当前位置:文档之家› 第八章 新型数字调制

第八章 新型数字调制

第八章新型数字调制技术

正交振幅调制QAM

最小频移键控MSK

正交频分复用OFDM

扩频通信

8.1 正交振幅调制QAM

问题:单独MASK 或MPSK 频带利用率高,但抗噪性能差 方法:信号的振幅和相位独立地同时受到调制

在每个码元周期内

式中,k = 整数;A k 和θk 分别可以取多个离散值。

令X k = A k cos θk ,Y k = -A k sin θk

可见s k (t ) 是两个正交的振幅键控信号之和(星座调制)

若θk 值取45°和-45°,A k 值取+A 和-A ,则

APK 信号→QPSK 信号=4QAM 信号

)

cos()(0k k k t A t s θω+=T

k t kT )1(+≤

A t A t s k k k k k 00sin sin cos cos )(ωθωθ?=t

Y t X t s k k k 00sin cos )(ωω+=

正交振幅调制QAM (续)

用两个独立的基带波形对两个相互正交的同频载波进行DSB调制,利用这种已调信号在同一带宽内频谱正交的性质来实现两路并行的数字信息传输。

正交振幅调制

正交振幅调制

正交振幅调制

正交振幅调制

正交振幅调制QAM(续)

例:V.32标准(二线全双工9600bps MODEM)

16QAM

回波抵消法实现二线全双工

码元速率2400B

信息速率9600bps

带宽2400Hz

8.2 最小频移键控MSK

原因

FSK信号在码元变换时存在相位跳变,造成信号功率谱扩展,旁瓣加大。

对相邻频道的信号产生干扰;

经过有限信道后造成包络起伏。

目标——信号功率谱集中在主瓣内

方法——相位连续

MSK——FSK的改进型

最小频移键控

最小频移键控

最小频移键控

最小频移键控MSK

最小频移键控

最小频移键控

高斯最小频移键控GMSK

MSK

h=0.5的2FSK,基带信号为矩形波形,占用带宽小 旁瓣收敛不够快,存在带外功率辐射

GMSK

目的:压缩MSK信号的功率谱,抑制MSK信号的带

外功率辐射

方法:在MSK调制前加入预调制滤波器,对矩形波

形进行滤波,得到一种新型的基带波形

应用:在GSM制的蜂窝网中采用BT= 0.3的GMSK

调制,以得到更大的用户容量。

8.3正交频分复用OFDM

思路:用多载波将信道分为多个子信道,基带码元分散在各个子信道进行调制。

目的:降低每个子信道码速率,从而降低带宽,减少串扰,提高抗多径衰落能力。

特点:

各路子载波的已调信号频谱有重叠,提高频率利用率

各路已调信号严格正交,以便接收端完全分离各路信号 每路子载波的调制是多进制调制

每路子载波的调制制度可以不同,并自适应改变。

应用:

非对称数字用户环路(ADSL)、高清晰度电视(HDTV) 、数字视频广播(DVB)、无线局域网(WLAN)

无线广域网(WWAN),下一代蜂窝网中。

正交频分复用OFDM (续)

f

t

t

B

B

T s

NT s

单载波调制

多载波调制

f

|C (f )|

|C (f )|

f

f

c (t )

t

图8-12 13 多载波调制原理

模拟与数字通信的简单比较Ⅰ

模拟通信就是在用户线上传输模拟信号的通信方式。 数字通信 是一种离散的、脉冲有无的组合形式,是负载数字信息的信号。最常见的数字信号是幅度取值只有两种(用0和1代表)的波形,称为“二进制信号”。“数字通信”是指用数字信号作为载体来传输信息,或者用数字信号对载波进行数字调制后再传输的通信方式。 随着超大规模集成电路工艺的成熟以及计算机和数字信号处理 技术的充分发展,数字通信发展迅速,大多数的模拟通信系统已被数字通信系统所取代。尽管在未来的一段时间内数字通信系统还不能完全取代模拟通信系统那个,但通信朝着数字化方向发展是不会改变的,这是由数字通信和模拟通信自身的特点所决定的。 两者的对比 数字通信与模拟通信相比,具有明显的优点: 首先是抗干扰、抗噪声能力强。模拟信号在传输过程中和叠加的噪声很难分离,噪声会随着信号被传输、放大、严重影响通信质量。比如说1用高电平来表示,0用低电平来表示。 一个模拟信号如果信号衰减20%的话,那就严重失真了。而一个高电平的信号衰减20%时,它还是代表1。因为数字通信是采用再生中继方式,能够消除噪音,再生的数字信号和原来的数字信号一样,

可继续传输下去,这样通信质量便不受距离的影响,可高质量地进行远距离通信。再有数字通信中的信息是包含在脉冲的有无之中的,只要噪声绝对值不超过某一门限值,接收端便可判别脉冲的有无,以保证通信的可靠性。其次,数字信号易于加密,信息传输比较安全。数字信号的特殊形式,使得信息加密变得十分容易。例如把信息比特率按一定的长度分组,用相同长度的一个比特率(称为密钥)与这些分组进行模二加,便完成了信息的加密。在接收端,用相同的密钥与接收到的序列模二加,就恢复为原来的信息序列。数字移动通信GSM 系统就是采用这方法对信息加密的。模拟信号虽然也可以加密,但操作起来要复杂得多。此外,数字通信设备的产品重复性好,有利于生产以及通信的发展和普及。 即使这样,与数字通信系统相比,模拟通信系统也有自己比较好的一面,设计较简单,电路的功率消耗一般比较低。 因此数字通信与模拟通信的区别具体说就是调制方式不同而已。模拟通信,技术很成熟,就是将模拟信号与载波进行调制,使其带有一定载波特性,又不失模拟信号的独特性,接受端通过低通滤波器,还原初始模拟信号。而数字信号,首先进行采样,对于采样幅值进行编码(0,1编码),然后进行调制,相移键控等,接受端还原即可,信号传输率高。相对而言,数字通信优于模拟通信。 从宏观看,世界通信方式,仍以电话为主,在电话通信中,则以程控交换和移动电话发展最快。目前模拟通信系统还在使用,但由于

数字信号调制与解调技术论文---副本

数字信号调制与解调技术 张海超(天津712) 摘要 调制技术是把基带信号变换成传输信号的技术。它将模拟信号抽样量化后,以二进制数字信号“1”或“0”对光载波进行通断调制,并进行脉冲编码(PCM)。数字调制的优点是抗干扰能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输。它的缺点是需要较宽的频带,设备也复杂。 调制技术又分为模拟调制技术与数字调制技术,其主要区别是:模拟调制是对载波信号的某些参量进行连续调制,在接收端对载波信号的调制参量连续估值,而数字调制是用载波信号的某些离散状态来表征所传送信息,在接收端只对载波信号的离散调制参量进行检测。与模拟调制系统中的调幅、调频和调相相对应,数字调制系统中也有幅度键控(ASK)、移频键控(FSK)和移相键控(PSK)三种方式,其中移相键控调制方式具有抗噪声能力强、占用频带窄的特点,在数字化设备中应用广泛,具体的数字调制方式有2FSK、2ASK、2PSK、QPSK、QAM、GSMK、MSK等。 数字调制的优点是抗干扰能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输。在现在文明高速发展的今天,人们越来越离不开数字信息,数字通信也越来越重要,因此数字调制解调技术越来越被广泛应用。 由于信道资源的紧张与人们越来越希望更快的通信速度与更好通信质量的要求的矛盾,将来必然还要寻找更加好的调制技术,它要求功率效率高,频带利用率高,并且易于实现,节能低碳,环保。激光调制通信、卫星通信、非恒包络调制等都是研究方向。数字调制解调的发展,必定会有力地推进通信、数字技术等各个领域的进步。 关键字:数字、调制方式、解调方式

一、概述 调制是将各种基带信号转换成适于信道传输的调制信号(已调信号或频带信号),就是用基带信号去控制载波信号的某个或几个参量的变化,将信息荷载在其上形成已调信号传输,而解调是调制的反过程,通过具体的方法从已调信号的参量变化中将恢复原始的基带信号。 调制技术分为模拟调制技术与数字调制技术,其主要区别是:模拟调制是对载波信号的某些参量进行连续调制,在接收端对载波信号的调制参量连续估值,而数字调制是用载波信号的某些离散状态来表征所传送信息,在接收端只对载波信号的离散调制参量进行检测。 1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以后才开始的。随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。常用的数字调制技术有2ASK(Amplitude Shift Keying,幅移键控)、4ASK、8ASK、BIT/SK(Phase Shift Keying,相移键控)、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。更有将幅度与相位联合调制的QAM(Quadrature Amplitude Modulation,正交振幅调制)技术,目前数字微波中广泛使用的256QAM,其频带利用率可达8bit/s/Hz,8倍于2ASK或BIT/SK。此外,还有可采用减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。 数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性,除此之外,数字调制抗干扰能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输。在现在文明高速发展的今天,人们越来越离不开数字信息,数字通信也越来越重要,因此数字调制解调技术越来越被广泛应用。

实验三 Matlab的数字调制系统仿真实验(参考)

成都理工大学实验报告 课程名称:数字通信原理 姓名:__________________学号:______________ 成绩:____ ___ 实验三Matlab的数字调制系统仿真实验(参考) 1 数字调制系统的相关原理 数字调制可以分为二进制调制和多进制调制,多进制调制是二进制调制的推广,主要讨论二进制的调制与解调,简单讨论一下多进制调制中的差分相位键控调制(M-DPSK)。 最常见的二进制数字调制方式有二进制振幅键控(2-ASK)、移频键控(2-FSK)和移相键控(2-PSK 和2-DPSK)。下面是这几种调制方式的相关原理。 1.1 二进制幅度键控(2-ASK) 幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1 或0 的控制下通或断,在信号为1 的状态载波接通,此时传输信道上有载波出现;在信号为0 的状态下,载波被关断,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1 和0。 幅移键控法(ASK)的载波幅度是随着调制信号而变化的,其最简单的形式是,载波在二进制调制信号控制下通断,此时又可称作开关键控法(OOK)。多电平MASK调制方式是一种比较高效的传输方式,但由于它的抗噪声能力较差,尤其是抗衰落的能力不强,因而一般只适宜在恒参信道下采用。 2-ASK 信号功率谱密度的特点如下: (1)由连续谱和离散谱两部分构成;连续谱由传号的波形g(t)经线性调制后决定,离散谱由载波分量决定; (2)已调信号的带宽是基带脉冲波形带宽的二倍。 1.2 二进制频移键控(2-FSK) 数字频率调制又称频移键控(FSK),二进制频移键控记作2FSK。数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK

樊昌信《通信原理》(第7版)课后习题(新型数字带通调制技术)【圣才出品】

第8章新型数字带通调制技术 思考题 8-1 何谓MSK?其中文全称是什么?MSK信号对每个码元持续时间T B内包含的载波周期数有何约束? 答:(1)MSK信号是指一种相位连续、包络恒定并且占用带宽最小的二进制正交2FSK 信号。 (2)其中文全称是最小频移键控。 (3)MSK信号每个码元持续时间T B内包含的波形周期数必须是1/4载波周期数的整数倍。 8-2 试述MSK信号的6个特点? 答:MSK信号的6个特点: (1)其频率间隔为2FSK信号的最小频率间隔; (2)其每个码元持续时间T B内包含的波形周期数必须是1/4载波周期数的整数倍; (3)附加相位在码元间是连续的; (4)包络是正弦形; (5)正交的两路码元是偏置的; (6)对相邻频道干扰小。

8-3 何谓GMSK?其中文全称是什么?GMSK信号有何优缺点? 答:(1)在进行MSK调制前将矩形信号脉冲先通过一个高斯型的低通滤波器。这样的体制称为GMSK。 (2)其中文全称是高斯最小频移键控。 (3)GMSK信号的优缺点: ①优点:进一步减小了对邻道的干扰。 ②缺点:有码间串扰。 8-4 何谓OFDM?其中文全称是什么?OFDM信号的主要优点是什么? 答:(1)OFDM是指一类多载波并行调制的体制。 (2)其中文全称是正交频分复用 (3)OFDM信号的主要优点: ①各路已调信号是严格正交的,接收端能完全地分离各路信号。 ②能够充分利用频带。 ③每路子载波的调制制度可以不同,根据各个子载波处信道特性的优劣不同采用不同的体制,并且可以自适应地改变调制体制以适应信道特性的变化。 8-5 在OFDM信号中,对各路子载频的间隔有何要求? 答:在OFDM信号中,为了使各路子载波信号相互正交,要求各路子载频间隔大于或等于1/T B,T B为码元持续时间。

数字调制系统分析与仿真

数 1 引言 1. 1 数字调制的意义 数字调制是指用数字基带信号对载波的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。根据控制的载波参量的不同,数字调制有调幅、调相和调频三种基本形式,并可以派生出多种其他形式。由于传输失真、传输损耗以及保证带内特性的原因,基带信号不适合在各种信道上进行长距离传输。为了进行长途传输,必须对数字信号进行载波调制,将信号频谱搬移到高频处才能在信道中传输。因此,大部分现代通信系统都使用数字调制技术。另外,由于数字通信具有建网灵活,容易采用数字差错控制技术和数字加密,便于集成化,并能够进入综合业务数字网(ISDN网),所以通信系统都有由模拟方式向数字方式过渡的趋势。因此,对数字通信系统的分析与研究越来越重要,数字调制作为数字通信系统的重要部分之一,对它的研究也是有必要的。通过对调制系统的仿真,我们可以更加直观的了解数字调制系统的性能及影响性能的因素,从而便于改进系统,获得更佳的传输性能。 1. 2 Matlab在通信系统仿真中的应用 随着通信系统复杂性的增加,传统的手工分析与电路板试验等分析设计方法已经不能适应发展的需要,通信系统计算机模拟仿真技术日益显示出其巨大的优越性.。计算机仿真是根据被研究的真实系统的模型,利用计算机进行实验研究的一种方法.它具有利用模型进行仿真的一系列优点,如费用低,易于进行真实系统难于实现的各种试验,以及易于实现完全相同条件下的重复试验等。Matlab仿真软件就是分析通信系统常用的工具之一。 Matlab是一种交互式的、以矩阵为基础的软件开发环境,它用于科学和工程的计算与可视化。Matlab的编程功能简单,并且很容易扩展和创造新的命令与函数。应用Matlab可方便地解决复杂数值计算问题。Matlab具有强大的Simulink 动态仿真环境,可以实现可视化建模和多工作环境间文件互用和数据交换。Simulink支持连续、离散及两者混合的线性和非线性系统,也支持多种采样速率的多速率系统;Simulink为用户提供了用方框图进行建模的图形接口,它与传统的

数字调制技术

数字调制技术 一般情况下,信道不能直接传输由信息源产生的原始信号,信息源产生的信号需要变换成适合信号,才能在信道中传输。将信息源产生的信号变换成适合于信道传输的信号的过程称为调制。在调制电路中,调制信号是数字信号,因此这种调制称为数字调制。数字调制是现代通信的重要方法,它与模拟调制相比有许多优点:数字调制具有更好的抗干扰性能、更强的抗信道损耗及更高的安全性。在数字调制中,调制信号可以表示为符号或脉冲的时间序列,其中每个符号可以有m种有限状态,而每个符号又可采用n比特来表示。主要的数字调制方式包括幅移键控(amplitude shift keying,ASK)、频移键控(frequency shift keying,FSK)、相移键控(phase shift keying,PSK)、多电平正交调幅(multi level quadrature amplitude modulation,mQAM)、多相相移键控(multiphase shift keying,mPSK),也包括近期发展起来的网格编码调制(trellis coded modulation,TCM)、残留边带(vestigial sideband,VSB)调制、正交频分复用(orthogonal frequency division multiplexing,OFDM)调制等。 1.幅移键控 幅移键控就是用数字信号控制高频振荡的幅度,可以通过乘法器和开关电路来实现。幅移键控载波在数字信号1或0的控制下通或断。在信号为1的状态下,载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。那么,在接收端就可以根据载波的有无还原出数字信号1和0。移动通信要求调制方式抗干扰能力强、误码性能好、频谱利用率高。二进制幅移键控的抗干扰能力和抗衰落能力差,误码率高于其他调制方式,因此一般不在移动通信中使用。 2. 频移键控 频移键控或称数字频率控制,是数字通信中较早使用的一种调制方式。频移键控广泛应用于低速数据传输设备中。它的调制方法简单、易于实现,解调不需要回复本地载波,可以异步传输,抗噪声和抗衰落能力强。因此,频移键控成为在模拟电话网上传输数据的低速、低成本异步调制解调器的一种主要调制方式。频移键控是用载波的频率来传送数字消息的,即用所传送的数字消息控制载波的

2FSK数字调制系统的设计与仿真解读

******************* 实践教学 ******************* 兰州理工大学 计算机与通信学院 2015年春季学期 《通信系统仿真》课程设计报告题目: 2FSK数字调制系统的设计与仿真 班级:通信工程12级( 1 )班 姓名:设计质量(30分):学号:122501xx 说明书质量(10分): 同组成员: 指导教师:

摘要 (1) 一、基本原理 (2) 1.1 2FSK信号的产生 (3) 1.2 2FSK信号的解调 (4) 1.3 2FSK系统的抗噪声性能 (5) 二、2FSK信号仿真 (8) 2.1 仿真思路 (8) 2.2 2FSK调制解调仿真程序 (8) 2.3 2FSK误码率仿真程序 (11) 2.4 仿真结果及分析 (14) 总结 (19) 参考文献 (20)

当一些电子设备进行无线通信时,发送方都要先将数字信号调制成模拟信号通过天线发送,接收方接收到模拟信号后经过解调变为数字信号。调制解调的方法有很多种,其一为2FSK (二进制频移键控),基本原理是先将“1”和“0”用两种不同频率的正弦波型代替,变为模拟信号,解调时运用两个不同的滤波器分开两种不同频率的信号,分别通过包络检波器,最后经过抽样判决器还原成数字信号。采用运用MATLAB对2FSK调制解调的过程进行仿真,其目的是提高运用MATLAB仿真通信系统的能力,熟悉MATLAB的同时也了解了2FSK的基本原理和实现方法。 关键词:MATLAB 2FSK 调制解调

一、基本原理 频移键控是利用载波的频率变化来传递数字信息。在2FSK 中,载波的频率随二进制基带信号在1f 和2f 两个频率点间变化。故其表达式为 ?? ?++=”时 发送“”时发送“ 0)cos(1)cos()(212n n FSK t A t A t e θω?ω 典型波形如图1-1所示。 图1-1 2FSK 信号的时间波形 由图可见,2FSK 信号的波形(a )可以分解为(b )和波形(c ),也就是说,一个2FSK 信号可以看成是两个不同载频的2ASK 信号的叠加。因此,2FSK 信号的时域表达式又可写成 )cos()()cos()()(212n n s n n n s n FSK t nT t g a t nT t g a t e θω?ω+?? ? ???-++??????-=∑∑ 式中:)(t g 为单个矩形脉冲,脉宽为s T ; ?? ?-=P 10P 1概率为 概率为n a n a 是n a 的反码,若n a =1,则n a =0;若n a =0,则n a =1,于是 ? ? ?-=P 0P 11概率为概率为 n a 信号FSK a 2)( t t s b 11cos )()(ω t t s c 22cos )()(ω

各种数字调制方法对比

调制是所有无线通信的基础,调制是一个将数据传送到无线电载波上用于发射的过程。如今的大多数无线传输都是数字过程,并且可用的频谱有限,因此调制方式变得前所未有地重要。 如今的调制的主要目的是将尽可能多的数据压缩到最少的频谱中。此目标被称为频谱效率,量度数据在分配的带宽中传输的速度。此度量的单位是比特每秒每赫兹(b/s/Hz)。现在已现出现了多种用来实现和提高频谱效率的技术。 幅移键控(ASK)和频移键控(FSK) 调制正弦无线电载波有三种基本方法:更改振幅、频率或相位。比较先进的方法则通过整合两个或者更多这些方法的变体来提高频谱效率。如今,这些基本的调制方式仍在数字信号领域中使用。 图1显示了二进制零的基本串行数字信号和用于发射的信号以及经过调制后的相应AM和FM信号。有两种AM信号:开关调制(OOK)和幅移键控(ASK)。在图1a中 ,载波振幅在两个振幅级之间变化,从而产生ASK调制。在图1b中,二进制信号关断和导通载波,从而产生OOK调制。 图1:三种基本的数字调制方式仍在低数据速率短距离无线应用中相当流行: 幅移键控(a)、开关键控(b)和频移键控(c)。在载波零交叉点发生二进制状态变化时,这些波形是相 干的。 AM在与调制信号的最高频率含量相等的载波频率之上和之下产生边带。所需的带宽是最高频率含量的两倍,包括二进制脉冲调制信号的谐波。 频移键控(FSK)使载波在两个不同的频率(称为标记频率和空间频率,即fm和fs)之间变换(图1c)。FM会在载波频率之上和之下产生多个边带频率。产生的带宽是最高调制频率(包含谐波和调制指数)的函数,即: m = Δf(T) Δf是标记频率与空间频率之间的频率偏移,或者: Δf = fs –fm T是数据的时间间隔或者数据速率的倒数(1/bit/s)。

实验四:数字调制仿真

实验四:数字调制仿真 一、实验目的: 1、掌握BPSK调制和解调原理; 2、理解数字基带信号和BPSK信号的功率谱密度的关系。 3、理解星座图的作用 二、实验内容: 1、仿真BPSK调制解调的过程; 2、仿真得到矩形脉冲基带信号和升余弦滚降传输特性基带信号的BPSK信号的频谱图; 3、仿真得到不同信噪比下的BPSK和QPSK信号星座图。 三、实验步骤 1、BPSK调制解调——矩形基带信号 (1)随机产生1000个等概分布的二进制信息序列,映射为幅度为正负1的双极性码;(2)由双极性码产生对应的矩形基带脉冲,绘图并保存; (3)将矩形基带信号与载波相乘,得到BPSK信号,绘图并保存; (4)对BPSK做FFT变换,绘出幅度谱并保存; (5)将BPSK信号通过通频带为fc-fm~fc+fm的带通滤波器,绘出BPSK波形并保存, 然后作FFT变换,绘出幅度谱并保存,观察波形和频谱发生了什么变换; (6)将通过带通滤波器的BPSK信号与载波相乘并通过低通滤波器,得到解调后的基带信号,绘图并保存,观察与发送基带信号相比发生了什么变化。

2、BPSK调制解调——矩形基带信号 (1)随机产生1000个等概分布的二进制信息序列,映射为幅度为正负1的双极性码;(2)由双极性码产生对应的升余弦滚降传输特性基带脉冲,滚降系数为1,绘图并保存;(3)将矩形基带信号与载波相乘,得到BPSK信号,绘图并保存; (4)对BPSK做FFT变换,绘出幅度谱并保存; (5)将BPSK信号通过通频带为fc-fm~fc+fm的带通滤波器,绘出BPSK波形并保存, 然后作FFT变换,绘出幅度谱并保存,观察波形和频谱发生了什么变换; (6)将通过带通滤波器的BPSK信号与载波相乘并通过低通滤波器,得到解调后的基带信号,绘图并保存,观察与发送基带信号相比发生了什么变化。 3.BPSK和QPSK信号星座图 (1)随机产生1000个等概率分布的二进制信息序列,映射为幅度为正负1的双极性码,即BPSK的等效基带信号,用scatterplot函数绘制星座图并保存; (2)分别在信噪比信30、20、10、3dB时,产生复高斯噪声,叠加在BPSK的等效基带信号上,然后绘制星座图并保存,观察噪声对BPSK星座点的影响; (3)随机产生两组1000个等概率分布的二进制信息序列,分别映射为幅度为正负1的双极性码xi和xq,得到单位功率的QPSK的等效基带信号(xi+j*xq)/sqrt(2),并用scatterplot函数绘制星座图并保存; (4)分别在信噪比信30、20、10、3dB时,产生复高斯噪声,叠加在QPSK的等效基带信号上,然后绘制星座图并保存,观察噪声对QPSK星座点的影响。

基于Matlab数字调制系统的仿真

基于Matlab数字调制系统的仿真 【摘要】数字调制是通信系统中最为重要的环节之一,数字调制技术的改进也是通信系统性能提高的重要途径。本文首先分析了数字调制系统的几种基本调制解调方法,然后,运用Matlab及附带的图形仿真工具——Simulink设计了这几种数字调制方法的仿真模型。通过仿真,观察了调制解调过程中各环节时域和频域的波形,并结合这几种调制方法的调制原理,跟踪分析了各个环节对调制性能的影响及仿真模型的可靠性。最后,在仿真的基础上分析比较了各种调制系统的误码率、信号传输速率、信噪比、占用频带宽度等因素,综合衡量各系统的性能指标,并通过比较仿真模型与理论计算的性能,证明了仿真模型的可行性。 【关键词】数字调制,分析与仿真,Matlab,Simulink 1.引言 1.1数字调制的意义 数字调制是指用数字基带信号对载波的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。根据控制的载波参量的不同,数字调制有调幅、调相和调频三种基本形式,并可以派生出多种其他形式。由于传输失真、传输损耗以及保证带内特性的原因,基带信号不适合在各种信道上进行长距离传输。为了进行长途传输,必须对数字信号进行载波调制,将信号频谱搬移到高频处才能在信道中传输。因此,大部分现代通信系统都使用数字调制技术。因此,对数字

通信系统的分析与研究越来越重要,数字调制作为数字通信系统的重要部分之一,对它的研究也是有必要的。 1.2Matlab在通信系统仿真中的应用 Matlab是一种交互式的、以矩阵为基础的软件开发环境,它用于科学和工程的计算与可视化。Matlab的编程功能简单,并且很容易扩展和创造新的命令与函数。应用Matlab可方便地解决复杂数值计算问题。Matlab具有强大的Simulink动态仿真环境,可以实现可视化建模和多工作环境间文件互用和数据交换。用户可以在Matlab和Simulink两种环境下对自己的模型进行仿真、分析和修改。用于实现通信仿真的通信工具包(Communication toolbox,也叫Commlib,通信工具箱)是Matlab语言中的一个科学性工具包,提供通信领域中计算、研究模拟发展、系统设计和分析的功能,可以在Matlab环境下独立使用,也可以配合Simulink使用。另外,Matlab的图形界面功能GUI (Graphical User Interface)能为仿真系统生成一个人机交互界面,便于仿真系统的操作。因此,Matlab在通信系统仿真中得到了广泛应用。 2.数字调制系统的相关原理 数字调制可以分为二进制调制和多进制调制,多进制调制是二进制调制的推广,所以本文主要讨论二进制的调制与解调,最后简单讨论一下多进制调制中的MFSK(M元移频键控)和MPSK(M元移相键控)。最常见的二进制数字调制方式有二进制振幅键控(2-ASK)、移频键控(2-FSK)和移相键控(2-PSK和2-DPSK)。下面是这几种调制方式以及其改进调制方式的相关原理。

模拟调制和数字调制的区别

1、模拟调制与数字调制的区别,不同点和相同点?168 相同点:调制原理相同,调制目的相同,未调载波(正弦波相同); 不同点:调制信号不同(前者为数字基带信号s(t);后者为模拟基 带信号m(t)),已调载波的参量取值不同(前者离散取值,后者连续 取值). 2、AM 、PSB、SSB、DSB带宽大小调试 AM:优点是接收设备简单;缺点是功率利用率低,抗干扰能力差。主 要用在中波和短波调幅广播。 DSB调制:优点是功率利用率高,且带宽与AM相同,但设备较复杂。 应用较少,一般用于点对点专用通信。 SSB调制:优点是功率利用率和频带利用率都较高,抗干扰能力和抗 选择性衰落能力均优于AM,而带宽只有AM的一半;缺点是发送和接收 设备都复杂。SSB常用于频分多路复用系统中。 VSB调制:抗噪声性能和频带利用率与SSB相当。在电视广播、数传等 系统中得到了广泛应用。 FM: FM的抗干扰能力强,广泛应用于长距离高质量的通信系统中。 缺点是频带利用率低,存在门限效应。 3、什么是线性、非线性调制? 在波形上,已调信号的幅度随基带信号的规律而正比地变化;在频谱 结构上,它的频谱完全是基带信号频谱在频域内的简单搬移(精确到 常数因子)。由于这种搬移是线性的,因此,幅度调制通常又 称为线性调制。

角度调制:频率调制和相位调制的总称。已调信号频谱不再是原调制信号频谱的线性搬移,而是频谱的非线性变换,会产生与频谱搬移不同的新的频率成分,故又称为非线性调制。 4、什么是基带传输?114频带传输?误码率大小? 基带传输又叫数字传输,是指把要传输的数据转换为数字信号,使用固定的频率在信道上传输。基带传输是由发送滤波器、信道、接收滤波器和抽样判决其组成。 频带传输又叫模拟传输,是指信号在电话线等这样的普通线路上以正弦波形式传输的方式。 误码率是衡量一个数字通信系统性能的重要指标,其取决于解调器输入信噪比,表达方式取决于调制方式。 5、几种常用的传输码型 原则不含直流,且低频分量尽量少; 应含有丰富的定时信息,以便于从接收码流中提取定时信号; 功率谱主瓣宽度窄,以节省传输频带; 不受信息源统计特性的影响,即能适应于信息源的变化; 具有内在的检错能力,即码型应具有一定规律性,以便利用这一规律性进行宏观监测。 编译码简单,以降低通信延时和成本。 AMI码:传号交替反转码 HDB3码:3阶高密度双极性码 双相码:又称曼彻斯特(Manchester)码差分双相码 密勒码:又称延迟调制码 CMI码:CMI码是传号反转码的简称。

simulink的数字调制解调仿真(最终版)要点

本科生毕业设计论文 设计题目: 基于MATLAB的对信号调制与解调的仿真

摘要 Simulink是Mathworks公司推出的基于Matlab平台的著名仿真环境Simulin作为一种专业和功能强大且操作简单的仿真工具,目前已被越来越多的工程技术人员所青睐,它搭建积木式的建模仿真方式既简单又直观,而且已经在各个领域得到了广泛的应用。 本文主要是以simulink为基础平台,对2ASK、2FSK、2PSK信号的仿真。文章第一章内容是对simulink的简单介绍和通信技术的目前发展和未来展望;第二章是对2ASK、2FSK和2PSK信号调制及解调原理的详细说明;第三章是本文的主体也是这个课题所要表现的主要内容,第三章是2ASK、2FSK和2PSK信号的仿真部分,调制和解调都是simulink建模的的方法,在解调部分各信号都是采用相干解调的方法,而且在解调的过程中都对整个系统的误码率在display模块中有所显示 本文的主要目的是对simulink的熟悉和对数字通信理论的更加深化和理解。 关键词:2ASK、2FSK、2PSK,simulink,调制,相干解调

目录 摘要 (42) 第一章绪论 (44) 1.1 MATLAB/Smulink的简介 (44) 1.2 通信发展简史....................................... 错误!未定义书签。4 1.3 通信技术的现状和发展趋势........................... 错误!未定义书签。7 第二章 2ASK、2FSK、2PSK和2DPSK的基本原理和实现...... 错误!未定义书签。7 2.1 2ASK的基本原理和调制解调实现..................... 错误!未定义书签。8 2.2 2FSK的基本原理和调制解调实现.................... 错误!未定义书签。11 2.3 2PSK的基本原理和调制解调实现................... 错误!未定义书签。14 2. 2DPSK的基本原理和调制解调实现................... 错误!未定义书签。18 第三章 Smulink的模型建立和仿真.................... 错误!未定义书签。24 3.1 2ASK的仿真...................................... 错误!未定义书签。24 3.2 2FSK的仿真...................................... 错误!未定义书签。32 3.3 2PSK的仿真...................................... 错误!未定义书签。41 总结.. (46) 致谢 (47) 参考文献 (47)

数字调制仿真.doc

MATLAB的数字调制仿真实验报告 1:实验要求 实验要求通过输入随机信号的长度 ,得到二进制的随机原始信号 ,同时把得到的原始信号用三种不同的方法调制出来。当分别输入各个控件名称时 ,得到原始信号相应的信号输出。 2:实验过程 2.1 实验条件 1:实验的原始信号由MATLAB的randint(n)函数输出 ,需要确定的只是n,就是原始信号的宽度。 2:三种不同的调制函数 原始信号调制信号函数 振幅调制: 0: 0 1: cos(t+pi/3) 频移调制: 0: cos(t+pi/3) 1: cos(2*t+pi/6) 相位移调制: 0: cos(t) 1: cos(t+pi) 时间t为单个信号存在的时间周期 ,为了将图形表达更加清晰 ,这里选择将其选定为2*pi ,并划分为100个具体的时间点,t=0:2*pi/99:2*pi。 2.2 实验步骤 1:首先我要得到原始信号的长度 ,可以通过对s=rindint(n)函数产生的随机矩阵信号用length(s)求取其长度。 2:我们要得到单个的输入原始信号并对其进行调制 ,并同时将其用矩阵进行收集储存 ,最后输出调制后的信号。可以分别求取不同宽度上的信号 ,并将其赋值到对应输出原始信号的时间周期内 ,收集 ,最后输出。 3:调制得到的信号是在每个单个波长时间 ,不同的时间点t应用不同的调制函数的到的。在进行信号调制时 ,需要对这些调制得到的信号信息进行储存。可以在循环内采用矩阵叠加的方法来储存这些信号。 4: 需要的输入只是唯一的信号长度n,输出为得到的三种调制信号 5:编写实现输出全部调制信号的主函数Modulator和三个输出对应的调制信号的子函数ASK,FSK ,PSK.由子函数控制相应的信号输出. 6:编写程序,调试,写实验报告 3: 实验结果 通过输入不同Modulator(n) ,我们得到了调制的信号和相应的图形输出。

《通信原理》——现代数字调制技术

第9章现代数字调制技术 对数字调制技术的设计和改进,一般主要在以下几个方面: (1)在现有的带宽内,尽可能提高传输信息的速率,即提高频带利用率。 (2)压缩信号功率谱主瓣的宽度。数字信号很多具有无限的带宽,实际传输中只能对其进行带限,即保留信号功率谱的主瓣。压缩主瓣宽度能压缩信号占用带宽,同样也能提高频带利用率。 (3)提高功率谱集中程度,抑制旁瓣功率,减少带外辐射。即尽可能使信号功率谱集中在主瓣中,减少相互之间的频带干扰。 (4)抗多径效应,抗码间串扰,提高纠错能力等。多经效应指的是信号在传输过程中,通过了两条或更多的信道达到接收方(典型的,例如移动通信中无线电波的多点反射),这样接收方收到的信号实际上是经过多条路径传输来的信号的叠加。由于多条信道之间在距离、信道频率特性、衰减以及移动速度等方面存在的差别,造成多径信号各分量到达接收方时间和幅度、相位等都不同,由此造成了信号在时域上展宽、在频域上产生多普勒频移等失真。 (5)综合考虑系统的复杂程度、实现难度和成本等。

9.1 偏移四相相移键控 9.1.1 QPSK信号的缺点 理想方波信号带宽无限,带限信号引起包络起伏; 当信号发生相位跳变时,会造成包络起伏; QPSK的相位星座存在180度的跳变,造成零包络。 QPSK信号的星座图 滤波引起的包络起伏相位跳变

9.1.2 偏移四相相移键控(OQPSK)的特点 恒包络数字调制技术又称交错正交相移键控,参差四相相移键控,双二相相移键控。 用两路二进制信号合成一路四相信号,两路基带信号错开半个码元周期,其表达式为 因为码元周期,故而不会出现“对角线”的跳变,而是沿着四边变化,从而抑止了零包络现象。 OQPSK的星座图和相位变化 OQPSK的调制和解调电路

基于Matlab的数字调制系统仿真与分析本科生毕业论文

本科毕业学员毕业实践(论文、设计)报告论文题目:基于Mat lab的数字调制系统仿真与分析

毕业论文(设计)原创性声明 本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名:日期: 毕业论文(设计)授权使用说明 本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。 作者签名:指导教师签名: 日期:日期:

注意事项 1.设计(论文)的内容包括: 1)封面(按教务处制定的标准封面格式制作) 2)原创性声明 3)中文摘要(300字左右)、关键词 4)外文摘要、关键词 5)目次页(附件不统一编入) 6)论文主体部分:引言(或绪论)、正文、结论 7)参考文献 8)致谢 9)附录(对论文支持必要时) 2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。 3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。 4.文字、图表要求: 1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写 2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印 4)图表应绘制于无格子的页面上 5)软件工程类课题应有程序清单,并提供电子文档 5.装订顺序 1)设计(论文) 2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订 3)其它

模拟信号和数字信号调制解调

哈尔滨工业大学 信息科学与工程学院 通信原理实验报告 姓名:XXX 学号:XXX 2011年7月15日

一、任务与要求 1.1设计任务 1. 模拟调制与解调 用matlab实现AM、DSB、SSB调制与解调过程。 2. 数字调制与解调 用matlab实现2ASK、2FSK、2PSK调制与解调过程。 1.2设计要求 1. 掌握AM, DSB, SSB 三种调制方式的基本原理及解调过程。 2. 掌握2ASK, 2FSK, 2PSK 三种调制方式的基本原理及解调过程。 3. 学习MATLAB软件,掌握MA TLAB各种函数的使用,能将调制解调过程根据调制解调过程的框图结构,用matlab程序实现,仿真调制过程,记录并分析仿真结果。 4. 对作出的波形和曲线进行分析和比较,讨论实际值和理论值的误差原因和改进方法。 二、设计原理 (1)模拟调制与解调 DSB调制属于幅度调制。幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律而变化的过程。 设正弦型载波c(t)=Acos(wc*t),式中:A为载波幅度, wc为载波角频率。 根据调制定义,幅度调制信号(已调信号)一般可表示为: f(t)=Am(t)cos(t)(公式1-1),其中,m(t)为基带调制信号。 设调制信号m(t)的频谱为M(),则由公式1-1不难得到已调信号(t)的频谱。 在波形上,幅度已调信号随基带信号的规律呈正比地变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移。 如果在AM调制模型中将直流去掉,即可得到一种高调制效率的调制方式—抑制载波双边带信号(DSB—SC),简称双边带信号。 其时域表达式为f(t)=m(t)cos(t) 式中,假设的平均值为0。DSB的频谱与AM的谱相近,只是没有了在处的 函数,即f()=[M(w-wc)+M(w+wc)] 其典型波形和频谱如图1-1所示:

我的基于MATLAB仿真的数字调制与解调设计

摘要:设计了二进制振幅键控(2ASK)、二进制移频键控(2FSK) 、二进制移相键控(2PSK)调制解调系统的工作流程图,并得用了MATLAB软件对该系统的动态进行了模拟仿真,得用仿真的结果,从而衡量数字信号的传输质量。(仿宋、小五号) 关键词:调制解调、2ASK、2FSK、2PSK、2DPSK、MATLAB(宋体、小五号) ABSTRACT(四号加粗居中放置): The work stream diagrams of 2ASK、2FSK、2PSK are designed .MA TLAB softwave is used to simulate the modem system by the scatter diagrams and wave diagrams, then the transmit quality of digital signal can be measured.(小五号) Key word:Amodulate and ademodulate 、2ASK、2FSK、2PSK、2DPSK、MATLAB(小五号) (正文:宋体、五号 一级标题:黑体、四号,小标题上下空一行。) 一、数字调制解调相关原理 在通信系统中,信道的频段往往是很有限的,而原始的通信信号的频段与信道要求的频段是不匹配的,这就要求将原始信号进行调制再进行发送.相应的在接收端对调制的信号进行解调,恢复原始的信号,而且调制解调还可以在一定程度上抑制噪声对通信信号的干扰。 调制解调技术按照通信信号是模拟的还是数字的可分为模拟调制解调和数字调制解调。数字调制的基本方式可以归结为3类:振幅键控(ASK)、频移键控(FSK)和相移键控(PSK)。此外还有这3类的混合方式。 对于数字调制信号,为了提高系统的抗噪声性能,衡量系统性能的指标是误码率。1.1二进制振幅键控(2ASK) 振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制。当数字基带信号为二进制时,则为二进制振幅键控。设发送的二进制符号序列由0,1序列组成,发送0符号的概率为P,发送1符号的概率为1-P,且相互独立.该二进制符号序列可表示为: 其中: Ts是二进制基带信号时间间隔,g(t)是持续时间为Ts的矩形脉冲, 为单极性不归零脉冲序列,则根据幅度调制的原理,一个二进制的振幅键控信号可以表示成一个单极性矩形脉冲序列与一个正弦型载波的相乘,即 2ASK信号的时间波形如果是通断方式,就称为通断键控信号(OOK信号)。 二进制振幅键控信号的产生可以采用数字键控的方法实现也可以采用模拟相乘的方法实现。2ASK信号与模拟调制中的AM信号类似。所以,对2ASK信号也能够采用非相干解调(包络检波法)和相干解调(同步检测法),其相应原理方框图如图1.1所示。

模拟信与数字信的区别

一、模拟信号与数字信号的区别 模拟信号主要是与离散的数字信号相对的连续的信号。 模拟信号是指用连续变化的物理量表示的信息,其信号的幅度,或频率,或相位随时间作连续变化。 模拟信号主要是与离散的数字信号相对的连续的信号。 模拟信号分布于自然界的各个角落,而数字信号是人为的抽象出来的在时间上不连续的信号。 电学上的模拟信号是主要是指幅度和相位都连续的电信号,此信号可以被模拟电路进行各种运算和处理,如放大,相加,滤波等。 数字信号则是模拟数据经量化后得到的离散的值,例如在计算机中用二进制代码表示的字符、图形、音频与视频数据。 模拟信号的主要缺点是它总是受到杂讯(信号中不希望得到的随机变化值)的影响。信号被多次复制,或进行长距离传输之后,这些随机噪声的影响可能会变得十分显着。在电学里,使用接地屏蔽(shield)、线路良好接触、使用同轴电缆或双绞线,可以在一定程度上缓解这些负面效应。 噪声效应会使信号产生有损。有损后的模拟信号几乎不可能再次被还原,因为对所需信号的放大会同时对噪声信号进行放大。如果噪声频率与所需信号的频率差距较大,可以通过引入电子滤波器,过滤掉特定频率的噪声,但是这一方案只能尽可能地降低噪声的影响。因此,在噪声在作用下,虽然模拟信号理论上具有无穷分辨率,但并不一定比数字信号更加精确。

数字信号特点:抗干扰能力强、无噪声积累。 在模拟通信中,为了提高信噪比,需要在信号传输过程中及时对衰减的传输信号进行放大,信号在传输过程中不可避免地叠加上的噪声也被同时放大。随着传输距离的增加,噪声累积越来越多,以致使传输质量严重恶化。 对于数字通信,由于数字信号的幅值为有限个离散值(通常取两个幅值),在传输过程中虽然也受到噪声的干扰,但当信噪比恶化到一定程度时,即在适当的距离采用判决再生的方法,再生成没有噪声干扰的和原发送端一样的数字信号,所以可实现长距离高质量的传输。 便于加密处理 信息传输的安全性和保密性越来越重要,数字通信的加密处理的比模拟通信容易得多,以话音信号为例,经过数字变换后的信号可用简单的数字逻辑运算进行加密、解密处理。 便于存储、处理和交换 数字通信的信号形式和计算机所用信号一致,都是二进制代码,因此便于与计算机联网,也便于用计算机对数字信号进行存储、处理和交换,可使通信网的管理、维护实现自动化、智能化。 设备便于集成化、微型 数字通信采用时分多路复用,不需要体积较大的滤波器。设备中大部分电路是数字电路,可用大规模和超大规模集成电路实现,因此体积小、功耗低。 便于构成综合数字网和综合业务数字网 采用数字传输方式,可以通过程控数字交换设备进行数字交换,以实现传输和交换的综合。

相关主题
文本预览
相关文档 最新文档