制的桥梁;2.施工周期短,速度快。钢桁架施工可在工厂制作杆件,运到现场拼装成桥,可采用顶推和支架拼装等方法,这使它在很多工期较紧的工程(如重要道路的桥梁改建)和跨越重要道路的跨线桥上成为桥型首选之一;3.随着钢结构防腐技

术的提高,钢桁架桥的耐久性大为提高,同时钢材作为延性材料,结构安全性较混凝土桥梁高。正因为钢桁架桥梁的这几方面的优点,桁架桥梁成为特定条件下的经济而合理的桥型选择。 2、结构设计 公路桥位于江苏省境内,正交跨越京杭大运河,河口宽95m,通航净空要求90x7m,桥梁主跨采用97m,由于桥梁中心至桥头平交处距离仅140余米,若采用其他结构纵坡将达到5%以上,经综合考虑,主桥采用97m下承式钢桁架结构。 2.1主桁 主桁采用带竖杆的华伦式三角形腹杆体系,节间长度5.35m,主桁高度8m,高跨比为1/12.04。两片主桁中心距为8.6m,宽跨比为1/11.2,桥面宽度为8m。

钢结构课程设计正word文档

钢结构课程设计 专业:土建系 班级: 08级建工(2)班姓名:邵文凡

目录 一设计资料 (3) 二结构形式与布置 (3) 三荷载计算 (4) 四内力计算 (5) 五杆件设计 (6) . 六节点设计 (14)

一、设计资料 1、根据任务书的已知条件:梯形钢屋架跨度27m ,长度90m ,柱距6m 。该车间内设有两台20/5 t 中级工作制吊车 ,两端铰支于钢筋混凝土阶梯柱上,上柱采用截面为400 mm×400 mm,混凝土标号为C30。屋面采用1.5m×6m 预应力混凝土大型屋面板,板面以上依次为:三毡四油防水层、20mm 厚水泥砂浆找平层、80mm 厚泡沫混凝土保温层,卷材屋面,屋面坡度i =1/10。屋面活荷载标准值为0.5 kN/m 2,雪荷载标准值为0.4 kN/m 2,积灰荷载标准值为0.3 kN/m 2。屋架铰支在钢筋混凝土柱上,上柱钢材采用Q235B 级,焊条采用E43型。 2、屋架计算跨度:l o =27-2×0.15=26.7m 。 3、跨中及端部高度:本次设计为无檩体系屋盖,采用缓坡梯形屋架,取屋架在27m 轴线处的端部高度h ’o =2000mm ,屋架的中间高度h=2844mm ,屋架在26.7m 处,两端高度为h o = 2005m 。屋架跨中起拱按l o /500考虑,取53mm 。 二、结构形式与布置 屋架型式及几何尺寸如图1-1所示。 2 005 150 8 1508 15091508 1508 1508 1508 150813500 2290 2590 3040 3340 1295 1520 2608 25 3528 69 20 87 208 72249 22 49 18 83 20 27 1508 28503000 3000 4500 28 593251 150 1350 1990 A K J H G F E g e d c f D C B b a 10 1 图1-1梯形屋架的形状和几何尺寸 根据厂房长度(90m>60m )、跨度及荷载情况,设置三道上、下弦横向水平支撑。因柱网采用封闭结合,厂房两端的横向水平支撑设在第一柱间,该水平支撑的规格与中间柱间支撑的规格有所不同。在上弦平面设置了刚性系杆与柔性系杆,以保证安装时上弦杆的稳定,在各柱间下弦平面的跨中及端部设置了柔性系杆,以传递山墙风荷载。在设置横向水平支撑的柱间,于屋架跨中和两端各设一道垂直支撑。梯形钢屋架支撑布置如图1-2所示。 垂直支撑1-1

钢桥课程设计

《钢桥》课程设计任务书《钢桥》课程设计指导书 青岛理工大学土木工程学院 道桥教研室 指导老师:赵建锋 2010年12月

《钢桥》课程设计任务书 一、设计题目 单线铁路下承式简支栓焊钢桁架桥上部结构设计 二、设计目的 1. 了解钢材性能及钢桥的疲劳、防腐等问题; 2. 熟悉钢桁架梁桥的构造特点及计算方法; 3. 通过单线铁路下承式简支栓焊钢桁架桥上部结构设计计算,掌握主桁杆件内力组合及计算方法;掌握主桁杆件截面设计及验算内容; 4. 熟悉主桁节点的构造特点,掌握主桁节点设计的基本要求及设计步骤; 5. 熟悉桥面系、联结系的构造特点,掌握其内力计算和强度验算方法; 6. 熟悉钢桥的制图规范,提高绘图能力; 7. 初步了解计算机有限元计算在桥梁设计中的应用。 三、设计资料 1. 设计依据:铁路桥涵设计基本规范(TB1000 2.1-2005) 铁路桥梁钢结构设计规范(TB10002.-2008) 钢桥构造与设计 2. 结构轮廓尺寸: 计算跨度L= m ,节间长度d= 8 m ,主桁高度H= 11m ,主桁中心距B= 5.75m ,纵梁中心距b= 2.0m 。 3. 材料:主桁杆件材料Q345qD ,板厚≤40mm ,高强度螺栓采用M22。 4. 活载等级:中-活载。 5. 恒载: (1)主桁计算 桥面m kN p =1,桥面系m kN p =2,每片主桁架m kN p = 3, 联结系m kN p =4; (2)纵梁、横梁计算 纵梁(每线) m kN p = 5 (未包括桥面),横梁(每片) m kN p = 6。 6. 风力强度0.1,25.13212 0==K K K m kN W 。

桁架桥施工方案

1、工程概况 管线沿山势走向,三次桁架跨越,线路跨越位置交通不便,山路坡度大,施工难度高。进场临时便道未通至施工现场,安装桁架时,吊车吊装不便进入施工现场。需铲车推出施工便道。因设计图纸暂未出图,本方案假设采用贝雷桁架拼装方式。 2、施工准备 1)组织有关管理技术人员对设计图纸会审。对图纸不明确及施工中有困难的地方,要与设计单位做好变更手续。 2)对钢结构工程所使用的机械和检测设备的性能进行检验,保证施工过程中各种设备的工作状态良好,使用功能齐全。 3)钢结构施工前,应对各工序的施工人员进行技术、质量、安全交底。 4)钢结构进入现场需进行构件检验并合理堆放,以便于构件进入现场后顺利吊装。 5)现场吊装前,应在桩脚埋件上弹好十字线,同时将标高控制点设置好。现场应平整夯实,没有积水,并且要预留车道施工。 3、施工工艺及方法 3.1 施工工序:

3.2 施工方法 3.2.1管架支撑基础施工 1)管架基础做与两侧混凝土导墙上,待施工导墙时配合施工管架基础。 2)预埋地脚螺栓 3)支设外围模板,用对拉螺栓拉结,木方、架管加固牢固,校正好模板尺寸。 4)浇筑基础混凝土,浇筑及振捣时不能碰触螺栓保证不移位。 5)基础混凝土强度达到75%以上,方可进行钢结构安装施工。 3.2.2 桁架下料预制 1)桁架材料下料前又技术员现场勘测钢柱及桁架实际尺寸,与图纸对比是否有误差。 2)材料下料依据图纸及现场勘测数据。 3)放样 放样划线时,应用脚手架提前搭设出管桁架的拱高和相应节点的水平线。应清楚表明装配标记、螺孔标注、加强板的位置方向、倾斜标记及中心线、基准线和检验线,必要时制作样板。 注意预留制作,安装时的焊接收缩余量:切割、和加工余量;安装预留尺寸要求。 划线前,材料的弯曲和变形应予以矫正。 4)钢板下料前将切割表面的铁锈、污物清除干净,以保持切割件的干净和平整,切割后应清除熔渣和飞溅物。下料人员熟练设备使用方法和操作规程。 5)制孔 钢柱底部垫板及顶部平托板均为螺栓连接,孔径大于螺栓直径5mm。 3.2.3 贝雷桁架焊接组装 贝雷主梁在空旷场地内拼装,下面垫枕木,用吊车将贝雷逐片吊起,用桁架销子相互连接接长。桥面宽度为4.0m。钢架桥跨度采用40m,上部采用2榀4片贝雷纵梁(非加强单层双排),2榀贝雷纵梁按间距布置,加强弦杆的桁架用弦杆螺栓将加强弦杆连接在贝雷弦杆上,用支撑架螺栓将竖向支撑架、水平上下支撑架和贝雷连成整体,每节贝雷接头位置安装各类支撑架各一片。为保证梁的刚度,贝雷、加强弦杆和水平支撑架之间采用接头错位连接,这样可减少由于桁架接头变形产生的主梁位移。连接桁架的所有螺栓螺帽必须拧紧,桁架销子穿到位后必须插好保险销。 主梁要求安装加强弦杆,所有支座位置要求进行局部加强,防止弦杆局部受力过大产生变形。主梁端部各3节采用高剪力型桁架,英制贝雷上弦杆较下弦杆长2mm,较长的为上

钢便桥计算书

钢便桥设计与验算 1、项目概况 钢便桥拟采用18+36+21m全长共75m 钢便桥采用下承式结构,车道净宽,主梁采用贝雷架双排双层,横梁为标准件16Mn材质I28a,桥面采用定型桥面板,下部结构为钢管桩(φ529)群桩基础。 2、遵循的技术标准及规范 遵循的技术规范 《公路桥涵设计通用规范》(JTG D60-2004) 《公路桥梁施工技术规范》(JTG F50-2001) 《钢结构设计规范》(GB S0017-2003) 《装配式公路钢桥使用手册》 《路桥施工计算手册》 技术标准 车辆荷载 根据工程需要,该钢便桥只需通过混凝土罐车。目前市场上上最大罐车为16m3。空车重为混凝土重16*=。总重=+=。 16m3罐车车辆轴重

便桥断面 钢便桥限制速度5km/h 3、主要材料及技术参数 根据《公路桥涵钢结构及木结构设计规范》JTJ025-86,临时性结构容许应力按提高30-40%后使用,本表提高计。 4、设计计算(中跨桁架) 计算简图 材料弹模 (MP)屈服极 限(MP) 容许弯曲拉 应力(MP) 提高后容许弯 曲应力(MP) 容许剪应 力(MP) 提高后容许 剪应力(MP) 参考 资料 Q235+523514585 设计 规范Q345+5345210273120156 设计 规范贝雷架+5345240-245N/肢-

按照钢便桥两端跨度需有较大纵横坡的实际需要,故每跨断开,只能作为简 支架计算,不能作为连续梁来计算。 中跨计算简图 简支梁 边跨计算简图 简支梁 荷载 恒载 中跨上部结构采用装配式公路钢桥——贝雷双排双层。横梁为I28a。m。单 根重5*==;纵梁和桥面采用标准面板:宽,长,重。 恒载计算列表如下: 序号构件名称单件重(KN)每节(KN)纵桥向(KN/m)1贝雷主梁 2横梁 3桥面板18186 4销子 5花架 6其他 7合计 活载 如上所述采用16M3的罐车,总重。

钢结构课程设计word版

1.1.1设计资料 某机床加工车间,厂房跨度21m或24m,长度96m.设计对象为厂房内的钢操作平台,其平面尺寸为27.0m×22.5m,室内钢结构操作平台建筑标高为4.500m。房屋安全等级为二级,设计使用年限50年,耐火等级二级,拟采用钢平台。 (1)钢平台楼面做法:采用花纹钢板或防滑带肋钢板。 (2)楼面活荷载标准值:根据工艺要求取为7.3KN/m (3)钢平台结构连接方式:平台板与梁采用焊接(角焊接);次梁与主梁采用高强度螺栓连接;主梁与柱采用焊接或高强度螺栓连接,定位螺栓采用粗制螺栓。 (4)材料选用:型钢、钢板采用Q235- A. F;焊条采用E43 ××型。粗制螺栓采用Q235钢材。 (5)平台柱基础混凝土强度等级C25。 试对铺板、次梁、主梁、钢柱以及次梁与主梁、主梁与柱上端、柱脚及钢楼梯进行设计。 1.1.2结构布置 1. 梁格布置 采用单向板布置方案,柱网尺寸为9.0m×4.5m;主梁沿横向布置,跨度为9m;次梁沿纵向布置,跨度为4.5 m。间距为1.5m;单块铺板的平面尺寸为1.5m×9.0m。

2.连接方案 次梁与主梁采用高强螺栓侧面铰接连接,次梁与主梁的上翼缘平齐;主梁与柱采用侧向铰接连接;柱与基础采用铰接连接;平台板与主(次)梁采用焊接(角焊缝)连接。 3. 支撑布置 钢平台柱的两端均采用铰接连接,并设置柱间支撑,以保证结构几何不变。在轴线②、⑤和轴线○B 处分别布置纵、横向支撑,采用双角钢,如图1-2所示。 图1-2 1-1剖面 因无水平荷载,支撑磕按构造要求选择角钢型号。 受压支承的最大计算长度mm mm l 9750)2009000()2804500(220=-+-=,受压支撑的允许长细比[λ]=200,要求回转半径 i ≥,75.48200/9750]/[0mm mm l ==λ选用2L125×8(节点板厚度6mm ,mm i y 4.35=,y 为对称轴)。 1.1.3 铺板设计 1.初选铺板截面 在铺板的短跨方向设置8道加劲肋,间距m m 1000l 1=。平板厚度 m m 8t m m 03.8~67.6120l ~150l t 11==≥,取。

钢便桥计算书

安徽蚌埠至固镇公路改建工程2标 临时钢栈桥 计 算 书 编制: 批准: 浙江兴土桥梁建设有限公司 2012年2月7日

目录 1概述 (1) 1.1设计说明 (1) 1.2设计依据 (1) 1.3技术标准 (2) 1.4自重荷载统计 (2) 1.5荷载工况建立 (3) 1.6荷载组合: (3) 2上部结构内力计算 (4) 2.1桥面板内力计算 (4) 2.2I22横向分配梁内力计算 (8) 2.3321型贝雷梁内力验算 (13) 2.4承重梁内力计算: (18) 2.5钢管桩基础验算 (20) 3计算结论 (25)

蚌埠临时栈桥计算说明书 1 概述 1.1 设计说明 本栈桥为安徽蚌埠至固镇公路改建工程2标基础施工,根据施工现场的具体地质情况、水纹情况和气候情况,拟建栈桥合同段长30m,便桥宽度为4米。栈桥两侧设栏杆,下部结构采用钢管桩基础,上部结构采用贝雷和型钢的组合结构。 栈桥的结构形式为横向四排单层贝雷桁架,两侧桁架间距分 0.9m,中间桁架间距为1.5m,标准跨径为12m,边侧跨径为9m。栈桥桥面系采用定型桥面板,面系分配横梁为I22a,间距为75cm;基础采用φ529×8mm以上钢管桩,为加强基础的整体稳定性,每排钢管桩间均采用[20a号槽钢连接成整体。 1.2 设计依据 1)《公路桥涵设计通用规范》(JTG D60-2004)2)《公路桥涵地基与基础设计规范》(JTGD63-2007) 3)《公路桥涵钢结构及木结构设计规范》(JTJ025-86) 4)《公路桥涵施工技术规范》(JTG/T F50-2011)5)《海港水文规范》(JTJ213-98) 6)《装配式公路钢桥多用途使用手册》 7)《钢结构计算手册》

完整钢结构课程设计

1.设计资料: ................................................................ 错误!未定义书签。 2.结构形式与布置 ............................................................ 错误!未定义书签。 3.荷载计算 .................................................................. 错误!未定义书签。 4.内力计算 .................................................................. 错误!未定义书签。 附件:设计资料 1、设计题目:《单层工业厂房屋盖结构——梯形钢屋架设计》 2、设计任务及参数: 第五组: 某地一机械加工车间,长84m ,跨度24m ,柱距6m ,车间内设有两台40/10T 中级工作制桥式吊车,轨顶标高18.5m ,柱顶标高27m ,地震设计烈度7度。采用梯形钢屋架,封闭结合,1.5×6m 预应力钢筋混凝土大型屋面板(1.4KN/m 2 ),上铺100mm 厚泡沫混凝土保温层(容重为1KN/m 3 ),三毡四油(上铺绿豆砂)防水层(0.4KN/m 2 ),找平层2cm 厚(0.3KN/m 2 ),卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级C20,上柱截面400×400mm 。钢材选用Q235B ,焊条采用E43型。屋面活荷载标准值0.7KN/m 2 ,积灰荷载标准值0.6KN/m 2 ,雪荷载及风荷载见下表,7位同学依次按序号进行选取。 活载KN/m 2 1 2 3 4 5 6 7 基本雪压 0.30 0.75 0.10 0.20 0.45 0.50 0.35 基本风压 0.35 0.60 0.25 0.55 0.30 0.50 0.45 3、设计任务分解 学生按照下表分派的条件,完成梯形钢屋架设计的全部相关计算和验算及构造设计内容。 表-3 4、设计成果要求 在教师指导下,能根据设计任务书的要求,搜集有关资料,熟悉并应用有关规范、标准和图集,独立完成课程设计任务书(指导书)规定的全部内容。 1)需提交完整的设计计算书和梯形钢屋架施工图。 2)梯形钢屋架设计要求:经济合理,技术先进,施工方便。 3)设计计算书要求:计算依据充分、文理通顺、计算结果正确、书写工整、数字准确、图文并茂,统一用A4纸书写(打印)。 A 、按步骤设计计算,各设计计算步骤应表达清楚,写出计算表达式及必要的计算过程,对数据的选取应写明判断依据。 B 、计算过程中,必须配以相应的计算简图。 C 、对计算结果进行复核后,为保证施工质量且方便施工,应按规范要求对计算结果进行调整并写明依据。 4)梯形钢屋架施工图共两张,图纸绘制的要求:布图合理,版面整齐,图线清晰,标注规范,符合规范/图集要求。 单层工业厂房屋盖结构——梯形钢屋架设计 1.设计资料:(1)某地一机械加工车间,长84m ,跨度24m ,柱距6m ,车间内设有两台40/10T 中级工作制桥式吊车,轨顶标高18.5m ,柱顶标高27m ,地震设计烈度7度。采用梯形钢屋架,封闭结合,1.5×6m 预应力钢筋混凝土大型屋面板(1.4KN/m 2 ),上铺100mm 厚泡沫混凝土保温层(容重为1KN/m 3 ),三毡四油(上铺绿豆砂)防水层(0.4KN/m 2 ),找平层2cm 厚(0.3KN/m 2 ),卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级C20,上柱截面400×400mm 。钢材选用Q235B ,焊条采用E43型。屋面活荷载标准值0.7KN/m 2 ,积灰荷载标准值0.6KN/m 2 ,雪荷载及风荷载见下表。 活载KN/m 2 1 2 3 4 5 6 7 基本雪压 0.30 0.75 0.10 0.20 0.45 0.50 0.35 基本风压 0.35 0.60 0.25 0.55 0.30 0.50 0.45 (2)屋架计算跨度 )(7.233.0240 m l =-= (3)跨中及端部高度:设计为无檩屋盖方案,采用平坡梯形屋架,端部高度 mm h 19000=中部高度

某贝雷梁钢便桥计算书

峃口隧道钢栈桥计算书 1、工程概况 本施工便桥采用321型单层上承式贝雷桁架,栈桥0#桥台与老56省道相连,6#桥台位于峃口隧道起点位置,横跨泗溪。便桥孔跨布置为10m+5*15m,全长85米,桥面净宽6米,人行道宽度1.2m,纵向坡度+3%,桥面至河床面净高10米,至水面净空为8.5米(图1 为钢栈桥截面图)。钢栈桥桥面系主体结构由δ=10 mm 花纹钢板、I10 工字钢纵梁(间距0.3 m)、I20 工字钢横梁(长7.2m,间距0.75 m)组成。桥面板与工字钢采用手工电弧焊焊接连接,桥面系布置于贝雷桁梁之上,与贝雷桁梁之间用U 型螺栓固定。贝雷桁梁由贝雷片拼制而成,横向设置6片,间距0.9m,贝雷片之间采用角钢支撑花架连接成整体。 本桥基础为明挖基础,基础为7×2.6×1.2m的钢筋砼,扩大基础必须坐落于河床基岩上,且基础顶标高低于河床。基础上部墩身均采用φ630 mm(δ=8 mm)钢管,采用双排桩横桥向各布置2 根,钢管桩之间由平联、斜撑连接。钢管桩顶设双I32 工字钢分配梁。 本桥基础设计为明挖基础,基础采用C25钢筋砼,钢管桩位于砼基础上与预埋钢板焊接牢固,在此不做计算。 图1 钢栈桥截面图(单位:mm)

2、计算目标 本计算的计算目标为: 1)确定通行车辆荷载等级; 2)确定各构件计算模型以及边界约束条件; 3)验算各构件强度与刚度。 3、计算依据 本计算的计算依据如下: [1] 黄绍金, 刘陌生. 装配式公路钢桥多用途使用手册[M]. : 人民交通出版社,2001 [2] 《钢结构设计规范》(GB 50017-2003) [3] 《公路桥涵设计通用规范》(JTG D60-2004) [4] 《公路桥涵钢结构及木结构设计规范》(JTJ025-86) 4、计算理论及方法 本计算主要依据《装配式公路钢桥多用途使用手册》(黄绍金,刘陌生著.:人民交通出版社,2001.6)、《钢结构设计规范》(GB 50017-2003)、《公路桥涵设计通用规范》(JTG D60-2004)、《公路桥涵钢结构及木结构设计规范》(JTJ025-86)等规范中的相关规定,通过MIDAS/Civil 2012结构分析软件计算完成。 5、计算参数取值 5.1 设计荷载 5.1.1 恒载 本设计采用Midas Civil 建模分析,自重恒载由程序根据有限元模型设定的截面和尺寸自行计算施加。 5.1.2 活载 根据《公路桥涵设计通用规范JTG D60-2004》,汽车荷载按公路-Ⅰ级荷载

钢桁架桥计算书-毕业设计之欧阳歌谷创编

目录 欧阳歌谷(2021.02.01)1.设计资料1 1.1基本资料1 1.2构件截面尺寸1 1.3单元编号4 1.4荷载5 2.内力计算7 2.1荷载组合7 2.2内力9 3.主桁杆件设计11 3.1验算内容11 3.2截面几何特征计算11 3.3刚度验算15 3.4强度验算16 3.5疲劳强度验算16 3.6总体稳定验算17 3.7局部稳定验算18 4.挠度及预拱度验算19 4.1挠度验算19

4.2预拱度19 5.节点应力验算20 5.1节点板撕破强度检算20 5.2节点板中心竖直截面的法向应力验算21 5.3腹杆与弦杆间节点板水平截面的剪应力检算22 6.课程设计心得23

1.设计资料 1.1基本资料 (1)设计规范 《公路桥涵设计通用规范》(JTG D60-2004); 《公路桥涵钢结构及木结构设计规范》(JTJ 025-86); (2)工程概况 该桥为48m下承式公路简支钢桁架梁桥,共8个节间,节间长度为6m,主桁高10m,主桁中心距为7.00m,纵梁中心距为3m,桥面布置2行车道,行车道宽度为7m。 (3)选用材料 主桁杆件材料采用A3钢材。 (4)活载等级 采用公路I级荷载。 1.2构件截面尺寸 各构件截面对照图

各构件截面尺寸统计情况见表1-1: 表1-1 构件截面尺寸统计表 编号名称类型 截面 形状 H B1 (B) tw tf1(tf ) B2tf2C 1下弦杆E0E2用户H型0.460.460.010.0120.4 6 0.012 2下弦杆E2E4用户H型0.460.460.0120.020.4 6 0.02 3上弦杆A1A3用户H型0.460.460.0120.020.4 6 0.02 4上弦杆A3A3用户H型0.460.460.020.0240.4 6 0.024 5斜杆E0A1用户H型0.460.60.0120.020.60.02 6斜杆A1E2用户H型0.460.440.010.0120.4 4 0.012 7斜杆E2A3用户H型0.460.460.010.0160.4 6 0.016 8斜杆A3E4用户H型0.460.440.010.0120.4 4 0.012 9竖杆用户H型0.460.260.010.0120.2 6 0.012 10横梁用户H型 1.290.240.0120.0240.2 4 0.024 11纵梁用户H型 1.290.240.010.0160.2 4 0.016 12下平联用户T型0.160.180.010.01 13桥门架上下横撑和短 斜撑 用户双角0.080.1250.010.01 0.0 1 14桥门架长斜撑用户双角0.10.160.010.010.0

钢结构课程设计—

课程设计说明书 课程名称:钢结构 设计题目:钢屋架设计 学生姓名:韦镔扬 学号:20140710 专业班级:2014级专升本 2015年8月16日

课程设计任务书

三角形钢屋架课程设计 摘要:本次课程设计以三角形钢屋架为材料背景,以完成屋架设计为任务,先进行屋架檩条设计和支撑布置,然后通过荷载组合和内力计算,从而完成杆件截面选择,进一步实现节点设计,最后做出施工图。该课程设计是在钢结构厂房屋架的理解的基础上,通过对有檩体系的三角形屋架的设计,系统的明确了结构设计的方法,以及绘制施工图应掌握的技巧和方法,涉及的专业基础知识有:钢结构中的轴心受压和受拉截面的强设计,强度和稳定性验算,焊缝和螺栓的连接,理论力学计算桁架内力,以及AUTOCAD制图。从课程设计中,培养设计从业人员应有的理论和素质。 关键词:三角形屋架檩条支撑内力计算截面设计节点

目录 1 设计背景 (1) 1.1 设计资料 (1) 1.2 屋架形式 (1) 2 设计方案 (2) 2.1 檩条设计 (2) 2.2 屋架支撑 (3) 3 方案实施 (4) 3.1 荷载与内力计算 (4) 3.2 杆件截面设计 (6) 3.3 节点设计 (10) 4 结果与结论 (15) 4.1结果 (15) 4.2结论 (15) 5 参考文献 (17)

1 设计背景 1.1 设计资料 1.建筑物基本条件 厂房长度90m ,檐口高度15m 。厂房为单层单跨结构,内设有两台中级工作制桥式吊车。 拟设计钢屋架,简支于钢筋混凝土柱上,柱的混凝土强度等级为C20,钢材用Q235B 级,采用E43型焊条。柱顶截面尺寸为400mm mm 400?。钢屋架设计可不考虑抗震设防。 厂房柱距选择:6m 三角形钢屋架(b) 属有檩体系:檩条采用槽钢,跨度为6m ,跨中设有一根拉条φ10。 屋架屋面做法及荷载取值(荷载标准值): 永久荷载:波形石棉瓦自重 0.20 kN/m 2 檩条及拉条自重 0.20 kN/m 2 保温木丝板重 0.25 kN/m 2 钢屋架及支撑重 (0.12+0.011?跨度) kN/m 2 可变荷载:雪荷载 0.4kN/m 2 屋面活荷载 0.40 kN/m 2 积灰荷载 0.30 kN/m 2 注:1、以上数值均为水平投影值; 1.2 屋架形式 屋架计算跨度:0l =l -300=24000-300=23700mm 屋面倾角: '1arctan 2148,sin 0.3714,cos 0.92852.5 ααα==== 屋架跨中的高度为:2370047402 2.5 h mm ==? 上弦长度:0127622cos l l mm α == 节间长度:25535 12762 == 'a mm

钢结构课程设计梯形桁架跨度24米

一、基本资料 1.课程设计题目 某车间梯形钢屋架结构设计 2.设计资料 1、车间柱网布置图(L ×240m ),柱距6m 。 2、屋架支承于钢筋混凝土柱顶(砼等级为C20),采用梯形钢屋架。 3、屋面采用1.5×6m 的预应力钢筋混凝土大型屋面板(屋面板不考虑作为 支撑用)。 3.设计要求 1)屋架自重=(120+11L )N/m2; 2)屋面基本荷载表: 2. 依檐口高度:III :H 0=2.0m 3. 屋架坡度i :1/11 4. 厂房跨度L=24m 二、屋架形式、尺寸、材料选择及支撑布置 本题为无檩屋盖方案,i=1/11,采用梯形屋架。屋架计算跨度为L 0=L-300=23700mm ,端部高度取H 0=2000mm ,中部高度取H=3100mm,屋架杆件几何长度见附图1(跨中起拱按L/500考虑)。根据计算温度和荷载性质,钢材选用Q235-B 。焊条采用E43型,手工焊。根据车间长度、屋架跨度和荷载情况,设置上、下、弦横向水平支撑、垂直支撑和系杆。 屋架支撑布置如图:

符号说明:SC :上弦支撑; XC :下弦支撑; CC :垂直支撑 GG :刚性系杆; LG :柔性系杆 桁架及桁架上弦支撑布置 桁架及桁架下弦支撑布置 垂直支撑 1-1 垂直支撑 2-2

三、荷载和内力计算 1、荷载计算: 恒荷载 预应力混凝土大型屋面板(含灌缝) 1.4KN/m 2 防水层 0.35 KN/m 2 找平层(20mm 厚) 0.4KN/m 2 支撑重量 0.38 KN/m 2 管道自重 0.1KN/m 2 保温层(8cm 厚) 0.5KN/m 2 恒载总和 3.13KN/m 2 活荷载 活荷载 0.5KN/m 2 积灰荷载 0.6KN/m 2 荷载总和 1.1KN/m 2 2、荷载组合: 永久荷载荷载分项系数:G γ=1.2:;屋面荷载荷载分项系数1Q γ=1.4;组合系数:1ψ=0.7;积灰荷载分项系数:2Q γ=1.4,2ψ=0.9 1)节点荷载设计值 d F =(3.13×1.2+1.4×0.5+1.4×0.9×0.6)×1.5×6=46.9KN 2)考虑以下三种荷载组合 (1)全跨永久荷载+全跨可变荷载(按永久荷载效应控制的组合) 全跨节点荷载设计值: F =(3.13×1.2+1.10×1.4)×1.5×6=47.66KN (2)全跨永久荷载+半跨可变荷载 全跨节点永久荷载 1F =3.13×1.5×6×1.2=33.80KN 半跨可变荷载: 2F =1.10×1.5×6×1.4=13.86KN (3)全跨屋架包括支撑自重+半跨屋面板自重+半跨屋面活荷载 全跨节点屋架自重设计值: 3F =0.38×1.2×1.5×6==4.10KN 半跨节点屋面板自重及活荷载设计值: 4F =(1.4×1.35+0.5×1.4)×1.5×6=23.31KN 四、内力计算

48米下承式简支栓焊钢桁梁桥课程设计讲解

现代钢桥课程设计 学院:土木工程学院 班级:1210 姓名:罗勇平 学号:1208121326 指导教师:周智辉 时间:2015年9月19日

目录 第一章设计说明 .............................................. 错误!未定义书签。第二章主桁杆件内力计算 . (5) 第三章主桁杆件截面设计与检算 (14) 第四章节点设计与检算 (23)

第一章 设计说明 一、设计题目 单线铁路下承式简支栓焊钢桁梁设计 二、设计依据 1. 设计规范 铁道部《铁路桥涵设计基本规范》(TB10002.1-2005) 铁道部《铁路桥梁钢结构设计规范》(TB10002.2-2005) 2. 结构基本尺寸 计算跨度L=48m ;桥跨全长L=49.10m ;节间长度d=8.00m ;主桁 节间数n=6;主桁中心距B=5.75m ;平纵联宽度B 0=5.30m ;主桁高度H=11.00m ;纵梁高度h=1.45m ;纵梁中心距b=2.00m ;主桁斜角倾角?=973.53θ,809.0sin =θ,588.0cos =θ。 3. 钢材及基本容许应力 杆件及构件用Q370qD ;高强度螺栓用20MnTiB 钢;精制螺栓用 BL3;螺母及垫圈用45号优质碳素钢;铸件用ZG25Ⅱ;辊轴用锻钢35。钢材的基本容许应力参照《铁路桥梁钢结构设计规范》。 4. 结构的连接方式及连接尺寸 连接方式:桁梁杆件及构件采用工厂焊接,工地高强度螺栓连接; 人行道托架采用精制螺栓连接。 连接尺寸:焊缝的最小焊脚尺寸参照《桥规》;高强度螺栓和精 制螺栓的杆径为22φ,孔径为mm d 23=。 5. 设计活载等级 标准中—活载。 6. 设计恒载 主桁m kN p /70.123=;联结系m kN p /80.24=;桥面系m kN p /50.62=; 高强度螺栓%3)(4326?++=p p p p ;检查设备m kN p /00.15=;桥面m kN p /00.101=;焊缝%5.1)(4327?++=p p p p 。 计算主桁恒载时,按桥面全宽恒载7654321p p p p p p p p ++++++=。 三、设计内容 1. 确定主桁型式及主要参数; 2. 主桁杆件内力计算(全部),并将结果汇制于2号图上; 3. 交汇于E 2、A 3节点(要求是两个大节点)的所有杆件截面设计与 检算;

钢结构课程设计梯形钢屋架计算书

钢结构课程设计 梯形钢屋架计算书 所在学院建筑工程学院 所属专业土木工程 班级学号土木10-3 1015020324 学生姓名郑春旭 指导教师黄雪芳王晓东 设计时间2013.11.26

-、设计资料 1、某工厂车间,采用梯形钢屋架无檩屋盖方案,厂房跨度取27m,长度为102m,柱距6m。采用1.5m×6m预应力钢筋混凝土大型屋面板,保温层、找平层及防水层自重标准值为1.3kN/m2。屋面活荷载标准值为0.5kN/m2,雪荷载标准值0.5kN/m2,积灰荷载标准值为0.6kN/m2,轴线处屋架端高为1.90m,屋面坡度为i=1/12,屋架铰接支承在钢筋混凝土柱上,上柱截面400mm×400mm,混凝土标号为C25。钢材采用Q235B级,焊条采用E43型。 2、屋架计算跨度: Lo=27m-2×0.15m=26.7m 3、跨中及端部高度: 端部高度:h′=1900mm(端部轴线处),h=1915mm(端部计算处)。 屋架中间高度h=3025mm。 二、结构形式与布置 屋架形式及几何尺寸如图一所示: 图一屋架形式及几何尺寸 屋架支撑布置如图二所示:

图二-2屋架下弦支撑分布图 图二-3屋架垂直支撑 符号说明:GWJ-(钢屋架);SC-(上弦支撑);XC-(下弦支撑); CC-(垂直支撑);GG-(刚性系杆);LG-(柔性系杆)。 三、荷载与内力计算 1、荷载计算 荷载与雪荷载不同时考虑,故计算时取两者较大的荷载标准值计算。由资料可知屋面活荷载等于雪荷载,所以取0.5kN/㎡计算。 标准永久荷载: 防水层、找平层、保温层1.30kN/㎡ 预应力混凝土大型屋面板1.40kN/㎡ 钢屋架和支撑自重0.12+0.011×27=0.42kN/㎡ 总计: 3.12kN/㎡`

钢引桥计算书说明

钢引桥计算书说明 1 概述 水工结构中,一般大跨度的皮带机运输通道均采用钢引桥,对于设计者来说,钢引桥桥面梁系设计、主桁架各杆件的截面设计是桁架式钢引桥设计的重点,计算量较大。为提高钢引桥计算效率与质量,基于工程计算软件Mathcad和空间有限元分析软件Midas Civil,根据《水运工程钢结构设计规范》编制了较为系统的钢引桥设计计算书, 本文主要就设计计算书的设计方法,计算流程及后续改进方向等问题逐一加以介绍。 2 设计方法 2.1 钢引桥桥面系设计方法 本计算书桥面板采用单向板计算,纵梁和横梁均按简支梁计算。 基于上述设计方法,根据实际的荷载条件及常用的钢材型号,本计算书通过查询《建筑结构静力手册》,利用工程计算软件Mathcad变编写了桥面系自动选材计算程序,大大减少了桥面系的设计计算量。 2.2 钢引桥主桁架设计方法 空间有限元分析软件Midas Civil具有建模方便、直观,计算快捷的优点,但其应力计算结果仅仅是各种应力(轴应力、弯应力)简单的叠加,并没有考虑杆件的强度与整体稳定性。所以其计算结果并不能满足规范要求。 本计算书采取的方法是:将Midas civil计算的各构件弯压应力输入,计算书在对输入结果考虑塑性系数、稳定系数后,将重新计算构件强度和稳定性,设计者只需直观的判断主桁架各杆件选材的合理性,当然这要结合后面长细比共同判断。需要注意的是,Midas civil分析的结构应力应为考虑分项系数后的设计值。 3 计算流程 本计算书适用水运工程有竖杆或无竖杆的两类桁架式钢引桥,主要可变荷载则考虑皮带机支腿荷载与人群荷载。计算书共分为八章,下面对计算书主要章节加以说明,以便设计者使用。 《第1章设计依据及基本参数》中设计参数主要用以判断选材是否符合规范要求,设计参数亦可根据规范更新进行手动更改。 《第2章设计条件》是本计算书集中输入部分,输入部分均用黄色显示。设计者可以根据设计要求输入钢引桥参数,如钢引桥长度、宽度、有无竖杆等,“设计荷载”中主要考虑了钢引桥自重,皮带机荷载和人群荷载,设计者可以根据实际情况输入荷载参数,各参数代表意义见文字及相应图示。

钢结构桁架设计计算书

renchunmin 一、设计计算资料 1. 办公室平面尺寸为18m×66m ,柱距8m ,跨度为32m ,柱网采用封闭结合。火灾危险性:戊类,火灾等级:二级,设计使用年限:50年。 2. 屋面采用长尺复合屋面板,板厚50mm ,檩距不大于1800mm 。檩条采用冷弯薄壁卷边槽钢C200×70×20×2.5,屋面坡度i =l /20~l /8。 3. 钢屋架简支在钢筋混凝土柱顶上,柱顶标高9.800m ,柱上端设有钢筋混凝土连系梁。上柱截面为600mm×600mm ,所用混凝土强度等级为C30,轴心抗压强度设计值f c =1 4.3N /mm 2。 抗风柱的柱距为6m ,上端与屋架上弦用板铰连接。 4. 钢材用 Q235-B ,焊条用 E43系列型。 5. 屋架采用平坡梯形屋架,无天窗,外形尺寸如下图所示。 6. 该办公楼建于苏州大生公司所 属区内。 7. 屋盖荷载标准值: (l) 屋面活荷载 0.50 kN /m 2 (2) 基本雪压 s 0 0.40 kN /m 2 (3) 基本风压 w 0 0.45 kN /m 2 (4) 复合屋面板自重 0.15 kN /m 2 (5) 檩条自重 查型钢表 (6) 屋架及支撑自重 0.12+0. 01l kN /m 2 8. 运输单元最大尺寸长度为9m ,高度为0.55m 。 二、屋架几何尺寸的确定 1.屋架杆件几何长度 屋架的计算跨度mm L l 17700300180003000=-=-=,端部高度取mm H 15000=跨中高度为mm 1943H ,5.194220 217700 150020==?+ =+=取mm L i H H 。跨中起拱高度为60mm (L/500)。梯形钢屋架形式和几何尺寸如图1所示。

钢桁架人行天桥计算

一、工程概况 新建人行天桥位于新科三路以北,中心桩号为MK15+367.045,跨越江北大道主线。江北大道道路中央分隔带内有地铁11号线。主要是为满足交叉口行人过街的功能要求,天桥主桥为一跨钢桁架桥,跨径组合为:12.5m+46m+12.5m=71m。天桥两端均设置钢结构梯道。 本工程主桥结构可分为1联桁架以及2个人行梯道,本计算书即对主桥桁架、人行梯道及全桥下部结构进行验算。 二、设计采用主要规范 结构分析和验算采用的主要标准和规范如下: (1)《公路工程技术标准》(JTG B01-2003) (2)《公路桥涵设计通用规范》(JTG D60-2004) (3)《城市人行天桥与人行地道技术规范》(CJJ69-95) (4)《城市桥梁设计荷载标准》(CJJ77-98) (5)《公路钢筋混凝土及预应力混凝土设计规范》(JTG D62-2004) (6)《公路桥涵地基与基础设计规范》(JTG D63-2007) (7)《公路桥梁抗震设计细则》(JTG/T B02-01-2008) (8)《公路桥涵钢结构及木结构设计规范》( JTJ025-1986 ) (9)《钢结构设计规范》(GB 50017-2003)

三、主桥桁架结构分析 1、概述 本工程主桥桁架跨径为12.5+46+12.5 本次计算主要包括以下内容: 成桥阶段杆件强度校核 杆件疲劳校核 动力特性分析 正常使用阶段校核 2、结构几何模型 模型使用的单元类型均为平面梁单元,桁架几何模型如下所示。 桁架结构 整个几何模型可分为上弦杆、下弦杆、腹杆。 上、下弦杆均为矩形焊接截面,材料为Q345qD,上弦杆高45cm,下弦杆高60cm,截面如下: 上弦杆截面下弦杆截面

相关主题
文本预览
相关文档 最新文档