当前位置:文档之家› 第八章 络合物(配位化合物)化学基础

第八章 络合物(配位化合物)化学基础

第八章 络合物(配位化合物)化学基础
第八章 络合物(配位化合物)化学基础

第八章络合物(配位化合物)化学基础【竞赛要求】

配位键。重要而常见的配合物的中心离子(原子)和重要而常见的配位(水、羟离子、卤离子、拟卤离子、氨分子、酸根离子、不饱和烃等)。螯合物及螯合效应。重要而常见的络合剂及其重要而常见的配合反应。配合反应与酸碱反应、沉淀反应、氧化还原反应的联系(定性说明)。配合物几何构型和异构现象基本概念。配合物的杂化轨道理论。八面体配合物的晶体的颜色。路易斯酸碱的概念。

场理论。Ti(H2O)+3

6

【知识梳理】

一、配合物基本知识

1、配合物的定义

由中心离子(或原子)和几个配体分子(或离子)以配位键相结合而形成的复杂分子或离子,通常称为配位单元。凡是含有配位单元的化合物都称作配位化合物,简称配合物,也叫络合物。

[Co(NH3)6]3+,[Cr(CN)6]3–,Ni(CO)4都是配位单元,分别称作配阳离子、配阴离子、配分子。

[Co(NH3)6]Cl3、K3[Cr(CN)6]、Ni(CO)4都是配位化合物。[Co(NH3)6]、[Cr(CN)6] 也是配位化合物。判断的关键在于是否含有配位单元。

思考:下列化合物中哪个是配合物

①CuSO4·5H2O②K2P t Cl6③KCl·CuCl2

④Cu(NH2CH2COO)2 ⑤KCl·MgCl2·6H2O ⑥Cu(CH3COO)2

注意:①配合物和配离子的区别

②配合物和复盐的区别

2、配合物的组成

中心离子

内界单齿配体

配位体多齿配体

配合物螯合配体

外界

(1)配合物的内界和外界

以[Cu(NH3)4]SO4为例:

[Cu(NH3)4]2+ SO-2

4

内界外界

内界是配位单元,外界是简单离子。又如K3[Cr(CN)6] 之中,内界是[Cr(CN)6]3–,外界是

K+。可以无外界,如Ni(CO)4。但不能没有内界,内外界之间是完全电离的。

(2)中心离子和配位体

中心离子:又称配合物的形成体,多为金属(过渡金属)离子,也可以是原子。如Fe3+、Fe2+、Co2+、Ni2+、Cu2+、Co等,只要能提供接纳孤对电子的空轨道即可。

配位体:含有孤对电子的阴离子或分子。如NH3、H2O、Cl-、Br-、I-、CN-、CNS-等。

(3)配位原子和配位数

配体中给出孤对电子与中心离子直接形成配位键的原子,叫配位原子。配位单元中,中心离子周围与中心离子直接成键的配位原子的个数,叫配位数。

配位化合物[Cu(NH3)4]SO4的内界为[Cu(NH3)4]2+,中心Cu2+的周围有4个配体NH3,每个NH3中有1个N原子与Cu2+配位。N 是配位原子,Cu的配位数4。(注意:配体的个数与配位数不是同一个概念)

若中心离子的电荷高,半径大,则利于形成高配位数的配位单元;而配体的电荷高,半径大,利于低配位数。

(4)常见的配体

单齿配体:一个配体中只能提供一个配位原子与中心离子成键。如H2O、NH3、CO等。单齿配体中,有些配体中含有两个配位原子,称为两可配体。如(SCN)–离子,结构为线性。以S为配位原子时,-SCN–称硫氰根;以N为配位原子时,-NCS–称异硫氰根。

多齿配体:有多个配位原子的配体(又分双齿、三齿、四齿等)。如含氧酸根:SO-2

4

、CO

-2 3、PO-3

4

、C2O-2

4

螯合配体:同一配体中两个或两个以上的配位原子直接与同一金属离子配合成环状结构的

配体称为螯合配体。螯合配体是多齿配体中最重要且应用最广的。如乙二胺H2N-CH2-CH2- NH2(表示为en),其中两个氮原子经常和同一个中心离子配位。象这种有两个配位原子的配体通常称双基配体(或双齿配体)。

而乙二胺四乙酸( EDTA ),其中2个N,4 个–OH 中的O均可配位,称多基配体。

由双基配体或多基配体形成的具有环状结构的配合物称螯合物(如下图所示)。含五元环或六元环的螯合物较稳定。

3、配合物的命名

配合物种类繁多,结构复杂,因此有必要对配合物进行系统命名,命名原则如下:(1)在配合物中

先阴离子,后阳离子,阴阳离子之间加“化”字或“酸”字,配阴离子看成是酸根。(2)在配位单元中

①先配体后中心,配体与中心之间加“合”字。

②配体前面用二、三、四… … 表示该配体个数。

③几种不同的配体之间加“·”隔开。

④中心后面加(),内写罗马数字表示中心的价态。

(3)配体的名称

(4)配体的先后顺序

下述的每条规定均在其前一条的基础上

①先无机配体后有机配体

如PtCl2( Ph3P)2二氯·二(三苯基膦)合铂(II)

②先阴离子类配体,后阳离子类配体,最后分子类配体。

如K [ PtCl3(NH3)] 三氯·氨合铂( II ) 酸钾

③同类配体中,按配位原子的元素符号在英文字母表中的次序分出先后。

如[Co(NH3)5H2O ] Cl3三氯化五氨·水合钴( III )

④配位原子相同,配体中原子个数少的在前。

如[ Pt(Py)( NH3)(NO2)(NH2OH)] Cl 氯化硝基·氨·羟氨·吡啶合钴( II )

⑤配体中原子个数相同,则按和配位原子直接相连的配体中的其它原子的元素符号的英文

字母表次序。如NH-

2和NO-

2

,则NH-

2

在前。

二、配位化合物的价键理论

1、配位键形成:中心离子和配位原子都是通过杂化了的共价配位键结合的。

a、σ配位键:

b、π配位键:K[(CH2=CH2)PtCl3] 乙烯.三氯合铂(III)酸钾(蔡斯盐)

C2H4的π电子与Pt2+配位:

2、配合物的构型与中心的杂化方式

(1)ns np nd杂化

例1、FeF-3

6

的成键情况

1 个4s 空轨道,3 个4p空轨道和

2 个4d空轨道形成sp3d2杂化轨道,正八面体分布。

6 个F–的 6 对孤对电子配入sp3d2空轨道中,形成正八面体构型的配合单元。

例2、Ni(CO)4的成键情况

在配体CO 的作用下,Ni 的价层电子重排成3d104s0

形成sp3杂化轨道,正四面体分布,4 个CO 配体与sp3杂化轨道成配键,形成的Ni(CO)4构型为正四面体。

例1和例2 的相同点是,配体的孤对电子配入中心的外层空轨道,即ns np nd杂化轨道,形成的配合物称外轨型配合物,所成的键称为电价配键,电价配键不是很强。

例 1 和例 2 的不同点是,CO 配体使中心的价电子发生重排,这样的配体称为强配体。常见的强配体有CO、CN-、NO-

等;

2

例1 中F-不能使中心的价电子重排,称为弱配体。常见的弱配体有F-、Cl-、H2O 等。而NH3等则为中等强度配体。对于不同的中心,相同的配体其强度也是不同的。

(2)(n-1) d ns np杂化

例3、讨论Fe(CN)-3

的成键情况

6

形成d2sp3杂化,使用 2 个3d轨道,1 个4s 轨道,3个4p轨道。用的内层d轨道。形成的配离子Fe(CN)-3

6

为正八面体构型。

例4、讨论Ni (CN)-2

4

空出 1 个内层d 轨道,形成dsp2杂化轨道,呈正方形分布。故Ni (CN)-2

4

构型为正方形。

例3 和例4 中,杂化轨道均用到了( n-1 ) d内层轨道,配体的孤对电子进入内层,能量低,称为内轨配合物,较外轨配合物稳定。所成的配位键称为共价配键。

3、内轨、外轨配合物及其能量问题

外轨型配合物:中心原子用外层轨道接纳配体电子。

例如:[FeF6]3–sp3d2杂化,八面体构型,3d5

内轨型配合物:中心原子用部分内层轨道接纳配体电子。

例如:[Cr(H2O)6]3+d2sp3杂化, 八面体构型,3d3

内外轨型取决于:配位体场(主要因素)和中心原子(次要因素)

①强场配体,如CN-、CO、NO2-等,易形成内轨型;弱场配体,如X-、H2O易形成外轨型。

②中心原子d3型,如Cr3+,有空(n-1)d轨道,(n-1)d2ns np3易形成内轨型;中心原子d8~ d10型,如Fe2+、Ni2+、Zn2+、Cd2+、Cu+无空(n-1)d轨道,(ns)(np)3 (nd)2易形成外轨型。

内轨配合物稳定,说明其键能E

内大于外轨的E

,那么怎样解释有时要形成外轨配合物

呢?其能量因素如何?

从上面的例题中可以看到,形成内轨配合物时发生电子重排,使原来平行自旋的d电子进入成对状态,违反洪特规则,能量升高。成一个对,能量升高一个P(成对能)。如Fe(CN)-3

6中的d 电子,由变成,成2个电子对,能量要升

高2P。因此,有时形成内轨型络合物,能量要比形成外轨型的还高。其能量关系如图所示:

4、价键理论的实验根据

化合物中成单电子数和宏观实验现象中的磁性有关。在磁天平上可以测出物质的磁矩。和单电子数n有如下关系:

=)2

n

n B.M.

(+

式中 B.M.是的单位,称为波尔磁子。若测得= 5 B.M. , 可以推出n = 4。测出磁矩,推算出单电子数n,对于分析配位化合物的成键情况有重要意义。NH3是个中等强度的配体,在[Co(NH3)6]3+中究竟发生重排还是不发生重排,我们可以从磁矩实验进行分析,以得出结论。

实验测得=0B.M. 推出n=0,无单电子。Co3+,3d 6,若不重排,将有4个单电子:

;只有发生重排时,才有n = 0:,故NH3在此是强配体。杂化轨道是d2sp3,正八面体,内轨配合物。测得FeF-3

的= 5.88 B.M.,推出n = 5,F-不使

6

Fe3+的d 电子重排。所以磁矩是价键理论在实验上的依据。

5、价键理论的局限性

(1)可以解释[Co(CN)6]4–易被氧化[Co(CN)6]3-但无法解释[Cu(NH3)4]2+比[Cu(NH3)4]3+稳定的事实。

(2)对配合物产生高低自旋的解释过于牵强。

(3)无法解释配离子的稳定性与中心离子电子构型之间的关系。

重要原因:未考虑配体对中心离子的影响。

三、配位化合物的晶体场理论

1、晶体场理论的基本要点:

(1)在配合物中金属离子与配位体之间是纯粹的静电作用,即不形成共价键;

(2)金属离子在周围电场作用下,原来相同的五个简并d轨道发生了分裂,分裂成能级不同的几组轨道;

(3)由于d轨道的分裂,d轨道上的电子将重新排布,依旧满足能量最低原理,优先占据能量较低的轨道,往往使体系的总能量有所降低。

正八面体六配位配合物中中心原子的d 轨道

高能量的22y x d -、2

z d 统称d γ轨道;能量低的xy d 、yz d 、xz

d 统称d ε轨道,d γ和d ε能

量差为?,称为分裂能,八面体场中称为?o 。

2、晶体场的分裂能

d 轨道分裂后,最高d 轨道的能量与最低d 轨道的能量差,称为分裂能(?)。 单位:? / cm -1;? / J·mol -1;? / kJ·mol -1。1cm -1 = 12.0J·mol -1

?o :(O: octahedral )八面体场d 轨道的能级分裂能 ?o = 10 Dq ,?o 分为10等份,每份为1Dq 。

如[Cr(H 2O)6]2+?o = 166 kJ·mol -1

?t :(t: tetrahedral )四面体场d 轨道的能级分裂能 ?t = 4 / 9?o = 4.45 Dq

影响分裂能?的大小因素:

①配位体的影响:分裂能?值由弱到强的顺序是(光谱化学序列)

I -

通常把光谱化学序列中最左边的I -

、Br -

、S 2-

等称为弱场,最右边的NO -2、CN -

、CO

等称为强场。

以配位原子分类:I < Br < Cl ~ S < F < O < N < C

②中心离子电荷的影响:对于同一配体、同一金属离子,高价离子的?比低价离子的?值大。

③过渡系越大,?越大。

成对能(P):同时电子配对也是消耗能量的,因为处于同一个轨道的两个电子都带负电,存在电性排斥力,这种能量叫做成对能。

3、d–d跃迁

电子从分裂后的低能量d轨道向高能量d轨道的迁移称为d –d跃迁。由于不同的配合物晶体场分裂能不同,d–d跃迁所需要的能量也就不同,所以吸收光的波长不同,而显示出不同的颜色。组态为d1~ d9的配合物,一般有颜色,基本都是由d–d跃迁造成的。如Ti (H2O)+3

6 Ti3+3d1

Ti3+的3d1电子在分裂后的d 轨道中的排列为:

在自然光的照射下,吸收了能量相当于△O波长的部分,使电子排布变为

这种吸收在紫区和红区最少,故显紫红色。

但这种紫红色极浅,为什么?(颜色浅是由于这种跃迁受到某些限制,几率小的原因)

4、晶体场稳定化能

若d轨道不是处在全满或全空时,d电子分裂轨道后的总能量低于分裂前轨道的总能量。这个总能量的降低值,称为晶体场稳定化能。此能量越大,配合物越稳定。

在形成配合物时,当在能量较低的dε轨道中填上3个电子后,第4个电子是填在dε轨道中成对呢,还是填在dγ轨道中呢?这要看成对能(P)与分裂能(?)的相对大小。通常在强场中P?则填充在dγ轨道(单电子)。

四、配位化合物的异构现象

1、结构异构(构造异构)

键联关系不同,是结构异构的特点。以前学习的有机物异构体,多属此类。

(1)电离异构

内外界之间是完全电离的。内外界之间交换成分得到的配合物,与原来的配合物互为电离异构。它们电离出的离子种类不同,如[CoBr(NH3)5]SO4和[CoSO4(NH3)5]Br,前者可以使Ba2+沉淀,后者则使Ag+沉淀。

H2O 经常做为配体,也经常在外界。由于H2O分子在内外界不同造成的电离异构,称为水合异构。如[Cr(H2O)6]Cl3和[CrCl(H2O)5]Cl2·H2O 。

(2)配位异构

内界之间交换配体,得配位异构。如[Co(NH3)6][Cr(CN)6] 和[Cr(NH3)6] [Co(CN)6]

(3)键合异构

和–ONO–。[Co(NO2)(NH3)5]Cl2组成相同,但配位原子不同的配体,称两可配体,如–NO

2

和[ Co(ONO)(NH3)5]Cl2则互为键合异构。

2、空间异构(立体异构)

键联关系相同,但配体相互位置不同,是空间异构的特点。

(1)几何异构(顺反异构)

配位数为 4 的平面正方形结构

顺式称顺铂,是抗癌药物,反式则无药效。

正方形的配合物M2a 2b,有顺反异构,M a 3b,不会有顺反异构。正四面体结构,不会有顺反异构。

配为数为 6 的正八面体结构

总之,配体数目越多,种类越多,异构现象则越复杂。 (2)旋光异构

配体的相互位置关系不一致形成几何异构,当相互位置的关系亦一致时,也可能不重合。比如人的两只手,互为镜像,各手指、手掌、手背的相互位置关系也一致,但不能重合。互为镜像的两个几何体可能重合,但只要能重合则是一种。若两者互为镜像但又不能重合,则互为旋光异构。旋光异构体的熔点相同,但光学性质不同。

互为旋光异构体的两种物质,使偏振光偏转的方向不同。按一系列的规定,定义为左旋、右旋。不同的旋光异构体在生物体内的作用不同。

顺式M 2 a 2 b 2 c 由旋光异构体,如下图所示:

四配位的正四面体结构M a b c d

五、配位化合物的配位平衡 1、配位-解离平衡

Ag + + 2NH

3

Ag(NH 3)+2

稳K =

2

323]

][[]

)([NH Ag

NH Ag +

+

= 1.6×10 7

这个常数的值越大,表示配位反应进行得越彻底,配合物越稳定,故称之为稳K 。Ag(CN)

-

2

的稳K =1.0×1021

,故Ag(CN)-2比Ag(NH 3)+

2稳定得多。

Ag(NH 3)+

2

Ag + + 2NH 3

不稳K =

]

)([]

][[32

3++

NH Ag NH Ag

=

K 1

不稳K 越大,离解反应越彻底,配离子越不稳定。

配位单元的形成可以认为是分步进行的,如:Cu(NH 3)+

24

① Cu 2+ + NH

3 Cu(NH 3)2+K 1 = 1.41×10 4

② Cu(NH 3)2+ + NH

3

Cu(NH 3)+

22K 2 = 3.17×10 3 ③ Cu(NH 3)+

22+ NH

3 Cu(NH 3)+23K 3 = 7.76×10 2 ④ Cu(NH 3)+23+ NH

3

Cu(NH 3)+24

K 4 = 1.39×10 2 ① + ② + ③ + ④得 Cu 2+

+ 4NH

3

Cu(NH 3)+

24

稳K = K 1×K 2×K 3×K 4 = 4.82×1012

K 1、K 2、K 3、K 4称为逐级稳定常数。反应①最易进行,反应②中的 NH 3受到第一个 NH 3

的斥力,同时也有空间位阻,故难些。③、④更难些。这可从K 1>K 2>K 3>K 4看出。

n K 逐级减小,尤其是带电荷的配体。

在上述配位平衡的体系中,哪种配离子多?

设平衡时 [NH 3]=1mol ·L –1,根据各步的平衡方程式,由 ②Cu(NH 3)2+ + NH

3 Cu(NH 3)+

22

K 2 = 3.17×10 3 得

]

][)

([])([323223NH NH Cu NH Cu +

+

= K 2 = 3.17×10 3

所以

]

)

([])([23223+

+NH Cu NH Cu = 3.17×103 同理

]

)([])([223233+

+

NH Cu NH Cu = 7.76×102

]

)([])([233243+

+NH Cu NH Cu = 1.39×102

所以,[Cu(NH 3)4]2+是体系中占主导多数的离子。 2、配位平衡的移动

若以M 表示金属离子,L 表示配体,ML n 表示配位化合物,所有电荷省略不写,则配位平衡反应式简写位:

M + n

L

ML n

若向上述溶液中加入酸、碱沉淀剂、氧化还原剂或其他配体试剂,由于这些试剂与M 或L 可能发生各种反应,而导致配位平衡的移动。下面结合实例分别讨论。

(1)配合物转化平衡

若一种金属离子M 能与溶液中两种配体试剂L 和L '发生配位反应,则溶液中存在如下平衡:

ML

n

M + n L

M + m L ' ML '

m 两式相加得:

ML

n + m L '

ML 'm + n L

如向FeCl 3溶液中加入NH 4SCN 溶液,生成血红色的Fe(NCS)3配合物。若再加入NH 4F 试剂,可观察到血红色褪去,生成无色的FeF 3溶液。

Fe(NCS)3 + 3F

FeF 3 + 3SCN

由多重平衡原理求得该平衡的平衡常数为

K = 3

3/)(稳,稳,NCS Fe FeF K K = 1.1×1012/(2.0×103)= 5.5×108

可见平衡常数很大,说明正向进行趋势大,这是由不够稳定的配合物向稳定配合物的转化。若转化平衡常数很小(如小于10-8)说明正向反应不能发生,而逆向自发发生。若平衡常数介于~108与~10-8之间,则转化的方向由反应的浓度条件而定。

(2)酸度对配位平衡的影响

许多配体是弱酸根(如F -,CO -23,CO 2,CN -

24

,CN -、Y 4-…等),它们在溶液中存在有一定的pH 范围。若溶液酸度提高,它们将与H +

结合为弱酸。另有一些配体本身是弱碱(如NH 3,en …等),它们也能与溶液中H +发生中和反应。因此溶液酸度提高,将促使配合物的离解。

大多数过渡金属离子在水溶液中有明显水解作用,这实质上是金属离子生成羟基配合物的

反应。如Fe(H 2O)+36,Zn(H 2O)+

34等,

溶液酸度降低时,它们将生成羟基配合物[Fe(H 2O)5(OH)]2+,[Fe(H 2O)4(OH)2]+,… [Zn(H 2O)3(OH)] +,[Zn(H 2O)2(OH)2] …等。因此溶液酸度降低,也会促使配合物离解。

上述两种作用可表示如下:

M + OH - M (OH)

ML

n

M + n L

L + H + HL

因此配合物稳定存在有一定的pH 范围。如Fe 3+(aq)与水杨酸(HO ·C 6H 4·COOH )在不同pH 条件下能生成有色螯合物:

比色分析中用缓冲溶液控制溶液pH ,使Fe 3+

与Sal -

(水杨酸根离子的缩写)基本上只生成某一种组成的螯合物,通过比较螯合物颜色深浅来测定Fe 3+的浓度。

2、配位平衡和沉淀-溶解平衡

沉淀生成能使配位平衡发生移动,配合物生成也能使沉淀溶解平衡发生移动。如AgNO 3

溶液中滴加 NaCl 溶液,生成白色AgCl 沉淀。再加入适量NH 3水,则沉淀溶解,得到无色Ag(NH 3)+2

溶液。若往其中加入KBr 溶液,可观察到淡黄色AgBr 沉淀。再加入适量Na 2S 2O 3溶液,则沉淀又溶解,生成无色的Ag(S 2O 3)-32

溶液。若往其中再加入KI 溶液,则生成黄色AgI 沉淀。继续加入KCN 溶液,沉淀又溶解,得到无色Ag(CN)-2。最后加入Na 2S 溶液,则生成黑色Ag 2S 沉淀。这一系列变化是配位平衡与沉淀溶解平衡相互影响的典型例子。各步变化的平衡常数由多重平衡原理求得。

AgCl(s) + 2NH

3

Ag(NH 3)+2

+ Cl -K = AgCl sp NH Ag K K ,)(2

3?+

稳, = 2.8×10-3

Ag(NH 3)+2

+ Br -

AgBr ↓ + 2NH 3 K = 1/(AgBrl sp NH

Ag K K ,)(2

3?+稳,)= 1.1×105

AgBr(s) + 2S

2O -

23Ag(S 2O 3)-

32

+ Br -K = AgBr sp O S Ag K K ,)(32

32?-

稳, = 16

Ag(S 2O 3)-

32

+ I -

AgI ↓ + 2S 2O -

23K = 1/(AgI sp CN Ag K K ,)(2

?-稳,)= 4.1×102

AgI(s) +2CN - Ag(CN)-2

+ I -K = A g I sp CN Ag K K ,)(2

?-稳, = 8.5×104 2Ag(CN)-2

+ S 2-

Ag 2S ↓+ 4CN -K = 1/ (S Ag sp CN Ag K K 2

2

,2

?-)(稳,) = 1.5×107 由上述变化的平衡常数得知,Ag 2S 沉淀难溶于NaCN 试剂;其余变化的平衡常数不大,控制不同条件,反应可以沿不同方向进行。

3、配位平衡和氧化-还原平衡

配位平衡与氧化还原平衡也可以相互影响。如Fe 3+

离子能氧化I -

离子生成Fe 2+

离子和紫黑色I 2 固体。

Fe 3+ + I -→ Fe 2+ +

2

1I 2(s)

//0

2

23-

+

+

-=I

I

Fe

Fe E

??= 0.77 - 0.54 = 0.23 V > 0.20 V

故正向自发。

若上述体系中加入足量KCN 溶液,由于CN -与Fe 2+和Fe 3+都能生成稳定配合物Fe(CN)-

46

和Fe(CN)-

36,

后者的稳定性更大(-46

)(CN Fe K 稳,为1.0×1035,-36

)(CN Fe K 稳,为1.0×1042)使Fe 3+离子浓度降低更多,于是上述反应逆向进行。即

Fe(CN)-36 + I -← Fe(CN)-

46 +

2

1I 2(s)

这可用Fe 3+/ Fe 2+电对的电极电势说明。

++23/Fe Fe ?= ]

[][lg

0591.0230

/23+

++++Fe

Fe Fe Fe ?

对于Fe(CN)

-36

[Fe 3+

] =

-

?-

-

36

6

36][])([)(稳,CN Fe K CN

CN Fe

对于Fe(CN)

-

46

[Fe 2+

] =

-

?-

-

46

6

46][])([)(稳,CN Fe K CN

CN Fe

当[Fe(CN)-46] = [Fe(CN)-

36

] = [CN -] = 1 mol ·L -1(即标准态)时,代入Fe 3+/Fe + 电对的奈斯特方程式,有

++23/Fe Fe ?= 0.77 + -

46

4

6

lg

591.0)(稳,)(稳,CN Fe CN Fe K K = 0.77 + 0.0591lg

42

3510

0.1100.1??= 0.36 V

此即电对Fe(CN)-36

/ Fe(CN)-46的标准电极电势,常列入标准电极电势表中备直接查用。由于:

)(/)(46

36

--CN Fe CN Fe ?= 0.54 V

所以上述反应逆向进行。

反过来,若设计一个含有配位平衡的半电池,并使它与饱和甘汞电极(参比电极)相连接组成电池,测定这个电池电动势,然后利用奈斯特方程式可求得稳K

六、路易斯(Lewis )酸碱概念——广义酸碱理论 1、酸碱的定义

在酸碱质子理论提出的同年,路易斯(Lewis )提出了酸碱电子理论。电子理论认为,凡是可以接受电子对的物质称为酸,凡是可以给出电子对的物质称为碱。因此酸是电子对的接受体,碱是电子对的给予体。它认为酸碱反应的实质是形成配位键生成酸碱配合物的过程。

这种酸碱的定义涉及到了物质的微观结构,使酸碱理论与物质结构产生了有机的联系。 下列物质均可做电子对的接受体,是酸:

H +

Ag +

BF 3 H 3BO 3 [H 3BO 3+H 2O = B(OH)4+H +

] 而下面的物质均可做电子对的给予体,是碱: OH – NH 3 F – 2、酸碱反应

酸和碱的反应是形成配位键生成酸碱配合物的过程,如

Cu 2+ + 4NH 3→ [Cu(NH 3)4]2+ 酸碱酸碱配合物

BF 3 + F -→ BF -4

酸碱酸碱配合物

H +

+ OH -

→ H 2O

Ag + + Cl -→ AgCl

上面这些反应都可以看成是酸和碱之间的反应,其本质是路易斯酸接受了路易斯碱所给予的电子对。

除酸与碱之间的反应之外,还有一类取代反应,如

[Cu(NH 3)4]2+ + 4H +→ Cu 2+

+ 4NH +4

酸(H +)从酸碱配合物[Cu(NH 3)4]2+中取代了酸(Cu 2+

),而自身与碱(NH 3)结合形成一种新的酸碱配合物NH +4

。这种取代反应称之为酸取代反应。 而下面的取代反应可以称碱取代反应

[Cu(NH 3)4]2+

+2OH

?→

??

Cu(OH)2↓+ 4NH 3

碱(OH -)取代了酸碱配合物[Cu(NH 3)4]2+中的NH 3,形成新的酸碱配合物Cu(OH)2。 在反应 NaOH + HCl → NaCl + H 2O 和反应 BaCl 2 + Na 2SO 4→ BaSO 4 + 2NaCl 之中两种酸碱配合物中的酸碱互相交叉取代,生成两种新的酸碱配合物。这种取代反应称为双取代反应。

在酸碱电子理论中,一种物质究竟属于酸还是属于碱,还是酸碱配合物,应该在具体的反应中确定。在反应中起酸作用的是酸,起碱作用的是碱,而不能脱离环境去辨认物质的归属。 接着这一理论,几乎所有的正离子都能起酸的作用,负离子都能起碱的作用,绝大多数的物质都能归为酸、碱或酸碱配合物。而且大多数反应都可以归为酸碱之间的反应或酸碱与酸碱配合物之间的反应。可见这一理论的适应面极广泛。也正是由于这一理论包罗万象,所以显得酸碱的特征不明显,这也是酸碱电子理论的不足之处。

【典型例题】

例1、某配合物的摩尔质量为260.6 g ·mol -1,按质量百分比计,其中Cr 占20.0%,NH 3

占39.2%,Cl 占40.8%;取25.0 mL 浓度为0.052 mol ·L -1

的该配合物的水溶液用0.121 mol ·L

-1

的AgNO 3滴定,达到终点时,耗去AgNO 332.5 mL ,用NaOH 使该化合物的溶液呈强碱性,未检出NH 3的逸出。问:该配合物的结构。

分析:由Cr 、NH 3、Cl 的百分比之和为100知该物不含其他元素;由Cr 、NH 3、Cl 的百

分比,可得它们的物质的量比为Cr ︰NH 3︰Cl = 1︰6︰3。由滴定消耗的Ag +的量可算出可被Ag +沉淀的Cl -是全部所含的Cl -。由使该化合物溶液呈强碱性不能释放出氨可见NH 3被Co 3+牢牢结合住。综合以上信息,得出结论:结构为[Cr(NH 3)6]Cl 3;该配合物含有[Cr(NH 3)6]3+配离

子。

解:Cr ︰NH 3︰Cl =

52

6

.26020.0?︰

17

6

.260392.0?︰

5

.356

.260408.0? = 1︰6 ︰3

每摩尔配合物里所含的氯 =

052

.00.25121.05.32??≈3 mol

所以该配合物为[Cr(NH 3)6]Cl 3

例2、用氨水处理K 2[PtCl 4]得到二氯二氨合铂 Pt(NH 3)2Cl 2,该化合物易溶于极性溶剂,其水溶液加碱后转化为Pt(NH 3)2(OH)2,后者跟草酸根离子反应生成草酸二氨合铂Pt(NH 3)2C 2O 4,问Pt (NH 3)2Cl 2的结构。

分析:Pt(NH 3)2Cl 2是平面四边形配合物,有顺式和反式之分:

反式异构体有对称中心,无极性,顺式异构体有极性。顺式的两个氯原子(Cl -

)处于邻位,被羟基(OH -)取代后为顺式Pt(NH 3)2(OH)2,后者两个羟基处于邻位,可被双齿配体C 2O

-24

取代得到Pt(NH 3)2C 2O 4,反式则不可能发生此反应,因为C 2O -

24

的C —C 键长有限,不可能跨过中心离子与双齿配体形成配价键。

解:K 2[PtCl 4]??→?3

NH

Pt (NH 3)2Cl 2??→?-

OH Pt (NH 3)2(OH)2??→?-

24

2

O C Pt (NH 3)2C 2O 4

由水溶液证实产物Pt (NH 3)2Cl 2有极性;加之可将Pt (NH 3)2(OH)2转化为Pt (NH 3)2C 2O 4,证实Pt (NH 3)2Cl 2为顺式异构体。

例3、写出Pt (NH 3)2(OH)2Cl 2的异构体。

分析:八面体的6个顶点被3对不同的配体占据,只可能有三种模式(见下图)

(I )式a 、b 、c 三对配体均取对位,(II )式a 、b 、c 三对配体均取邻位,(III )式为“一反二顺”式。对于I 、II 式,a ,b ,c 的空间关系是无区别的,而III 式中a 与b ,c 空间有区别,

当a分别为OH-,NH3和Cl-时,便出现三种异构体。再则,II、III式分子内均有对称面,不可能出现对映异构体,而I式无对称面,存在一对对映异构体。

解:该化合物有6种异构体,结构如下:

(VI)是(I)的对映体

的杂化轨道类型,并判断中心离子Cr3+是高自旋型还是低自旋型?

例4、试给出Cr(NH3)+3

6

分析:该配离子配位数为6,其空间构型应是正八面体,中心离子杂化轨道类型可能是内轨型d2sp3或外轨型sp3d3。因Cr3+电子构型是3d3,内层有空的3d轨道,因而形成内轨型的杂化轨道。对于八面体场(C.N.=6),只有当络离子中中心离子(或原子)的d电子数为4~7时,才可能有高自旋与低自旋之分。因Cr3+只有3个d电子,故无高自旋与低自旋之分。

解:Cr3+的基态电子构型为3d3,因而3个未成对电子以自旋平行的方式填入3个3d轨道,

的杂化轨道类型是d2sp3。尚有2个空3d轨道,因而可以容纳NH3分子的电子对,故Cr(NH3)+3

6

因Cr3+只有3个d电子,故无高自旋与低自旋之分。

例5、已知[Cu(NH3)4]2+ 的

K= 4.79×10-14 若在1.0 L 6.0 mol·L-1氨水溶液中溶解0.10

不稳

mol CuSO4求溶液中各组分的浓度(假设溶解CuSO4后溶液的体积不变)。

解:①先假设全部Cu2+被结合,然后解离

?[Cu(NH3)4]2+(0.10 mol·L-1)

Cu2+(0.10 mol·L-1)?→

)4]2+ Cu2++ 4NH3

[Cu(NH

平衡关系0.10—xx 6.0-(0.1×4)+4x

不稳K =

]

)([]

][[24

323+

+

+

NH Cu NH Cu

=

x

x x -+10.0)46.5(= 4.79×10

-14

解得x = 4.90×10-18x 很小可略 ②计算各组分浓度c c (Cu

2+

)= 4.9×10

-18

mol ·L -1

c (NH 3 )= 6.0+0.10×4 = 5.6 mol ·L -1

c (SO -

24)= 0.10 mol ·L -1(原始CuSO 4浓度) c [Cu(NH 3)+24

]= 0.10-[Cu 2+ ] = 0.10 mol ·L -1

例6、在上述溶液中①加入1.0 mol ·L -1

NaOH 10 mL 有无Cu(OH)2沉淀生成?②加入0.10 mol ·L -1 Na 2S 1.0 mol 有无CuS 沉淀生成?

(已知2

)(,OH Cu sp K = 2.2×10-20CuS sp K ,= 6.3×10-36)

解:先求[Cu 2+

],然后用sp K 关系式比较 ①浓度换算(原题为1L 溶液)加入NaOH 后

NaOH 浓度 1.0 mol ·L -1×10mL = c (NaOH )·(1000+10)mL c (NaOH )=

1010

100.1?= 0.01 mol ·L -1

Cu 2+浓度换算变化很小,忽略。

离子积 [Cu 2+][OH -]2 = 4.9×10-18×(0.01)2 = 4.9×10-22

Na 2S 浓度 0.10×1.0 = (1000+1) c (S 2-)

c (S 2-

)=

1001

0.40.1?=10-4 mol ·L -1

[Cu 2+][S 2-] = 4.9×10-18×10-4 = 4.90×10-22 >sp K 故CuS 沉淀。

例7、如果溶液中同时有NH 3、S 2O -23、CN -存在,则Ag +将发生怎样的反应? (已知配离子的不稳K :NH 3 5.89×10-8 S 2O -23 7.08×10-15 CN - 2.5×10-21)

分析:不稳K 越小,稳K 越大,配合物易形成。故Ag 首先生成[Ag(CN)2]-,若有足够量Ag +时,最后能生成[Ag(NH 3)2]+。该题同时表明CN -的配位场很强。配位场顺序,由弱到强,

参见光谱化学序列

I -

<Br -

(0.76)<Cl -

(0.80)<-SCN -

<F -

(0.90)~ 尿素(0.91)<OH -

~ –O –N=0-

(亚

硝酸根)<C 2O -

24(0.98)<H 2O (1.00)<-NCS -(1.02)<EDTA -4<吡啶(1.25)~NH 3(1.25)<en (1.28)<SO -23<联吡啶(1.33)~ 1,10–邻二氮菲<–NO -2

(硝基)<CN -(1.5~3.0) 解:先生成Ag(CN)-2

Ag +

+ 2 CN -

= Ag(CN)-2

本题也可用多重平衡规则通过计算来判断

Ag(NH

3)2++2CN -

Ag(CN)-2

+2NH 3 ①Ag(CN)

-

2

Ag ++2CN -不稳1K = 2.51×10-21 ②Ag(NH

3)+

2

Ag ++2NH 3不稳2K = 5.89×10-8

②-①得: Ag(NH

3)+2

+2CN -

Ag(CN)-2

+2NH 3 K = 不稳2K /不稳1K =

21

--810

2.51105.89??= 2.34×10

13

1

Ag(CN)-

2

+2S 2O -

23

Ag(S 2O 3)-

32+2CN -

① Ag(CN)-2

Ag ++2CN -不稳1K = 2.51×10-21

② Ag(S 2O 3)-

32

Ag ++2S 2O -

23

不稳2K = 7.08×10-15 ①-②得: Ag(CN)-2 + 2S 2O -

23

Ag(S 2O 3)-

32 + 2CN -

K = 不稳1K /不稳2K =2.51×10-21 / 7.08×10-151不可进行

结论:先生成Ag(CN)-2

例8、结合平衡与酸碱反应分析AgCl 被NH 3溶解后,滴入HAc 有何现象发生?若换成[Ag(CN)2]-

中滴入Hac 又怎样?

(已知:HAc a K ,= 1.75×10-5

O H NH b K 23,?= 1.75×10-5HCN a K ,= 4.93×10-10

+

2

3)(,NH

Ag K 不稳= 5.89×10

-8

-2

)(,CN Ag K 不稳= 2.51×10

-21

解:① [Ag(NH 3)2]+ Ag ++2NH 3 不稳K = 5.89×10-8

②×2 2HAc

2H ++2Ac -2

a K = (1.75×10-5)2

无机化学 第12章 配位化学基础习题及全解答-教学提纲

第12章 配位化学基础 1 M 为中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是 (A ) (A ) Ma 2bd (平面四方)(B ) Ma 3b (C ) Ma 2bd (四面体)(D ) Ma 2b (平面三角形) 2 在下列配合物中,其中分裂能最大的是 (A ) (A ) Rh(NH 3)36+ (B )Ni(NH 3) 36+ (C ) Co(NH 3)36+ (D ) Fe(NH 3)36+ 3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为 (B ) (A ) 9 , (B ) 6 , (C )5 , (D )3 4 化合物[Co(NH 3)4Cl 2]Br 的名称是 溴化二氯?四氨合钴(III ) ; 化合物[Cr(NH 3)(CN)(en)2]SO 4的名称是 硫酸氰?氨?二乙二胺合铬(III )。 5 四硫氰·二氨合铬(Ⅲ)酸铵的化学式是 NH 4[Cr (SCN )4(NH 3)2] ; 二氯·草酸根·乙二胺合铁(Ⅲ)离子的化学式是[Fe Cl 2(C 2O 4)en]- 4 。 6. 下列物质的有什么几何异构体,画出几何图形 (1)[Co(NH 3)4Cl 2]+ (2)[Co(NO 2)3(NH 3)3] 答:(1)顺、反异构(图略),(2)经式、面式异构(图略)。 7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物(内/外轨型。 (1)[Cd (NH 3)4]2+ μm =0 ; (2)[Ni(CN)4]2- μm =0 ; (3)[Co(NH 3)6]3+ μm =0 ; (4)[FeF 6]3- μm =5.9μB ; 答:

配位化学基础

配位化学基础 配位化学就是在无机化学基础上发展起来得一门具有很强交叉性得学科,配位化学旧称络合物化学,其研究对象就是配合物得合成、结构、性质与应用。配位化学得研究范围,除最初得简单无机加与物外,已包括含有金属-碳键得有机金属配位化合物,含有金属-金属键得多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成得大环配位化合物,以及生物体内得金属酶等生物大分子配位化合物。 一、配合物得基本概念 1、配合物得定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子得一定数目得离子或分子(统称为配体)与具有接受孤对电子或多个不定域电子得空位得原子或离子(统称为中心原子),按一定得组成与空间构型所形成得化合物。结合以上规定,可以将定义简化为:由中心原子或离子与几个配体分子或离子以配位键相结合而形成得复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)得化合物称为配位化合物。 配体单元可以就是配阳离子,配阴离子与中性配分子,配位阳离子与阴离子统称配离子。配离子与与之平衡电荷得抗衡阳离子或阴离子结合形成配位化合物,而中性得配位单元即时配位化合物。但水分子做配体得水合离子也经常不瞧成配离子。 配位化合物一般分为内界与外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元得配位化合物则无外界。配合物得内界由中心与配体构成,中心又称为配位化合物得形成体,多为金属,也可以就是原子或离子,配体可以就是分子、阴离子、阳离子。 2、配位原子与配位数 配位原子:配体中给出孤对电子与中心直接形成配位键得原子 配位数:配位单元中与中心直接成键得配位原子得个数配位数一般为偶数,以4、6居多,奇数较少 配位数得多少与中心得电荷、半径及配体得电荷、半径有关: 一般来说,中心得电荷高、半径大有利于形成高配位数得配位单元,如氧化数为+1得中心易形成2配位,氧化数为+2得中心易形成4配位或6配位,氧化数为+3得易形成6配位。配体得半径大,负电荷高,易形成低配位得配位单元。 配位数得大小与温度、配体浓度等因素有关: 温度升高,由于热震动得原因,使配位数减少;配体浓度增大,利于形成高配位。

第八章化学动力学(2)

第八章 化学动力学(2)练习题 一、判断题: 1.碰撞理论成功处之一,是从微观上揭示了质量作用定律的本质。 2.确切地说:“温度升高,分子碰撞次数增大,反应速度也增大”。 3.过渡状态理论成功之处,只要知道活化络合物的结构,就可以计算出速率常数k 。 4.选择一种催化剂,可以使ΔG > 0的反应得以进行。 5.多相催化一般都在界面上进行。 6.光化学反应的初级阶段A + hv P 的速率与反应物浓度无关。 7.酸碱催化的特征是反应中有酸或碱存在。 8.催化剂在反应前后所有性质都不改变。 9.按照光化当量定律,在整个光化学反应过程中,一个光子只能活化一个分子,因 此只能使一个分子发生反应。 二、单选题: 1.微观可逆性原则不适用的反应是: (A) H 2 + I 2 = 2HI ; (B) Cl· + Cl· = Cl 2 ; (C) 蔗糖 + H 2O = C 6H 12O 6(果糖) + C 6H 12O 6(葡萄糖) ; (D) CH 3COOC 2H 5 + OH -=CH 3COO - + C 2H 5OH 。 2.双分子气相反应A + B = D ,其阈能为40 kJ·mol -1,有效碰撞分数是6 × 10-4,该反 应进行的温度是: (A) 649K ; (B) 921K ; (C) 268K ; (D) 1202K 。 3.双分子气相反应A + B = D ,其阈能为50.0 kJ·mol -1,反应在400K 时进行,该反应的 活化焓≠ ?m r H 为: (A) 46.674 kJ·mol -1 ; (B) 48.337 kJ·mol - 1 ; (C) 45.012 kJ·mol -1 ; (D) 43.349 kJ·mol -1 。 4.关于阈能,下列说法中正确的是: (A) 阈能的概念只适用于基元反应;(B) 阈能值与温度有关 ; (C) 阈能是宏观量,实验值; (D) 阈能是活化分子相对平动能的平均值 。 5.在碰撞理论中,碰撞直径d ,碰撞参数b 与反射角θ的理解,不正确的是: (A) 0 < b < d ,分子发生碰撞 ; (B) 0 < θ < π,分子发生碰撞 ; (C) 若b = 0,则θ = 0 ; (D) 若b = 0,则θ = π 。 6.由气体碰撞理论可知,分子碰撞次数: (A) 与温度无关 ; (B) 与温度成正比 ; (C) 与绝对温度成正比 ; (D) 与绝对温度的平方根成正比 。 7.有关碰撞理论的叙述中,不正确的是: (A) 能说明质量作用定律只适用于基元反应; (B) 证明活化能与温度有关; (C) 可从理论上计算速率常数与活化能; (D) 解决分子碰撞频率的计算问题。 8.有关绝对反应速率理论的叙述中,不正确的是:

配位化学基础

配位化学基础 配位化学是在无机化学基础上发展起来的一门具有很强交叉性的学科,配位化学旧称络合物化学,其研究对象是配合物的合成、结构、性质和应用。配位化学的研究范围,除最初的简单无机加和物外,已包括含有金属-碳键的有机金属配位化合物,含有金属-金属键的多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成的大环配位化合物,以及生物体内的金属酶等生物大分子配位化合物。 一、配合物的基本概念 1.配合物的定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子的一定数目的离子或分子(统称为配体)和具有接受孤对电子或多个不定域电子的空位的原子或离子(统称为中心原子),按一定的组成和空间构型所形成的化合物。结合以上规定,可以将定义简化为:由中心原子或离子和几个配体分子或离子以配位键相结合而形成的复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)的化合物称为配位化合物。 配体单元可以是配阳离子,配阴离子和中性配分子,配位阳离子和阴离子统称配离子。配离子与与之平衡电荷的抗衡阳离子或阴离子结合形成配位化合物,而中性的配位单元即时配位化合物。但水分子做配体的水合离子也经常不看成配离子。 配位化合物一般分为内界和外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元的配位化合物则无外界。配合物的内界由中心和配体构成,中心又称为配位化合物的形成体,多为金属,也可以是原子或离子,配体可以是分子、阴离子、阳离子。 2.配位原子和配位数 配位原子:配体中给出孤对电子与中心直接形成配位键的原子 配位数:配位单元中与中心直接成键的配位原子的个数配位数一般为偶数,以4、6居多,奇数较少 配位数的多少和中心的电荷、半径及配体的电荷、半径有关: 一般来说,中心的电荷高、半径大有利于形成高配位数的配位单元,如氧化数为+1的中心易形成2配位,氧化数为+2的中心易形成4配位或6配位,氧化数为+3的易形成6配位。配体的半径大,负电荷高,易形成低配位的配位单元。 配位数的大小与温度、配体浓度等因素有关: 温度升高,由于热震动的原因,使配位数减少;配体浓度增大,利于形成高配位。 配位数的大小与中心原子价电子层结构有关: 价电子层空轨道越多一般配位数较高 配位数的大小与配体位阻和刚性有关: 配体的位阻一般都会使中心原子的配位数降低,位阻越大、离中心原子越近,配位数的降低程度也就越大。配体的刚性不利于配体在空间中的取向,长回事中心原子的配位数降低。 3.配体的类型

王淑兰-物理化学(第三版)【第八章】-化学反应动力学-习题解答教学文案

王淑兰-物理化学(第三版)【第八章】-化学反应动力学-习题解 答

第八章 化学反应动力学(Chemical kinetics) 1.(基础题★)气体反应SO 2Cl 2 = SO 2 + Cl 2为一级反应。在593K 时的k = 2.20×10-5 s -1。求半衰期和反应2h 后分解的百分比。 解:1/25ln 20.693315002.2010t s k -= ==? 5100ln 2.21023600 1.58410c kt c x --==???=?- 0000 1 1.171611.1716100%14.65%1.17161c x x c x c c -===?=--, 4.某二级反应,经过500s 原始物作用了20%,问原始物作用60%时须经过多少时间? 解:根据二级反应速率方程 s t c c s t c c kt c c 3000,4.0'500,8.011000 =====-则 5.证明一级反应完成99.9%所需时间是其半衰期的10倍。 证: 0000111ln ln ln10000.001c c t k c x k c k ===-,1/2ln 2t k =, ∴1/2/ln1000/ln 29.96610t t ==≈, ∴一级反应完成99.9%所需时间为其t 1/2的10倍 7.在760℃加热分解N 2O 。当N 2O 起始压力p 0 = 38.66 kPa 时,半衰期为255s ,p 0 = 46.66 kPa 时,半衰期为212s 。求反应级数和时p 0 = 101.3 kPa 的半衰期。 解:利用公式1200lg()lg(255212)1110.9822lg()lg(46.6638.66) t t n p p '''=+=+=+≈''', ∴反应为2级反应

无机化学-第12章-配位化学基础习题及全解答-

1 / 7 第12章 配位化学基础 1 M 为中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是 (A ) (A ) Ma 2bd (平面四方)(B ) Ma 3b (C ) Ma 2bd (四面体)(D ) Ma 2b (平面三角形) 2 在下列配合物中,其中分裂能最大的是 (A ) (A ) Rh(NH 3)36+ (B )Ni(NH 3) 36+ (C ) Co(NH 3)36+ (D ) Fe(NH 3)36+ 3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为 (B ) (A ) 9 , (B ) 6 , (C )5 , (D )3 4 化合物[Co(NH 3)4Cl 2]Br 的名称是 溴化二氯?四氨合钴(III ) ; 化合物[Cr(NH 3)(CN)(en)2]SO 4的名称是 硫酸氰?氨?二乙二胺合铬(III )。 5 四硫氰·二氨合铬(Ⅲ)酸铵的化学式是 NH 4[Cr (SCN )4(NH 3)2] ; 二氯·草酸根·乙二胺合铁(Ⅲ)离子的化学式是[Fe Cl 2(C 2O 4)en]- 4 。 6. 下列物质的有什么几何异构体,画出几何图形 (1)[Co(NH 3)4Cl 2]+ (2)[Co(NO 2)3(NH 3)3] 答:(1)顺、反异构(图略),(2)经式、面式异构(图略)。 7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物(内/外轨型。 (1)[Cd (NH 3)4]2+ μm =0 ; (2)[Ni(CN)4]2- μm =0 ; (3)[Co(NH 3)6]3+ μm =0 ; (4)[FeF 6]3- μm =5.9μB ; 答: 8判断下列配离子属何类配离子 9 配合物K 3 10 计算下列金属离子在形成八面体配合物时的CFSE/Dq (1) Cr 2+ 离子,高自旋;

第八章 配型配合物

第八章 混配型配合物 当存在多种配体时,金属离子可以和多种配体形成混配型配合物 定义:两种或两种以上的配体A .B .C 与同一种中心离子M 形成的配合物称为混配型配合物。 一种金属离子与一种配体形成的配合物常称为二元配合物,而一种金属离子同时与两种或两种以上的配体所形成的配合物(即混配型配合物)称为多元配合物 MAB ――三元配合物 MABC ―――四元配合物 第一节 混配型配合物的形成条件 一. 配位饱和原理 若金属离子能分别与两种配体单独发生配位反应,当单一型配合物中金属离子未达到最高配位数时,在有其它配体存在的情况政,很容易与之进一步配合形成更稳定的配位饱和的混配型配合物。 例: N (CH 2COOH )3 + Cd 2+ = Cd(nta)- 因Cd 的配位数在此为4,但Cd 的最高配位数可为6,因此,可以进一步和其它的配位体形成混配型配合物。 Cd + nta + nL===CdntaL ] ][][[] [L nta Cd CdntaL = β 其中L 可为Cl, Br, I 等。 有关的β值见下表 表1 Cd 与nta 和X 的混配型配合物的稳定常数 由实验事实可以归纳: 1 高价的金属离子易形成稳定的混配型配合物,这是因为高态的金属离子有较高的配位数。 2 周期数高的金属离子易形成混配型配合物,第三.四周期的元素配位数大多数为6,第五.六周期的元素的可达8甚至更多,例如铌钽的配位数可达7或8。 只有一种配体时,饱和金属离子的配位数常因空间位阻.静电斥力等的作用而难以实现,特别是配体为有机配体时更是如此,因为有机配体通常为多齿配体,形成的螯环具有一定的张力。 如用大小搭配适当的两种或两种以上的配体同时饱和金属离子的配 数则比较容易实现。 一般说来,当配位数>=4时,混配型配合物的形成带有一定的普遍性。 二. 类聚效应 即物以类聚的意思。 指两种软硬度相似的配体容易共存于金属离子的内界,形成混配型配合物。

第一章 配位化学基础要点

绪论 导课:配位化学一般是指金属和金属离子同其他分子或离子相互反应的化学。它是在无机化学的基础上发展起来的一门独立的、同时也与化学各分支学科以及物理学、生物学等相互渗透的具有综合性的学科。配位化学所涉及的化合物类型及数量之多、应用之广,使之成为许多化学分支的汇合口。现代配位化学几乎渗透到化学及相关学科的各个领域,例如分析化学、有机金属化学、生物无机化学、结构化学、催化活性、物质的分离与提取、原子能工业、医药、电镀、燃料等等。因此,配位化学的学习和研究不但对发展化学基础理论有着重要的意义,同时也具有非常重要的实际意义。 一、配位化学的任务 配位化学是研究各类配合物的合成、结构、性质和应用的一门新型学科。 配合物的合成是重点,结构与性质研究是难点,研究方法是关键。应用是落脚点。二、配位化学的学科基础 配位化学的学科基础是无机化学,分析化学、有机化学、物理化学和结构化学。配位化学已成为许多化学分支的汇合口。 配位化学是许多新兴化学学科的基础。如:超分子化学,酶化学,蛋白质化学,生物无机化学,材料化学,化学生物学,药物化学,高分子化学等。 三、配位化学的研究方法 1、合成方法:要求掌握有机和无机化学的合成技术,特别是现今发展起来的水热技术、微波技术、微乳技术、超临界技术等。 2、结构研究:元素分析、紫外光谱、红外光谱、质谱、核磁共振、荧光光谱、X-衍射等。 3、性质研究:电位滴定、循环伏安、磁天平、变温磁化率、交流磁化率、电子顺磁共振、光电子能谱、E-扫描、催化性质、凝胶电泳、园二色谱、核磁共振研究与细胞及DNA 的作用。 4、应用:催化反应用于有机合成、金属酶的模拟、分子识别、金属药物、非线性光学材料、分子磁体、介孔材料、分子机器等。 四、配位化学的学习方法 1、课前预习:在上课以前,把下一次课的内容先粗略的看一次,把自己看不懂的内容做上记号,有时间再认真的看一次,如果仍看不懂,做好记录,等待课堂解决。 2、上课:根据课前预习的难度,对较难理解的部分认真听讲,理解教师的分析思路,学习思考问题和解决问题的方法。在教材上作好批注。 3、复习:对在课堂上没有弄懂的问题在课间问主讲教师,下课后对整个课堂内容复习一次并作好复习笔记。 五、课程的内容安排:

物化课后习题,第10章,化学动力学

第八章 化学动力学* ——课后习题解答 难度级别:基础★,基础2★,综合3★,综合4★,超纲5★ 关于作业:公式有必要牢记,但是平时作业时最好是自己动手推导出比较简单的公式,而不是直接翻书,找到公式,套公式,这样的解题方式不值得提倡。 1.(基础★)气体反应SO 2Cl 2 = SO 2 + Cl 2为一级反应。在593K 时的k = ×10-5 s -1 。求半衰期和反应2h 后分解的百分比。 解:1/25 ln 20.693 315002.2010 t s k -= ==?(计算有点误差31507 s ), 510 0ln 2.21023600 1.58410c kt c x --==???=?- 0000 1 1.17161 1.1716100%14.65%1.17161c x x c x c c -===?=--, 2.(基础★)镭原子蜕变成一个Rn 和一个α粒子。它的半衰期是1622年,反应是一级。问1g 无水溴化 镭RaBr 2在10年内能放出多少RnRn 的量用0℃,标准压力下的体积(cm 3 )来表示。 解:41 1/2ln 2/0.692/1622 4.27310k t a --===?, 430 0ln 4.2731010 4.27310c kt c x --==??=?-, 0 0 1.00428c c x ∴ =- 1g 无水溴化镭的物质的量为1 0.00259386 mol =,也就是溴离子物质的量 在同一个密闭的容器中 50.00259 1.00428 1.105100.00259x mol x -=?=?- 故1g 无水溴化镭在10年内能放出在0℃,标准大气压下Rn 的体积为 V = ×10-5××103 = 0.248 cm 3 【讨论】(1)元素周期表应该作为一个常用的工具备在身边,Ra 的原子量为226,溴的原子量为80;(2)单位是灵活的,可以根据具体的情况而定,目的则是为了方便计算;(3)无水溴化镭RaBr 2不是气体这样在浓度表达上有问题吗 4.(基础★★)某二级反应在a = b 时,经过500s 原始物作用了20%,问原始物作用60%时须经过多少时间 马鞍山,尹振兴,2007,

第一章 配位化学 绪论

第一章配位化学的早期历史及Werner配位理论 第一节早期研究及链式理论 一、早期研究 1、配合物的发现 最早有记录的配合物:1704年,德国Diesbach 得到的普鲁士蓝 KCN.Fe(CN)2.Fe(CN)3。 真正标志研究开始:1793年Tassaert发现CoCl3.6NH3 当时无法解释稳定的CoCl3和NH3为何要进一步结合,形成新化合物。 2、配合物性质研究 1)Cl-沉淀实验(用AgNO3) 配合物可沉淀Cl-数目现在化学式 CoCl3.6NH3 3 [Co(NH3)6]Cl3 CoCl3.5NH3 2 [Co(NH3)5Cl]Cl2 CoCl3.4NH3 1

[Co(NH3)4Cl2]Cl IrCl3.3NH3 0 [Ir(NH3)3Cl3] 2)电导率测定 配合物摩尔电导(Ω-1) 离子数目现在化学式 PtCl4.6NH3 523 5 [Pt(NH3)6]Cl4 PtCl4.5NH3 404 4 [Pt(NH3)5Cl]Cl3 PtCl4.4NH3 229 3 [Pt(NH3)4Cl2]Cl2 PtCl4.3NH3 97 2 [Pt(NH3)3Cl3]Cl PtCl4.2NH3 0 0 [Pt(NH3)2Cl4] 二.链式理论(Chain theory) 为解释这些实验结果,1869年瑞典Lund大学Blomstrand教授及其学生Jorgensen(后任丹麦Copenhagen大学教授)提出链式理论。

当时认为元素只有一种类型的价——氧化态,N为5价,Co为3价,Cl为1价。 NH3—Cl CoCl3.6NH3 Co—NH3—NH3—NH3—NH3—Cl NH3—Cl Cl CoCl3.5NH3 Co—NH3—NH3—NH3—NH3—Cl NH3—Cl Cl CoCl3.4NH3 Co—NH3—NH3—NH3—NH3—Cl Cl Cl

配位化学讲义 第八章 配合物的制备

配位化学讲义第八章配合物的制备

第八章配合物的制备 第一节利用配体取代反应合成配合物 1、水溶液中的取代反应 1)用金属盐水溶液直 接与配体反应 [Cu(H2O)4]SO4+ 4NH3 [Cu(NH3)4]SO4 向反应混合物中加入乙醇,就可得到深蓝 色的结晶。

不适合与Fe3+、Al3+、Ti4+ 2) 煮沸 K3[RhCl6] +3K2C2O4 K3[Rh(C2O4)3] + 6KCl 2、非水溶剂中的取代反应 使用非水溶剂的原因: A、防止水解(如 Fe3+、Al3+、Ti4+); B、使不溶于水的配

体可溶解; C、配体的配位能力 不及水。 1)[Cr(en)3]Cl3的合成 在水中反应时 CrCl3.6H2O + en Cr(OH)3↓ 可在乙醚中,按如 下方法合成: en KI AgCl 无水Cr2(SO4)3溶液 [Cr(en)3]I3 [Cr(en)3]Cl3 2)[Ni(phen)3]Cl2(phen为邻菲咯啉)

NiCl2·6H2O + phen [Ni(phen)3]Cl2 3)[Ni(EtOH)6](ClO4)2的合成 NaClO4 无水NiCl2 + EtOH [Ni(EtOH)6]Cl2 [Ni(EtOH)6](ClO4)2 在水溶液中: [Ni(EtOH)6]2++ H2O [Ni(H2O)6]2+ + EtOH 3、固体配合物热分解(固态 取代反应) 1)[Cu(H2O)4]SO4.H2O =

[CuSO4]+5H2O (加热) 2)2[Co(H 2O)6]Cl2 = Co[CoCl4] +12H2O (加热) 变色硅胶的原理(粉红、蓝色) 第二节利用氧化还原反应合成配合物 1、金属的氧化 最好的氧化剂是O2或H2O2,不会引入杂质。

无机化学 第12章 配位化学基础习题及全解答

无机化学第12章配位化学基础习 题及全解答 第12章配位化学基础1 M为中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是Ma2bd Ma3b Ma2bd Ma2b 2 在下列配合物中,其中分裂能最大的是Rh(NH3)6 Ni(NH3) 6 Co(NH3)6 Fe(NH3)6 3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为9 , 6 , 5 , 3 4 化合物[Co(NH3)4Cl2]Br 的名称是溴化二氯?四氨合钴;化合物[Cr(NH3)(CN)(en)2]SO4的名称是硫酸氰?氨?二乙二胺合铬。 5 四硫氰·二氨合铬酸铵的化学式是NH4[Cr42] ;二氯·草酸根·乙二胺合铁离子的化学式是[Fe Cl2en] 4 。 6. 下列物质的有什么几何异构体,画出几何图形[Co(NH3)4Cl2]

[Co(NO2)3(NH3)3] 答:顺、反异构,经式、面式异构。7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物[Cd (NH3)4]μm=0 ;[Ni(CN)4] μm=0 ;[Co(NH3)6] μm=0 ;[FeF6] μm=μB ;答:序配离子[Cd(NH3)4] [Ni(CN)4] [Co(NH3)6] [FeF6] 3-3+22+3+3-2+ 2-+ 3?3?3?3?-d电子数磁矩/μm 10 8 6 5 0 0 0 杂化方式SP dSP dSP SPd 322323几何构型正四面体平面正方形内/外轨外轨型内轨型内轨型外轨型正八面体正八面体8判断下列配离子属何类配离子序号9 配合物K3[Fe(CN)5(CO)]中配离子的电荷应为-3 —,配离子的空间构型为八面体,配位原子为C,中心离子的配位数为 6 ,d 电子在t2g 和eg轨道上的排布方式为t2g eg —60配离子[Fe(en)3] [Mn(CN)6] [Co(NO2)6] 4-4-2+△o与P关系△o<P

配位化学基础57659

第9章配位化学基础 9.1 配位化合物的基本特征 9.1.1 配位化合物及其命名 配位化学是研究中心原子或离子(通常是金属)与其周围的作为配位体的其它离子或分子构成的较复杂的化合物及其性质的学科,它是化学的一个分支。它所研究的对象称为配位化合物,简称配合物。早期称为络合物,原词complex compounds是复杂化合物的意思。 配合物及配离子一般表示为: 配合物: [M(L)l],[M(L)l]X n,或K n[M(L)l] 配离子: [M(L)l]m+,[M(L)l]m- 其中M为中心原子,通常是金属元素。它可为带电荷的离子,也可为中性原子(一般应标注其氧化值)。它们具有空的价轨道,是配合物的形成体。L是配位体,可为离子(通常是负离子)或中性分子,配位体中的配位原子具有孤对电子对,可提供给M的空价轨道,形成配价键。l表示配位体的个数或配位数。[]若带m个电荷者为配离子,它与n个异电荷离子X或K形成中性化合物为配合物;若m=0,即不带电荷者为配合物。如化学组成为CoCl3·6NH3的配合物表示为: 中心离子为Co(Ⅲ),它的价电子构型为3d6 4s0 4p0,具有未充满的空的价轨道,是配离子形成体。NH3是配位体简称配体,其中氮能向中心离子的空轨道提供孤对电子,形成配价键L:→M,钴-氮共享电子对,直接较紧密地结合,这种结合称为配位。钴离子周围的六个氨分子皆通过配位原子氮向它配位,形成六个配价键,构成具有一定组成和一定空间构型的配离子。该配离子带有三个正电荷。Co(Ⅲ)的配位数为6。 Cl-在外围以静电引力与配离子结合成电中性的配合物,称为氯化六氨合钴(Ⅲ)。由于配体与金属离子结合得相当牢固而呈现新的物理、化学性质,因此用方括号将其限定起来,常称为配合物的内界。带异电荷的离子称为外界。由于内界与外界靠静电结合,因此在极性溶剂中容易解离。 1文档来源为:从网络收集整理.word版本可编辑.

江西理工大学配位化学第一章作业

1.写出下列配合物或配离子的化学式 ⑴六氟合铝酸钠(III) ⑵二氯化一氰?四氨?水合钴(III) ⑶二氯化异硫氰酸跟?五氨合钴(III) ⑷五氨?亚硝酸根合钴 (III) 离子 ⑸二(乙酰丙酮根)合铜(III) ⑹二氰化 (u氯)?二 (氨基合铂 (II)) 答:⑴ Na3[AlF6] ⑵ [Co(CN)(NH3)4(H2O)] ⑶ [Co(NCS)(NH3)5]Cl2 ⑷ [Co(NH3)5NO2]2+ ⑸[Cu(acac)2] ⑹[Pt2(NH2)2Cl2](CN)2 2.指出下列配体中的配位原子,并说明它是单齿还是多吃配体?(1)CH3-C=NO*H (2)CH2-N*HCH2CH2-N*H2 CH3-C=NO*H CH2-N*HCH2CH2-N*H2 (3) CH2COO*- -*00CH2C-*NHCH2N* CH2COO*- (4)ONO- (5)SCN-(6)RNC- (7)*NH(CH2COO*-)2 答:(1) 配位原子为O,多齿配体; (2)配位原子为N,多齿配体; (3)配位原子为O和N,多齿配体;(4)配位原子为O,单齿配体; (5)配位原子为S,单齿配体; (6)配位原子为N,单齿配体; (7)配位原子为N和O,多齿配体;

3.命名下列配合物或配离子 (1) K[Au(OH)4] (2)[Ce(en)3]Cl3 (3) [Co(H2O)4Cl2]Cl (4) [Cr(NH3)2(H2O)2(Py)2]Cl3 (5)[Co(NCS)(NH3)5]2+ (6) [Fe(CN)5(CO)]3- (7) Cl Cl Cl Al Al Cl Cl Cl (8) NH [(H3N)4Co Cr(NH3)2Cl2]Cl2 ONO 答:(1)四羟基合金(Ⅲ)酸钾 (2)三氯化三(乙二胺)合铈(Ⅲ) (3)氯化二氯?四水合钴(Ⅲ) (4)三氯化二氨?二水?二吡啶合铬(Ⅲ) (5)异硫氰根?五氨合钴(Ⅲ)离子 (6)五氰?羰基合铁(Ⅲ)离子 (7)二μ—氯双(二氯合铝(Ⅲ)) (8)二氯化μ—亚氨基—μ—亚硝酸根—二氯二氨合铬(Ⅲ)—四氨合钴(Ⅱ) 答:(1)一氯.硝基.二氨合铂(Ⅱ) 平面四边形 (2)二氯.二羟基.二氨.合铂(Ⅳ) 三角双锥

无机化学:第八章配位化合物讲解

第八章配位化合物 一、配合物的基本概念 1、配位化合物的定义及其组成 ?定义:把由一定数目的阴离子或中性分子与阳离子或原子以配位键形成的复杂分子或离子称配合单元。含有配合单元(配位键) 简单化合物反应生成的复杂化合物。 配合单元相对稳定,存在于晶体及溶液中,在溶液中不能完全离解为简单组成的部分。 ?配位键——由配体单方面提供电子对给中心原子(离子)而形成的共价键。 ? 组成中心离子的元素种类: ◆能充当中心离子的元素几乎遍及元素周期表的各个区域,但常见的是金属离子,尤其 是一些过渡金属离子,如[Co(NH3)6]3+、[Fe(CN)6]4—、[HgI4]2—。 ◆高氧化态非金属元素原子:如B、Si、P等形成[ BF4]—、[SiF6]2—、PF6—。 ◆金属元素电中性原子:如[ Ni(CO)4]、[ Fe(CO)5]、[Cr(CO)6] ?配合物的组成:配合物由内界和外界组成。内界为配合物的特征部分(即配位个体),是一个在溶液中相当稳定的整体,在配合物的化学式中以方括号表明。方括号以外的离子构成配合物的外界。内外界之间以离子键结合,故在水溶液中易解离出外界离子,而内界即配合单元很难发生离解。 如[Cu (NH3)4] SO4 ↓↓↓ 中心原子,配位体,外界 ?在配合物中同中心原子/离子配位的分子如NH3、H2O或阴离子如Cl—、CN—、SCN—称 配体属于Lewis碱,都含有孤对电子,是电子对的给予体。中 ?配位体中与中心离子(或原子)直接成键的离子称为配位原子。配位体所提供的孤对电子即是配位原子所具有的孤对电子。常见的配位原子有:F、Cl、Br、

?配位体分类——单齿配体和多齿配体 单齿配体:一个配位体只提供1个孤对电子与1个中心离子结合形成1个配位键。如NH3、—OH(羟基)、H2O:、:X—等。 多齿配体:一个配位体中含有2个或更多个配位原子,与一个中心离子形成2个或2 个以上的配位键。例如:乙二胺(en)NH2–CH2–CH2–NH2、草酸根C2O42—是 双齿配体。乙二胺四乙酸根EDTA(Y4—) 是六齿配体,其结构式如下: 螯合物:多齿配体与中心离子形成的具有闭合环状结构的配合物。螯合物具有很高的稳定性,此外,螯合物还具有特征颜色、难溶于水而易溶于有机溶剂等特点,因而被广泛用于沉淀分离、溶剂萃取、比色测定、容量分析等分离、分析工作。 ?配位数——配合物分子中直接与同一中心离子(原子)成键的配位原子数目称为中心离子(原子)的配位数(用表示)。可为1~14,常见6。本质上,配位数就是中心原子与配体形成配位键的数目。 =i? ∑ 配位数配位体的数目齿数 如[Ag(NH3)2]+ C.N.=2;[Cu(NH3)4]2+ C.N.=4;[Pt(en)2]2+ C.N.=4 单齿配体形成的配合物:中心离子的配位数=配体的数目 多齿配体形成的配合物:中心离子的配位数≠配体的数目, 配位原子数=配位数 配位数金属离子实例 2 Ag+、Cu+、Au+[Ag(NH3)2]+、[Cu(CN)2]— 4 Cu2+、Zn2+、Cd2+、Hg2+、 Al3+、Sn2+、Pb2+、Co2+、 Ni2+、Pt4+、Fe3+、Fe2+ [HgI4]2—、[Zn (CN)4] 2—、 [Pt(NH3)2Cl2] 6 Cr3+、Al3+、Pt4+、Fe3+、Fe2+、 Co2+、Ni2+、Pt4+ [PtCl] 2—、[Co(NH3) 3(H2O)]、 [Fe(CN)6] 3—、[Ni(NH3) 6] 2+、 [CrCl2(NH3) 4] + ☆☆配位数(C.N)的影响因素: ①电荷数→∞,C.N→∞。如: Ag(NH3)2+ C.N=2 PtCl42- C.N= 4 Cu(NH3)42+ C.N=4 PtCl62- C.N= 6 ②半径r→∞,C.N→∞。如: 中心离子 C.Nmax [BF4]—第二周期 4 [AlF6]3—第三、四周期 6 [La(H2O)]83+第五、六周期10 ③外层电子构型: d 0 C.N= 6 [AlF6]3- d 1 C.N= 6 [Ti(H2O)6]3+

物化课后习题第10章化学动力学

第八章 化学动力学( ——课后习题解答 难度级别:基础★,基础2★,综合3★,综合4★,超纲5★ 关于作业:公式有必要牢记,但是平时作业时最好是自己动手推导出比较简单的公式,而不是直接翻书,找到公式,套公式,这样的解题方式不值得提倡。 1.(基础★)气体反应SO 2Cl 2 = SO 2 + Cl 2为一级反应。在593K 时的k = 2.20×10-5 s -1。求半衰期和反应2h 后分解的百分比。 解:1/25 ln 20.693 315002.2010 t s k -= ==?(计算有点误差31507 s ), 510 0ln 2.21023600 1.58410c kt c x --==???=?- 0000 1 1.17161 1.1716100%14.65%1.17161c x x c x c c -===?=--, 2.(基础★)镭原子蜕变成一个Rn 和一个α粒子。它的半衰期是1622年,反应是一级。问1g 无水溴化镭RaBr 2在10年内能放出多少Rn ?Rn 的量用0℃,标准压力下的体积(cm 3)来表示。 解:41 1/2ln 2/0.692/1622 4.27310k t a --===?, 430 0ln 4.2731010 4.27310c kt c x --==??=?-, 0 0 1.00428c c x ∴ =- 1g 无水溴化镭的物质的量为1 0.00259386 mol =,也就是溴离子物质的量 在同一个密闭的容器中 50.00259 1.00428 1.105100.00259x mol x -=?=?- 故1g 无水溴化镭在10年内能放出在0℃,标准大气压下Rn 的体积为 V = 1.105×10- 5×22.4×103 = 0.248 cm 3 【讨论】(1)元素周期表应该作为一个常用的工具备在身边,Ra 的原子量为226,溴的原子量为80;(2)单位是灵活的,可以根据具体的情况而定,目的则是为了方便计算;(3)无水溴化镭RaBr 2不是气体?这样在浓度表达上有问题吗? 4.(基础★★)某二级反应在a = b 时,经过500s 原始物作用了20%,问原始物作用60%时须经过多少时间? *马鞍山,尹振兴,2007,zhenxingyin@https://www.doczj.com/doc/455907194.html,

2018安徽安徽高中化学竞赛无机化学第十三章 配位化学基础

第十三章配位化学基础 13. 1. 01 配位化合物的定义: 由于配位化合物涉及的化学领域非常广泛,所以要严格定义配位化合物很困难。目前被化学界基本认可的方法是首先定义配位单元,而后在配位单元的基础上,进一步定义配位化合物。 由中心原子或离子和几个配体分子或离子以配位键相结合而形成的复杂分子或离子,称为配位单元。[ Co(NH3)6 ]3+,[ Cr(CN)6 ]3-和[ Ni(CO)4 ] 都是配位单元。分别称作配阳离子、配阴离子和配分子。 含有配位单元的化合物称为配位化合物,也叫络合物。例如 [ Co(NH3)6 ]Cl3,K3 [ Cr(CN)6 ],[ Ni(CO)4 ] 都是配位化合物。 [ Co(NH3)6 ] [ Cr(CN)6 ] 也是配位化合物。判断配位化合物的关键在于物质中是否含有配位单元。 13. 1. 02 配位化合物的內界和外界: 在配位化合物中,配位单元称为内界,外界是简单离子。例如 [ Co(NH3)6 ]Cl3中,[ Co(NH3)6 ]3+是内界,Cl-是外界。又如 K3 [ Cr(CN)6 ] 中,[ Cr(CN)6 ]3-是内界,K+是外界。 配位化合物中可以无外界,如[ Ni(CO)4 ] 中就没有外界, [ Co(NH3)6 ] [ Cr(CN)6 ] 中也没有外界。但配位化合物不能没有内界。 在溶液中,内外界之间是完全解离的,例如在水溶液中 [ Co(NH3)6 ]Cl3==== [ Co(NH3)6 ]3++ 3 Cl- 13. 1. 03 配位化合物的中心和配体: 内界配位单元由中心和配体构成。例如在配位单元[ Co(NH3)6 ]3+ 中,Co3+为中心,NH3为配体。中心又称为配位化合物的形成体。中心多为金属离子,尤其是过渡金属离子;而配体经常是阴离子或分子。 13. 1. 04 配位原子和配位数: 配体中给出孤电子对与中心直接形成配位键的原子,叫配位原子。配位单元中,中心周围的配位原子的个数,叫配位数。 配位单元[ Co(NH3)6 ]3 + 的中心Co3+的周围有6个配体NH3,每个NH3中有一个N 原子与Co3+直接配位。N 是配位原子,Co 的配位数是6。

普通化学 第八章课后答案

第八章配合物 配合物思考题与答案 1.设计一些实验,证明粗盐酸的黄色是Fe3+与Cl-的络离子而不是铁的水合离子或者羟合离子的颜色。(略) 2.配位化学创始人维尔纳发现,将等物质的量的黄色CoCl3.6NH3﹑紫红色CoCl3.5NH3﹑绿色CoCl3.4NH3和紫色CoCl3.4NH3四种配合物溶于水,加入硝酸银,立即沉淀的氯化银分别为3 ﹑2 ﹑1 ﹑1mol,请根据实验事实推断它们所含的配离子的组成。答:配离子分别是[Co(NH3)6]3+, [Co(NH3)5Cl]2+ , [Co(NH3)4Cl2] +, [Co(NH3)4Cl2] +,颜色不同的原因是有同分异构体。 3.实验测得Fe(CN)64-和Co(NH3) 63+均为反磁性物质(磁矩等于零),问它们的杂化轨道类型。 答:中心二价Fe2+亚铁离子外层价电子排布是3d6,有4个未成对电子,测得Fe(CN)64-为抗磁性物质,说明中心的铁离子的外层价电子排布发生变化,进行了重排,使得内层3d轨道上没有未成对电子,所以应采取的是d2sp3杂化方式。三价Co离子外层价电子排布也是3d6,也有4个未成对电子,测得Co(NH3) 63+为反磁性物质,原理同上,也是d2sp3杂化方式。 4.实验证实,Fe(H2O)63+和Fe(CN) 63-的磁矩差别极大,如何用价键理论来理解?答:Fe(H2O)63+的中心离子铁是采用sp3d2杂化方式,外轨型配合物,高自旋,有5个成单电子,磁矩高;而Fe(CN) 63-采用的是d2sp3杂化方式,内轨型配合物,低自旋,只有1个成单电子,所以磁矩低。 5.上题的事实用晶体场理论又作如何理解? 略 6.用晶体场理论定性地说明二价和三价铁的水合离子的颜色不同的原因。 略 7.FeF63-为 6 配位,而FeCl4-为四配位,应如何解释? 1

第八章化学动力学基础

第八章 化学动力学基础 (一)主要公式及其适用条件 1、化学反应速率的定义 t v c t V v n t V d d d d d d B B B B def ==ξυ= 式中:d ξ / d t 为反应进度随时间的变化率;V 为反应系统的体积;v B 参加化学反应的物质B 的计量系数,对产物取正值,对反应物则取负值;c B 为参加反应B 的物质的量浓度。此式适用于恒容反应,反应无中间产物或d c (中间产物)/d t ≈0的反应。 2、反应速率与反应物消耗的速率及产物生成速率之间的关系 反应:M L B A 0M L B A v v v v +++= t v c t v c t v c t v c d d d d d d d d L L M M B B A A ==-=-= υ 用参加反应的不同物质表示反应速率时,其速率常数k 之间的关系: L L M M B B A A //)/()/(v k v k v k v k ==-=- 上式二式适用于恒温、恒容反应,且反应中间产物或d c (中间产物)/d t ≈0。 3、速率方程的一般形式 β αB A A A d /d c c k t c =- 式中:α和β分别称为反应物A 的分级数和反应物B 的分级数;α+β=n 称为反应的总级数。α和β可分别为整数、分数或者是零,既可以是正值也可以是负值。k A 称为用反应物A 表示反应速率时的速率常数,其物理意义为当c A =c B =1mol ·dm -3时的反应速率。 4、零级反应 速率方程式:-d c A / d t = k 速率方程的积分式:c A,0 -c A = kt 式中:c A,0为反应前反应物A 的初始浓度;c A 为反应进行t 时刻时的反应物A 的浓度。 零级反应的半衰期:t 1/2 = c A,0/2k 5、一级反应 速率方程式:-d/c A / d t = k A c A 速率方程的的积分式:)1/(1ln )/ln(A A 0A x c c t k -== 式中:x A 为反应A 初始浓度c 0经过时间t 的转化率。此式适用于恒温、恒容一级反应。 一级反应的半衰期:t 1/2 = ln2/k 6、二级反应 速率方程式:-d c A / d t = k A 2 A c 速率方程的积分式:A,0A A /1/1c c t k -= 若速率方程为-d c A / d t = k A c A c B ,在任何时刻c A /c B 皆为定值,速率方程的积分式为 A,0A /1/1c c kt -=

配位化学教材全文最新版

第1章配位化学导论 配位化学(coordination chemistry)是无机化学的一个重要分支学科。配位化合物(coordination compounds)(有时称络合物complex)是无机化学研究的主要对象之一。配位化学的研究虽有近二百年的历史,但仅在近几十年来,由于现代分离技术、配位催化及化学模拟生物固氮等方面的应用,极大地推动了配位化学的发展。它已广泛渗透到有机化学、分析化学、物理化学、高分子化学、催化化学、生物化学等领域,而且与材料科学、生命科学以及医学等其他科学的关系越来越密切。目前,配位化合物广泛应用于工业、农业、医药、国防和航天等领域。 1.1 配位化学发展简史 历史上记载的第一个配合物是普鲁士蓝。它是1704年由柏林的普鲁士人迪斯巴赫(Diesbach)制得,它是一种无机颜料,其化学组成为Fe4[Fe(CN)6]3·nH2O。但是对配位化学的了解和研究的开始一般认为是1798年法国化学家塔萨厄尔(B.M.Tassaert)报道的化合物CoCl3·6NH3,他随后又发现了CoCl3·5NH3、CoCl3·5NH3·H2O、CoCl3·4NH3以及其他铬、铁、钴、镍、铂等元素的其他许多配合物,这些化合物的形成,在当时难于理解。因为根据经典的化合价理论,两个独立存在而且都稳定的分子化合物CoCl3和NH3为什么可以按一定的比例相互结合生成更为稳定的―复杂化合物‖无法解释,于是科学家们先后提出多种理论,例如,布隆斯特兰德(W.Blomstrand)在1869年、约尔更生(S.M.J?rgensen)在1885年分别对―复杂化合物‖的结构提出了不同的假设(如―链式理论‖等),但由于这些假设均不能圆满地说明实验事实而失败。 1893年,年仅27岁的瑞士科学家维尔纳(A.Werner)发表了一篇研究分子加合物的论文―关于无机化合物的结构问题‖,改变了此前人们一直从平面角度认识配合物结构的思路,首次从立体角度系统地分析了配合物的结构,提出了配位学说,常称Werner配位理论,其基本要点如下: (1) 大多数元素表现有两种形式的价,即主价和副价; (2) 每一元素倾向于既要满足它的主价又要满足它的副价; (3) 副价具有方向性,指向空间的确定位置。 Werner认为直接与金属连接的配体处于配合物的内界,结合牢固,不易离解;不作为配体的离子或分子远离金属离子,与金属结合弱,处于配合物的外界。在上述钴氨盐配合物中,每个中心原子(金属离子)配位的分子和离子数的和总是6,这个6即为中心原子的副价,而原来CoCl3中每个钴与3个氯离子形成稳定的化合物,其中的3即为钴的主价。可见Werner提出的主价就是形成复杂化合物之前简单化合物中原子的价态,相当于现在的氧化态;而副价则是形成配合物时与中心原子有配位作用的分子和离子的数目,即现在的配位数。 Werner的配位理论有两个重要贡献:一是提出副价的概念,补充了当时不完善的化合价理论。二是提出空间概念,创造性地把有机化学中立体学说理论扩展到无机化学领域的配合物中,认为配合物不是简单的平面结构,而是有确定的空间(立体)几何构型,从而奠定了配合物的立体化学基础。这些概念成为现代配位化学发展的基础,但是配位理论中的主价和副价的概念后来被抛弃,而另外提出了配位数的概念。 由于Werner理论成功地解释了配位化合物的结构,他于1913年获得诺贝尔化学奖,29岁时就任Zurich大学教授。Werner一生曾发表200多篇论文,合成了一系列相关配位化合

相关主题
文本预览
相关文档 最新文档