当前位置:文档之家› 数字波束形成与智能天线_5

数字波束形成与智能天线_5

数字波束形成与智能天线_5
数字波束形成与智能天线_5

数字波束形成与智能天线_1

南京理工大学电光学院通信工程系 Nanjing University of Science and Technology Department of Communication Engineering 数字波束形成与智能天线 盛卫星 南京理工大学电光学院通信工程系 Nanjing University of Science and Technology Department of Communication Engineering 数字波束形成与智能天线 第一章引言 DBF and Smart Antennas Nanjing University of Science & Technology Sheng Wei Xing 2004.03.03引言 1.1 数字波束形成与智能天线发展的简史 1.2 移动通信中与雷达中的智能天线的异同 DBF and Smart Antennas Nanjing University of Science & Technology Sheng Wei Xing 2004.03.03 1.1 数字波束形成与智能天线发展的简史 数字波束形成与智能天线的概念来源于军事上雷达和声纳所采用的自适应阵列天线,目的是为了自适应地控制天线波束的主瓣使其对准目标,控制天线波束的零陷,使其对准干扰源,从而可以在强干扰环境下有效地发现和探测目标。 自适应天线阵列的概念自1959年由Van Atta 提出以来,到目前已经经历了四十多年的发展历程,大体上可划分为四个阶段: 第一个十年的研究集中在自适应波束控制上(六十年代)。如:自适应相控阵列天线,自适应波束控制天线等 z 50年代,美国出于卫星通信增强信号的需要,开始研究最初意义上的自适应天线。 z 1964年5月,IEEE Trans. on AP 第一次出版自适应天线专辑,总结了主波束自适应控制阶段的发展。 1.1 数字波束形成与智能天线发展的简史 第三个十年的研究主要集中在空间谱估计上(八十年代)。如:最大似然谱估计,最大熵谱估计,特征空间正交谱估计等 z 1986年3月,IEEE Trans. on AP 第三次出版自适应天线专辑,总结了DOA 估计的空间谱估计阶段的发展。 z 在八十年代,自适应天线阵从理论研究进入了广泛应用阶段,但主要限于雷达和声纳领域。 第二个十年研究集中在自适应零陷控制上(七十年代)。 如:自适应滤波,自适应调零与旁瓣对消,自适应杂波控制等。 z 1976年9月,IEEE Trans. on AP 第二次出版自适应天线专辑,总结了零向自适应控制阶段的发展。 1.1 数字波束形成与智能天线发展的简史 最近十年的研究主要集中在: z 1. 结合移动通信的智能天线的实现技术上(九十年代至今) 时隙、频率资源复用,码分多址导致同频干扰,成为制约通信容量的重要因素。现在的移动通信系统中采用的天线是全向天线,主要是为了确保与各个方向的用户都能通信。智能天线能根据信号的来波方向,自适应地调整天线方向图,形成一个窄的主波束对准用户,其它方向副瓣很低。这样可以增强用户信号,抑制干扰,提高信干比,增加通信系统容量。同时还可以降低发射功率,提高通信覆盖范围。同时多波束时,又称SDMA , 空分多址,大大增加通信系统容量。 移动通信得到了迅猛的发展,一方面,用户数量急剧增加,另一方面,移动业务主要由原来窄带的话音业务,向宽带的多媒体业务扩展。导致无线频谱资源日趋紧张,现在应用的多址方式包括: TDMA(时隙上错开) FDMA (载波频率上错开), CDMA (码分多址)。

波束成形

第四章智能天线自适应波束成形算法简介 4.1 引言 智能天线技术作为一种新的空间资源利用技术,自20世纪90年代初由一些学者提出后,近年来在无线通信领域受到了人们的广泛关注。它是在微波技术、自动控制理论、数字信号处理(DSP)技术和软件无线电技术等多学科基础上综合发展而成的一门新技术。智能天线技术从实质上讲是利用不同信号在空间上的差异,对信号进行空间上的处理。与FDMA,TDMA及CDMA相对应,智能天线技术可以认为是一种空分多址SDMA技术,它使通信资源不再局限于时域、频域和码域,而是拓展到了空间域。它能够在相同时隙、相同频率和相同地址码情况下,根据用户信号在空域上的差异来区分不同的用户。智能天线技术与其它通信技术有机相结合,可以增加移动通信系统的容量,改善系统的通信质量,增大系统的覆盖范围以及提供高数据率传输服务等。 4.2 智能天线技术及其优点 智能天线,即具有一定程度智能性的自适应天线阵,自适应天线阵能够在干扰方向未知的情况下,自动调节阵列中各个阵元的信号加权值的大小,使阵列天线方向图的零点对准干扰方向而抑制干扰,增强系统有用信号的检测能力,优化天线方向图,并能有效地跟踪有用信号,抑制和消除干扰及噪声,即使在干扰和信号同频率的情况下,也能成功地抑制干扰。如果天线的阵元数增加,还可以增加零点数来同时抑制不同方向上的几个干扰源。实际干扰抑制的效果,一般可达25--30dB以上。智能天线以多个高增益的动态窄波束分别跟踪多个移动用户,同时抑制来自窄波束以外的干扰信号和噪声,使系统处于最佳的工作状态。 智能天线利用空域自适应滤波原理,依靠阵列信号处理和数字波束形成技术发展起来,它主要包括两个重要组成部分,一是对来自移动台发射的多径电波方向进行到达角(DOA)估计,并进行空间滤波,抑制其它移动台的干扰;二是对基站发送信号进行数字波束形成,使基站发送信号能够沿着移动电波的到达方向发送回移动台,从而降低发射功率,减少对其它移动台的干扰。在普遍采用扩频技术的CDMA系统中,采用智能天线的优势主要体现在以下几个方面: 1) 提高了基站接收机的灵敏度 基站接收到的信号,是来自各天线单元和收信机接收到的信号之和,如果采

智能天线综述

文章编号:1006-7043(2000)06-0051-06 智能天线综述 肖炜丹,楼 吉吉,张 曙 (哈尔滨工程大学电子工程系,黑龙江哈尔滨150001) 摘 要:智能天线技术作为ITM -2000(International Mobile Telephone -2000,2000年全球移动电话)的核心技术之一,受到国内外移动通信业的高度重视.本文对智能天线的基本概念、基本原理和国内外研究现状等进行了综合论述,并讨论了其相关技术及应用和发展前景,最后对智能天线技术研究中的难点和应注意的问题发表了看法.① 关 键 词:智能天线;软件无线电;移动通信;ITM -2000;第二代移动通信系统;第三代移动通信系统中图分类号:TN911.25 文献标识码:A Summ arization of Sm art Antennas XIAO Wei-dan ,LOU Zhe ,ZAN G Shu (Dept.of Electronic Eng.,Harbin Engineering University ,Harbin 150001,China ) Abstract :Great attention is paid to the application of smart antennas by mobile communication trade both here and abroad as one of the key techniques for ITM -2000(International Mobile Telephone -2000).The paper presented basic concepts and principles of the smart antennas ,including its research situation at home and abroad ,and then discussed correlated technologies and potential applications.Finally ,the authors ’opinions were presented about the difficulties and the problems that should be considered in the research of smart antennas. K ey w ords :smart antenna ;software radio ;mobile communication ;ITM -2000;2G;3G 近年来全球通信事业飞速发展,通信业务的需求量越来越大,特别是第三代移动通信等新概念的出现,对通信技术提出了更高的要求.第三代移动通信系统的理想目标是有极大的通信容量,有极好的通信质量,有极高的频带利用率.在复杂的移动通信环境和频带资源受限的条件下达到这一目标,主要受3个因素的限制:1)多径衰落;2)时延扩展;3)多址干扰.为克服这些限制,仅仅采用目前的数字通信技术是远远不够的.近几年开始研究的移动通信的智能技术,即智能移动通信技术,包括智能天线、智能传输、智能接收和智能 化通信协议等,为克服和减轻这些限制,达到或接近第三代移动通信系统的理想目的,提供了最有力的技术支持,已成为第三代移动通信系统最重要的技术保证.而其中的智能天线技术以其独特的抗多址干扰和扩容能力,不仅是目前解决个人通信多址干扰、容量限制等问题的最有效的手段,也被公认为是未来移动通信的一种发展趋势,成为第三代移动通信系统的核心技术.为便于广大通信爱好者能够对智能天线技术有所了解,本文将从智能天线的概念、原理、相关技术及其应用做一简要介绍. ①收稿日期:2000-06-01;修订日期:2000-11-15 作者简介:肖炜丹(1975-),男,黑龙江哈尔滨人,哈尔滨工程大学电子工程系硕士研究生,主要研究方向:通信与信息系统. 第21卷第6期 哈 尔 滨 工 程 大 学 学 报 Vol.21,№.62000年12月 Journal of Harbin Engineering University Dec.,2000

波束形成基础原理总结

波束赋形算法研究包括以下几个方面: 1.常规的波束赋形算法研究。即研究如何加强感兴趣信号,提高信道处理增益,研究的是一 般的波束赋形问题。 2.鲁棒性波束赋形算法研究。研究在智能天线阵列非理想情况下,即当阵元存在位置偏差、 角度估计误差、各阵元到达基带通路的不一致性、天线校准误差等情况下,如何保证智能天线波束赋形算法的有效性问题。 3.零陷算法研究。研究在恶劣的通信环境下,即当存在强干扰情况下,如何保证对感兴趣信 号增益不变,而在强干扰源方向形成零陷,从而消除干扰,达到有效地估计出感兴趣信号的目的。 阵列天线基本概念(见《基站天线波束赋形及其应用研究_ 白晓平》) 阵列天线(又称天线阵)是由若干离散的具有不同的振幅和相位的辐射单元按一定规律排列并相互连接在一起构成的天线系统。利用电磁波的干扰与叠加,阵列天线可以加强在所需方向的辐射信号,并减少在非期望方向的电磁波干扰,因此它具有较强的辐射方向性。组成天线阵的辐射单元称为天线元或阵元。相邻天线元间的距离称为阵间距。按照天线元的排列方式,天线阵可分为直线阵,平面阵和立体阵。 阵列天线的方向性理论主要包括阵列方向性分析和阵列方向性综合。前者是指在已知阵元排列方式、阵元数目、阵间距、阵元电流的幅度、相位分布的情况下分析得出天线阵方向性的过程;后者是指定预期的阵列方向图,通过算法寻求对应于该方向图的阵元个数、阵间距、阵元电流分布规律等。对于无源阵,一般来说分析和综合是可逆的。 阵列天线分析方法 天线的远区场特性是通常所说的天线辐射特性。天线的近、远区场的划分比较复杂,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。因此,在分析天线辐射特性时观察点距离应远大于天线总尺寸及三倍的工作波长。阵列天线的辐射特性取决于阵元因素和阵列因素。阵元因素包括阵元的激励电流幅度相位、电压驻波比、增益、方

智能天线波束赋形GOB算法与EBB算法比较

目前比较常用的波束赋形算法有2种:GOB算法和EBB算法。GOB算法是一种固定波束扫描的方法,对于固定位置的用户,其波束指向是固定的,波束宽度也随天 线阵元数目而确定。当用户在小区中移动时,它通过测向确定用户信号DOA,然后根据信号DOA选取预先设定的波束赋形系数进行加权,将方向图的主瓣指向用户方向,从而提高用户的信噪比。EBB算法是一种自适应的波束赋形算法,方向图没有固定的形状,随着信号及干扰而变化。其原则是使期望用户接收功率最大 的同时,还要满足对其他用户干扰最小。 实际设备中采用了EBB算法,需要说明的一点是,仅下行有波束赋形技术,上行方向,手机天线无法进行波束赋形,基站多个天线此时主要用于分集接收。 简单来说就是一个天线阵的运用,上行信号到达每个天线的时间是不一致的,但天线之间的相差是可以预知的,只要将每个天线上的上行信号做一个加权处理,所得信号将是同相信号,将天线阵上的信号相加,即可增加10logN*N db(此处应为10logN db——本人注)的信噪比;同理下行时,首先根据上行信号估计 空间特性,然后在天线阵上发送具有相差的信号,使各个天线下行信号到达接受机的信号同相。上下行中相位的加权运算就是波束赋形。 注解:波束赋形工作由基站完成 GOB 与EBB算法的区别 目前智能天线的赋形算法主要有以下两种: 一、GOB(Grid Of Beam)算法(又称波束扫描法):它是基于参数模型(利用信道的空域参数)的算法,使基站实现下行指向性发射。 GOB算法的基本思路如下: 将整个空间分为L个区域,并为每个区域设置一个初始角度。以各个区域的初始角度的方向向量为加权系数,计算接收信号功率,然后找到最大功率对应的区域,再将该区域的初始角度当作估计的到达角。利用上下行信道对称的特点,确定赋形角度。 二、EBB(Eigenvalue Based Beamforming)算法(即特征向量法):通过对空间

数字波束形成

摘要 随着高速、超高速信号采集、传输及处理技术的发展,数字阵列雷达已成为当代雷达技术发展的一个重要趋势。数字波束形成(DBF)技术采用先进的数字信号处理技术对阵列天线接收到的信号进行处理,能够极大地提高雷达系统的抗干扰能力,是新一代军用雷达提高目标检测性能的关键技术之一。并且是无线通信智能天线中的核心技术。 本文介绍了数字波束形成技术的原理,对波束形成的信号模型进行了详细的推导,并且用matlab仿真了三种计算准则下的数字波束形成算法,理论分析和仿真结果表明以上三种算法都可以实现波束形成,并对三种算法进行了比较。同时研究了窄带信号的自适应波束形成的经典算法。研究并仿真了基于最小均方误差准则的LMS算法、RLS算法和MVDR自适应算法,并且做了一些比较。 关键词:数字波束形成、自适应波束形成、智能天线、最小均方误差、最大信噪比、最小方差

ABSTRACT With the development of high-speed, ultra high-speed signal acquisition, transmission and processing technology, digital array radar has became an important trend in the development of modern radar technology. Digital beamforming (DBF) technology uses advanced digital signal processing technology to process the signal received by antenna array. It can improve the anti-jamming ability of radar system greatly and it is one of the key technology。It is the core of the smart antenna technology in wireless communication too。 This paper introduces the principle of digital beam forming technology, the signal model of beam forming was presented, And the digital beam forming algorithm under the three calculation criterion was simulated by MATLAB, theoretical analysis and simulation results show that the three algorithms can achieve beamforming, and made some comparison between the three algorithms. At the same time, made some study about the adaptive narrow-band signal beam forming algorithm. Learned and Simulateded the LMS algorithm base on minimum mean square error criterion and RLS algorithm and MVDR algorithm, and do some comparison Key Words:DBF, ADBF, Smart antenna, The minimum mean square error, The maximum signal to noise ratio

智能天线自适应波束形成算法概要

智能天线自适应波束形成算法 智能天线技术是无线通信领域研究的主要方向之一。随着社会信息交流需求的急剧增加、个人移动通信的迅速普及,频谱已成为越来越宝贵的资源。智能天线利用数字信号处理技术,采用先进的自适应阵列处理技术,产生空间定向波束,使波束主瓣对准用户信号波达方向,旁瓣或零陷对准干扰信号方向,删除或抑制干扰信号,从而提高期望信号的接收信噪比,提高系统容量。智能天线是解决频率资源匮乏的有效途径。智能天线技术作为3G的必选技术对移动通信的发展起到了重要作用。本文首先阐述了智能天线的基本结构和工作原理,分析了最佳滤波准则和几种常用的自适应波束形成算法,包括LMS、RLS、CMA算法。而后分析了阵列天线的数学模型,并对天线中的一些基本概念(方向图、波束宽度、分辨力)进行了说明。本文的创新点是提出了一个矩形天线阵列的模型(平面型),文章对智能天线阵的几种常用天线模型(如直线型,矩形)进行了详细地分析,并建立数学模型,在Matlab中仿真,其中对2*4阵列矩形天线阵列进行了详细地分析和仿真观察,并和直线型天线进行对比。对矩形天线阵列和直线型天线阵列在其抗干扰性能、入射信号的角度和个数对其的影响、方向图的对称性方面进行了详细地讨论。此外还讨论了增加天线阵元个数时(4*4阵列矩形天线)对天线的性能有何提高。在智能天线算法方面,根据LMS、RLS、CMA算法的基本原理,用上述模型分别对其进行仿真,并比较其优缺点。本论文的工作具有很强的针对性,提出的异型天线阵模型具有一定的理论参考价值和实际应用价值。 同主题文章 [1]. 龚翔. 智能天线-开辟移动通信新纪元' [J]. 广播电视信息. 2003.(06) [2]. 裴小燕,胡健栋. 智能天线在未来移动通信系统中的应用' [J]. 通讯世界. 2000.(11) [3]. 耿涛. 智能天线技术' [J]. 电信网技术. 2002.(05) [4]. 李学军. 多波束智能天线性能的研究' [J]. 信息技术. 2004.(08) [5]. 高艳华,张广求. 智能天线技术及其应用现状' [J]. 制导与引信. 2004.(02) [6]. 高明亮. 智能天线建网现场扫描' [J]. 通信世界. 2007.(23) [7]. 牛春玲,肖建华,张志敏. 采用小型化智能天线的TD-SCDMA网络规划'

MIMO系统的波束形成技术及其仿真

MIMO 系统的波束形成技术研究及其仿真 杨尚贤1,王明皓2 (1.沈阳航空航天大学辽宁沈阳110136;2.沈阳飞机设计研究所辽宁沈阳110035) 摘要:概述了智能天线中的波束形成技术和MIMO 系统中空时分组码原理,基于传统的最小均方(LMS )算法和MI - MO 系统中空时分组码,研究分析了两者相结合的可行性。 关键词:智能天线;LMS 算法;MIMO ;空时分组码;误码率中图分类号:TN821.91 文献标识码:A 文章编号:1674-6236(2012)24-0093-03 MIMO systems beamforming technology and its simulation YANG Shang -xian 1,WANG Ming -hao 2 (1.Shenyang Aerospace University ,Shenyang 110136;China ; 2.Shenyang Aircraft Design Institute ,Shenyang 110035;China ) Abstract:The overview of beamforming technology in the smart antenna and space -time block code principle in the multiple -input multiple -output (MIMO )system ,studied and analyzed the feasibility of combination based on the traditional least mean square (LMS )algorithm and the multiple -input multiple -output (MIMO )system space -time block codes.Key words:smart antenna ;LMS algorithm ;MIMO ;STBC ;BER 收稿日期:2012-09-03 稿件编号:201209021 作者简介:杨尚贤(1985—),男,辽宁大石桥人,硕士研究生。研究方向:航空电子信息系统。 随着移动通信技术的快速发展,移动通信用户的数目迅速增加,有限的频谱资源难以满足日益增长的全球市场对于移动通信的巨大需求。采用多输入多输出(MIMO )技术充分利用频域资源实现移动通信系统性能的有效提高,已经成为近些年来的研究热点[1-4]。在无线通信系统中,多径衰落和各种干扰是普遍存在的。智能天线技术能够有效地抑制多径干扰、同信道干扰、多址干扰等各类型的干扰。而空时编码技术可以在不损失带宽的情况下获得很高的编码增益和分集增益,从而实现抗多径衰落的目的。因此,如果将空时编码技术与波束形成技术相结合将会获得更好的系统性能,文中将对空时编码技术与波束形成技术相结合的可行性进行研究。 1智能天线中的自适应波束形成技术 自适应波束形成技术的基本原理,是根据一定的准则和 算法自适应地调整阵列天线阵元激励的权值,使得阵列接收信号通过加权叠加后,输出信号的质量在所采取的准则下最优。波束形成原理图,如图1所示。 经典的自适应波束形成算法有最小均方算法(LMS )和递归最小二乘算法(RLS ),采样矩阵求逆(SMI )算法,最小二乘横模算法(LS-CMA ),基于DOA 估计的空间线性约束最小方差算法(LCMV )、最小方差无畸变响应(MVDR )算法、特征子空间(ESB )算法等,以上算法各有其优缺点[5-9]。本文将以LMS 算法为基础探讨研究波束形成技术。W (n +1)=W (n )+12 μ[-Δ W (E {ε2(n )})]=W (n )+μ[r xd -R xx W (n )](1) 其中,W 是加权向量,μ是常数,称为步长因子,ε(n )是输出信号与有用信号之间的误差,r xd 是输入信号与有用信号的互相关矩阵,R xx 是输入向量自相关矩阵。 因为r xd ,R xx 都是统计量,因此实际计算需要用估计值代替,LMS 算法的原理[10]是:采用瞬时采样值进行这两项的估 计,即在第n 个快拍,r xd 和R xx 的估计值R 赞xd 和R 赞xx 为r 赞xd =d *(n )x (n )(2)R 赞xx =x (n )x H (n )(3) 于是将式(2)、(3)代入式(1)得, W (n +1)=W (n )+μ[d *(n )x (n )-x (n )x H (n )W (n )]=W (n )+μx (n )[d *(n )-y *(n )]=W (n )+μx (n )ε*(n ) (4) 电子设计工程 Electronic Design Engineering 第20卷Vol.20第24期No.242012年12月Dec.2012 图 1 波束形成原理图 Fig.1 Principle diagram of beamforming

波束形成

3.5 两种特殊的波束形成技术 3.5.1协方差矩阵对角加载波束形成技术 常规波束形成算法中,在计算自适应权值时用XX R ∧ 代替其中的X X R 。由于采样快拍数是有限的,则通过估计过程得到的协方差矩阵会产生一定误差,这样会引起特征值扩散。从特征值分解方向来看,自适应波束畸变的原因是协方差矩阵的噪声特征值扩散。自适应波束可以认为是从静态波束图中减去特征向量对应的 特征波束图,即:m in 1 ()()( )()(()())N i V V iv iv V i i G Q E E Q λλθθθθθλ* =-=-∑,其中()V G θ是 是自适应波束图,()V Q θ是静态波束图,即没有来波干扰信号而只有内部白噪声时的波束状态。i λ是矩阵X X R 的特征值。()iv E θ是对应i λ的特征波束图。 由于X X R 是 Hermite 矩阵,则所有的特征值均为实数,并且其特征向量正交,特征向量对应的特征波束正交。而最优权值的求解表达其中的X X R 是通过采样数据估计得到的,当采样快拍数很少时,对协方差矩阵的估计存在误差,小特征值及对应的特征向量扰动都参与了自适应权值的计算,结果导致自适应波束整体性能的下降。鉴于项目中的阵列形式,相对的阵元数较少,采样数据比较少,很容易在估计协方差矩阵的时候产生大的扰动,导致波束的性能下降,所以采用对角加载技术来保持波束性能的稳定及降低波束的旁瓣有比较好的效果。 (1)对角加载常数λ 当采样数据很少时,自适应波束副瓣很高,SINR 性能降低。对因采样快拍数较少引起自相关矩阵估计误差而导致的波束方向图畸变,可以采用对角加载技术对采样协方差矩阵进行修正。修正后的协方差矩阵为:XX XX R R I λ∧ =+ 。 自适应旁瓣抬高的主要原因是对阵列天线噪声估计不足,造成协方差矩阵特征值分散。通过对角加载,选择合适对角加载λ ,则对于强干扰的大特征值不会受到很大影响,而与噪声相对应的小特征值加大并压缩在λ附近,于是可以得到很好的旁瓣抑制效果。对于以上介绍的通过 LCMV 准则求得的权值o p t w 经过对角加载后的最优权值为:111()(())H opt XX XX w R I A A R I A f λλ---=++ (2)广义线性组合加载技术 对角加载常数λ 来修正采样协方差矩阵,能够有效实现波束旁瓣降低的同时提高波束的稳健性。但是对加载值λ 的确定有一定难度,目前还是使用经验值较多。于是,来考虑另外一种能够有效实现协方差矩阵的修正,而且组合参数

4G通信中的MIMO智能天线技术

4G通信中的MIMO智能天线技术 智能天线通常也称作自适应天线阵列,可以形成特定的天线波束,实现定向发送和接收,主要用于完成空间滤波和定位。从本质上看,它利用了天线阵列中各单元之间的位置关系,即利用了信号的相位关系克服多址干扰及多径干扰,这是它与传统分集技术的本质区别。 MIMO系统是指在发射端和接收端同时使用多个天线的通信系统,其有效地利用随机衰落和可能存在的多径传播来成倍地提高业务传输速率。其核心技术是空时信号处理,即利用在空间中分布的多个时间域和空间域结合进行信号处理。因此,可以被看作是智能天线的扩展。 智能天线系统在移动通信链路的发射端/或接收端带有多根天线,根据信号处理位于通信链路的发射端还是接收端,智能天线技术被定义为多入单出(MISO,MultipleInputSingleOutput)、单入多出(SIMO,Single Input Multiple Output)和多入多出(MIMO,Multiple Input Multiple Output)等几种方式。 二、多入多出智能天线收发机结构及研究进展 从图1可以看出,比特流在经过编码、调制和空时处理(波束成行或空时编码)后,映射成不同的信息符号,从多个天线同时发射出去;在接收端用多个天线接收,进行相应解调、解码及空时处理。 图1 多输入多输出智能天线收发机结构 MIMO系统中的空时处理技术主要包括波束成形(beamforming)、空时编码(space-timecoding)、空间复用(spacemultiplexing)等。波束成形是智能天线中的关键技术,通过将主要能量对准期望用户以提高信噪比。波束成形能有效地抑制共道干扰,其关键是波束成行权值的确定。 1.MIMO系统的发射方案 MIMO系统的发射方案主要分为两种类型:最大化数据率的发射方案(空间复用SDM)和最大化分集增益的发射方案(空时编码STC)。最大化数据率发射方案主要通过在不同天线发射相互独立的信号实现空间复用。空时编码的方案是指在发射端对数据流进行联合编码以减小由于信道衰落和噪声所导致的符号错误率,它通过在发射端的联合编码增加信号的冗余度,从而使信号在接收端获得分集增益,但空时编码方案不能提高数据率。 (1)空时编码一些文献中给出了大量的发射机制,这些机制分别可以使频谱效率最大、速率最高、信噪比(SNR,SignaltoNoise Ratio)最大,它们都依赖

智能天线技术

移动通信原理 学院:信息工程学院 班级:电子与通信工程 学号: 2111703317 姓名:蒋阿康 智能天线技术

随着移动通信的迅速发展,越来越多的业务将通过无线电波的方式来进行,有限的频谱资源面对着越来越高的容量需求的压力。对于第二代移动通信系统GSM,在我国的一些大城市已经出现了容量供应困难的现象,小区蜂窝的半径已经很小,而目前作为应用研究重点的3G以及它的业务模式无疑将对网络容量有更高的要求。高速的数据业务将作为3G网络服务的一个主要特点,这使得网络数据流量尤其是下行方向上将有明显的提高。因此,为了在3G系统中实现与第二代系统明显的差别服务,充分体现3G系统在业务能力上的优势,网络容量将是网络的运营者必须重点考虑的问题。就目前的情况而言,智能天线技术将是提高网络容量最有效的方法之一,尤其对于3G 中以自干扰为主要干扰形式的通信系统。 天线方向图的增益特性能够根据信号情况实时进行自适应变化的天线称为智能天线。与普通天线以射频部分为主不同,智能天线包括射频部分以及信号处理和控制部分。同时,由于终端在尺寸和成本上的限制,所以目前对于智能天线的研究主要集中在基站。 目前,普遍使用的是全向天线或者扇区天线,这些天线具有固定的天线方向图形式,而智能天线将具有根据信号情况实时变化的方向图特性。 图 1 如图1所示,在使用扇区天线的系统中,对于在同一扇区中的终端,基站使用相同的方向图特性进行通信,这时系统依靠频率、时间和码字的不同来避免相互间的干扰。而在使用智能天线的系统中,系统将能够以更小的刻度区别用户位置的不同,并且形成有针对性的方向图,由此最大化有用信号、最小化干扰信号,在频率、时间和码字的基础上,提高了系统从空间上区别用户的能力。这相当于在频率和时间的基础上扩展了一个新的维度,能够很大程度地提高系统的容量以及与之相关的目录。 1.智能天线技术的概念 智能天线是一种安装在基站现场的双向天线,通过一组带有可编程电子相位关系的固定天线单元获取方向性,并可以同时获取基站和移动台之间各个链路的方向特性。 智能天线是将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向DOA(Direction of Arrival),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干

阵列雷达数字波束形成技术仿真与研究

阵列雷达数字波束形成技术仿真与研究 【摘要】本文首先介绍了数字波束形成的基本原理,随后对普通波束形成及基于LCMV准则和MVDR准则的单多波束自适应形成技术分别进行了原理介绍和仿真分析。仿真结果表明,基于自适应技术的数字波束形成能有效提取有用信号,并在干扰方向上形成零陷,有效的抑制噪声和干扰,大大提高了阵列雷达的天线性能。 【关键词】阵列雷达;波束形成;自适应 1.引言 波束形成(Beam Forming,BF)[1]是指将一定几何形状排列的多元阵列各阵元的输出经过加权、时延、求和等处理,形成具有空间指向性波束的方法。BF技术的广泛应用赋予了雷达、通信系统诸如多波束形成、快速、灵活调整方向图综合等许多优点。阵列天线的波束形成可以采用模拟方式,也可以采用数字方式,采用数字方式在基带实现滤波的技术称为数字波束形成(Digital Beaming Forming,DBF),它是天线波束形成原理与数字信号处理技术结合的产物,是对传统滤波技术的空域拓展,在通信领域中也称为智能天线技术。 2.普通波束形成 2.1 普通波束形成的基本原理 要研究数字波束形成技术,首先要建立阵列信号的表示形式。假设接收天线为N元均匀线阵,阵元间的间隔为d,各阵元的加权矢量为W=[w1,w2,…,wN],假设信号为窄带信号S(t),信号波长为,来波方向为,经过加权控制的阵列天线示意图如图1所示[2]。 图1 阵列天线波束形成示意图 若以阵元1为参考点,则各阵元接收信号可以写成: (1) (2) 将上式写成矢量形式,得: (3) 称为为方向矢量或导向矢量。在窄带条件下,它只依赖于阵列的几何结构和波的传播方向,因此,均匀线阵的导向矢量可表示为:

一种基于波束切换方法的智能天线系统研究

53 一种基于波束切换方法的智能天线系统研究 李 森 杨家玮 (西安电子科技大学信息科学研究所,陕西西安 710071)    摘 要 智能天线技术(smart antenna)是近年来较为热门的技术之一,这一技术的出现为缓解日渐紧张的频率资源,提供更高质量的通信带来了希望。智能天线上行收主要有两种方式:全自适应方式和基于多波束的波束切换方式,文中从工程实现研究的角度出发,对基于波束切换方法的智能天线系统进行研究,重点在于介绍仿真的方法和仿真的指标,最后给出了结论。  关键词 智能天线,波束切换,仿真。 中图分类号 TN821+.91    1 引 言 近年来随着移动通信业务的飞速发展,用户数量呈指数上升,过多的用户给无线通信的资源带来巨大压力。尤其突出的是: 信道容量的限制、频谱资源紧张、多径衰落、远近效应、同频道干扰、越区切换、移动台由于电池容量的功率受限等等。智能天线技术就是在这样的背景下提出的。  一般地,智能天线定义为:具有测向和波束成形能力的天线阵列。智能天线的上行收技术相对成熟些,自适应天线阵最早引入移动通信的目的也是为了改善上行信道的质量和容量。智能天线上行收主要有两种方式:全自适应方式和波束切换方式,前者目前是理论研究的热点,出现了许多算法;后者则在工程实现上有一定的优势。多波束的智能天线在工程上实现相对容易,在数字信号处理器的速度还不能完全满足各种自适应算法的计算量时,选择多波束的智能天线可以达到较高的性价比,因此在工程中得到的一定的应用。  2 研究目标 多波束智能算法仿真的目的就在于找到最优的切换策略,最佳定位方法。由于在波束切换时天线侧对移动台的感知只有上行信号的电平,因此必须使用“波束切换-上行信号电平检测-判决”的  搜索方法将波束对准移动台。对于在天线覆盖的区域内接入的移动台,要求接续时间短,即定位迅速;在该区域内运动的移动台,要求能跟综的上。故对定位的要求是准确和快速。接收端获取切换指示(记为SI)的策略对于整个切换的性能有着重要的影响,如果计算时间过长或者计算不够准确,都会使性能下降。  3 仿真方法描述  考虑到仿真的效率和运行时间,仿真程序用C语言编写。仿真程序的结构如图1所示:  图1 仿真程序结构框图  (1)位置模型:如图1分为接入模型和运动模型两个子模块。  接入模型:随机数产生函数产生两个随机数,表示移动台接入位置的极坐标值。该扇区为120 电子科技 2004年第4期(总第175期)

通信综述文章

通信工程综述文章 3G移动通信中智能天线的原理及应用 智能天线的工作原理 【1】智能天线正是一种能够根据通信的情况,实时地调整阵列天线各元素的参数,形成自适应的方向图的设备。这种方向图通常以最大限度地放大有用信号、抑制干扰信号为目的,例如将大增益的主瓣对准有用信号,而在智能天线原理图(单个用户)其它方向的干扰信号上使用小增益的副瓣。 智能天线包括射频天线阵列部分和信号处理部分,其中信号处理部分根据得到的关于通信情况的信息,实时地控制天线阵列的接收和发送特性。这些信息可能是接收到的无线信号的情况;在使用闭环反馈的形式时,也可能是通信对端关于发送信号接收情况的反馈信息。把具有相同极化特性、各向同性及增益相同的天线阵元,按一定的方式排列,构成天线阵列。构成阵列的阵元可按任意方式排列,通常是按直线等距、圆周等距或平面等距排列,其间距通常取工作波长的一半,并且取向相同。智能天线系统由天线阵列部分、阵列形状、模数转换等几部分组成,智能天线可以按通信的需要在有用信号的方向提高增益, 在干扰源的方向降低增益.因此, 智能天线系统的应用可以带来如下好处:提高系统容量、减小衰减、抗干扰能力较强、实现移动台定位、增强网络管理能力等。【2】 智能天线在3G 中的应用 第三代移动通信主要实现方案有IMT-2000DS 的WCDMA 和IMT2000MS 的CDMA 2000,其他两个均将智能天线列入规划,并作为主要的后备技术.智能天线在3G 中为消除干扰、改善通信质量、提高容量、扩大通信服务区等方面发挥重要作用。【3】 1.减少用户越区切换时发生的强迫中断概率。 在移动通信网中常会遇到通信流量与呼损率的矛盾.在有限的物理信道下,用户容量越大,通信流量越大,但用户呼损率也越大.利用智能天线的类分集接收的能力,可以在有限物理信道个数的基础上,成倍增大通信的用户数,同时保证通信质量不下降.这样呼损率可大大降低。 2.功率控制和波束成形 在CDMA 网络系统中,为了克服慢衰落,特别是克服远近效应,必须采用功率控制.功控是通过迭代算法动态实现.其具体步骤如下: (1)首先从任意初始功率开始; (2 )调整智能天线,使其主波束(波束主瓣)对准p( k)方向; ( 3 )测量接收的干扰; (4 )调整信号功率使得载波干扰大于门限; (5 )经过多次迭代后,使功率的变化小于预先给定值ε时,即可停止. 上述的迭代算法收敛于一个最优波束所形成的加权矢量和功率值.使用智能天线形成最优波束和功率控制相结合的算法,可以大大改善通信质量和提高系统的容量。 3. 软件天线 软件天线是天线研究领域的一个重要设想.由于它主要基于智能天线的处理功

智能天线工作原理及其在现代通信系统中的应用

天线与电波结课论文 题目:智能天线工作原理及其在 现代通信系统中的应用 院系:电气信息工程学院 专业班级:电信12-01 学号:541201030121 姓名:李松霖

智能天线工作原理及其在现代通信系统中的应用论文摘要:介绍了智能天线的基本原理、实现方法及其在现代通信中的应用。 最初的智能天线技术主要用于军事抗干扰通信和定位等。近年来,随着现代通信的发展及对移动通信电波传播、组网技术、天线理论等方面的研究逐渐深入,智能天线开始用于具有复杂电波传播环境的移动通信。此外,随着移动用户数迅速增长和人们对通话质量要求的不断提高,要求移动通信网在大容量下仍具有较高的话音质量。经研究发现,在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。 1 智能天线的基本原理 智能天线包括多波束天线阵列和自适应天线阵列,后者是智能天线的主要形式。智能天线技术主要基于自适应天线阵列原理,天线阵收到信号后,通过由处理器和权值调整算法组成的反馈控制系统,根据一定的算法分析该信号,判断信号及干扰到达的方位角度,将计算分析所得的信号作为天线阵元的激励信号,调整天线阵列单元的辐射方向图、频率响应及其它参数。利用天线阵列的波束合成和指向,产生多个独立的波束,自适应地调整其方向图,跟踪信号变化,对干扰方向调零,减弱甚至抵消干扰,从而提高接收信号的载干比,改善无线网基站覆盖质量,增加系统容量。 基站使用智能天线,可为用户提供窄定向波束,在一定的方向区域内收发信号。这样既充分利用信号发射功率,又可降低发射信号带

来的电磁干扰。智能天线引入空分多址(SDMA)方式,根据信号的空间传播方向不同,区分用户。 2 智能天线的实现 智能天线阵系统主要包括天线阵列、自适应处理器和波束形成网络。天线阵列是收发射频信号的辐射单元。自适应处理器把有一定规律的激励信号转换成与各波束相对应的幅度和相位,提供给各辐射单元,用来确定波束形成网络各部分方向图的增益。波束形成网络利用天线阵元产生的方向图,实现智能天线的各种应用。 自适应处理器产生的各支路幅度和相位调整系数,是波束形成网络工作的重要依据。自适应处理器包括信号处理器和自适应算法器。信号处理器根据所需进行的信号处理,自适应算法器根据均方误差、信噪比、输出噪声功率等性能量度,用适当的算法调整方向图,形成网络的加权系数,使智能天线阵系统性能达到最优化。 最初的智能天线采用复杂的模拟电路,如今采用数字波束形成(DBF)方式,用软件完成算法更新,也可采用数模相结合的处理方法,既保证处理精度,又保证处理速度及灵活性。此外,为了使智能天线具有良好性能,应根据具体的电波传播环境,选择相应的智能算法。采用软件无线电技术使系统具有良好的改善能力,提高系统性能。为了尽量减少对现有系统的改动,也可使用多波束智能天线。多波束天线利用多个指向固定的波束覆盖全方向,虽然不能实现信号最佳接收,但结构简单,便于实现,且无需判定所接收信号的方向。 3 智能天线在通信中的用途

智能天线在移动通信中的应用概要

智能天线在移动通信中的应用 摘要:介绍了移动通信中关键技术之一的智能天线技术,并就它的结构、算法以及在第三代移动通信中的应用进行了较全面的阐述。 关键词:移动通信;智能天线;天线阵列;自适应算法 Abstract:Smartantennaisoneofthekeytechnologiesofmobilecommunications.Itdescribesthetechnologyandfocusonitsarchitecture,algorithmandapplicationto 3Gmobilecommunication. Keywords:MobilecommunicationsSmartantennaArraySelf-adaptingalgorithm 0 前言 随着移动通信的发展,人们不仅从时域和频域的角度来探讨提高移动通信系统数量和质量的各种手段,而且进一步研究信号在空域的处理方法。智能天线技术就是典型的代表。 智能天线技术起源于20世纪40年代的自适应天线组合技术,在当时采用了锁相环技术进行天线的跟踪。1965年,Howells提出了自适应陷波的旁瓣对消器技术用于阵列信号处理,之后,又陆续出现了等一系列技术,后来,Gabriel将自适应波束形成技术上升到“智能阵列”概念。早在1978年,智能天线就在军事通信中得到了应用,进入20世纪90年代后,才在民用移动通信系统中开始研究应用。该项技术主要应用于以下方面:a)信号源定位,确定天线阵列到信号源的方位角; b)信号源分离,确定各个信号源发射信号的波形; c)信道估计,确定信号源与天线阵列间传输信道的参数。 1 智能天线的组成 智能天线技术是利用信号传输的空间特性,达到抑制干扰,提取信号的目的。它主要包括天线阵列部分、模数转换、波束形成网络以及自适应信号处理,其结构框图如图1所示。

相关主题
文本预览
相关文档 最新文档