当前位置:文档之家› LTE后续演进中基于频谱聚合的协同通信

LTE后续演进中基于频谱聚合的协同通信

LTE后续演进中基于频谱聚合的协同通信
LTE后续演进中基于频谱聚合的协同通信

LTE后续演进中基于频谱聚合的协同通信

大带宽无线传输的直接优势是数据速率高,可以支持多媒体业务,间接优势是通过缩短数据的传输时间来降低接收机的功耗。大带宽无线传输与多媒体终端的结合,还可以改变传统的业务模式,比如,传统的视频点播(VOD)和视频广播中除了实时现场直播内容之外,都可以利用大带宽的传输能力将内容瞬间下载到本地后再播放,这种方式既增加了收视时间、地点、内容方面的灵活性,又降低了终端的接收机和显示器的功耗,而且,这种业务方式可以放宽对大带宽无线网络无隙覆盖的要求,从而降低建网成本。由于大带宽传输具有上述诸多优势,大带宽无线传输已经成为移动通信系统的一个主要发展趋势,移动通信系统的传输带宽不断增加,从通用移动通信系统(UMTS)系统的5MHz(初始设计带宽)到长期演进(LTE)系统的20 MHz,再到LTE后续演进系统LTE-A的100 MHz。移动通信系统实现大带宽传输有两个基本实现途径:第1个途径是设计一个大带宽系统;第2个途径是通过不同系统间的协同来构造具有更大传输带宽的系统。这两个实现途径在移动通信的演进中是同时存在且相互影响的,第1个途径主要在新系统设计中采用,第2个途径主要在现网演进中采用。

第1个实现途径是3GPPLTE-A标准讨论中所采取的,该技术途径在LTE-A标准技术研究初期又可以进一步分为单载波和多载波两个方案,单载波方案是在一个单载波调制带宽为20MHz~100 MHz的载波上承载数据,其优点是射频(RF)通道结构及控制信道结构简洁,其缺点是现有射频功放技术难以在20MHz~100MHz带宽范围内获得所需要的功率效率,并且,难以实现与LTE系统的兼容;多载波方案利用多个最大调制带宽小于20MHz的载波聚合成20 MHz~100MHz的传输带宽,其优点是可以基于现有射频功放技术,易于实现与LTE的完全兼容,其缺点是控制信道结构相对复杂。第2个实现途径是运营商网络演进时所采取的经济有效的方案,本质上也是通过多载波聚合来获得大的传输带宽,只是参与组合的载波由不同的系统发射,并且载波所承载的空中接口也会不同,比如,一个20MHz带宽的LTE单载波系统与一个10 MHz带宽的UMTS双载波系统构成一个传输带宽为30MHz带宽的协同通信系统。相对于全部由一个全新的宽带LTE-A系统来提供所需的传输带宽,这种多系统协同来获得大带宽的方案的优点是:减少运营上对新系统的投资,充分利用运营商现有系统资源,兼容运营商现有用户终端,保证系统的平滑演进。从协同通信的角度看,上述两种通过载波聚合获取更大传输带宽的方法,属于基于频谱聚合的协同通信。文献[1]对协同通信从生物学层面做了较多的分析,但是缺少生态学层面的协同分析,从频谱聚合的角度对协同通信的分析也比较欠缺,本文从协同通信的角度来分析频谱聚合,可以帮助理解宽带系统的设计以及运营商的现网演进,对解决现网演进中的实际问题带来启发。不同系统间基于频谱聚合的协同通信是本文讨论的重点,特别是不同系统间通过异构频谱聚合的协同通信,可以解决现有多载波捆绑技术无法解决的问题。在本文的第1节,对频谱聚合的发展趋势进行总结,第2节讨论不同系统间通过异构频谱聚合实现对上下行非对称业务的有效支持,第3节讨论不同系统间通过异构频谱聚合实现对时分双工(TDD)与频分复用(FDD)系统间保护带的有效利用。第4节对本文所述的问题进行总结。 1 频谱聚合与协同通信 1.1 频谱聚合的现状在第4代移动通信系统LTE-A标准研究启动之前,第2代和第3代移动通信系统中就已经在协议层面开始或者完成了对载波聚合的研究,。其中有代表性的载波聚合技术规范是时分同步码分多址(TD-SCDMA)系统和高通推出的数据优化多载波多链路扩展(DMMX)和高速数据分组接入多载波多链路扩展(HMMX)平台,以支持EV-DO和高速数据分组接入(HSDPA)长期演进。在图

1给出的第2代、第3代和第4代频谱聚合方案中,都是以载波聚合的方式实现的。在图1(b)给出的第2代移动通信系统采用的频谱聚合方式中,高通的DMMX和HMMX具有“多载波多链路”传输能力,可以在多个频段上同时使用多个无线传输协议,比如,700MHz频段上基于正交频分复用(OFDM)、用于视频服务的MediaFLO前向链路,加上蜂窝频段上基于码

分多址(CDMA)的进展数据优化(EV-DO)反向链路,是一个支持系统间(或者跨协议)频谱聚合的平台。

在第2代和第3代移动通信系统采用的频谱聚合,除了高通的DMMX和HMMX支持跨频段跨协议的载波聚合,其他系统,如全球移动通信系统(GSM)、TD-SCDMA以及UMTS的多载波HSPA,都是系统内的连续载波聚合,其追求的目标也很单一,就是扩展传输带宽,而LTE的载波聚合演进则纳入了第4代移动通信系统LTE-A阶段。对于LTE-A,虽然将载波聚合的范围从3G 的连续载波间的聚合扩展到了非连续载波的聚合,但是目前仍然是限定在系统内的载波聚合,LTE-A目前没有考虑支持系统间载波聚合,图1(c)所示的第4代频谱聚合中的系统间频谱聚合,是表明在技术层面存在可行性。 1.2 频谱聚合的发展趋势第4代移动通信系统LTE-A有如下基本问题与基于频谱聚合的协同通信相关: (1)如何获得大带宽频谱是在同一个LTE-AFDD系统或者LTE-A TDD系统内进行载波聚合来实现大的传输带宽,还是将LTE-A FDD系统与LTE-A TDD系统通过载波聚合协同起来获得大的传输带宽? (2)如何有效使用频谱大带宽的主要业务是数据业务,数据业务具有显著的上下行非对称特性,并且这种非对称特性随时间地点不断变化,单独的LTE-AFDD内的多载波聚合如何适应这种非对成性?这也涉及是否采用系统间的载波聚合,是否将LTE-A FDD系统与LTE-ATDD系统的频谱聚合起来共同支持非对成业务的问题。上述IMT-A面临的问题,仅仅采用以往的在同一种连续频谱上进行多载波捆绑的频谱聚合方式是无法解决的。仅仅通过FDD频谱的聚集难以解决非对称业务情况下的频谱使用效率问题,仅仅通过连续的TDD频谱上的载波聚集也难以解决TDD的反馈时延、调度时延较大的问题(受无线帧结构限制),这都是制约频谱效率进一步提升的环节。此外,由于低端频谱稀缺,很难在低端频谱上向多个运营商分别提供宽达100MHz的频谱供运营商单独使用(即便有足够的带宽,也得不到充分使用),这就需要让高端频谱动态补充用于宏覆盖的低端频谱,扩展高端频谱的实用场景。这需要借助更加灵活的基于频谱聚合的协同通信方案来解决,仅仅靠简单的载波捆绑难以解决问题。不同频谱聚合方式可以解决不同的问题,灵活的频谱聚合可以扩展传输带宽,可以催生新型业务,可以提高空口的频谱使用效率,可以扩展高端频谱的适用场景。在各种频谱聚合方式中,不同系统间的频谱聚合,非连续频谱间的聚合以及高低端频谱聚合往往能够解决传统频谱聚合场景下难以解决的问题。 1.3 基于频谱聚合的协同通信所谓协同通信就是通过一组通信功能实体间的配合来获得单个通信功能实体不具备的通信能力。在基于频谱聚合的协同通信中,通信功能实体就是具备在单个载波上发射或/和接收无线电信号的功能或物理实体。如果参与协同的功能实体来自不同的系统,就是系统间的协同通信。在现有无线接入网演进中,为了简化网络种类,降低建网成本,不同无线接入网的基站和传输部分之间逐步融合。但是,由于采用不同空中接口的现有终端难以融合,导致现有无线接入网在空中接口上的多样性的长期存在,基于频谱聚合的协同通信可以在空口多样性的情况下,实现系统间优势互补,共享资源。进一步地,在基于频谱聚合的协同通信的实施方式上,可以分为集中管理/控制的协同通信,分布式管理/控制的协同通信和自组织管理/控制的通信。无论是那种管理/控制方式下的协同通信,都需要基于无线环境信息,因此,与基于频谱聚合的协同通信密切相关的是无线电环境认知技术,系统间基于频谱聚合的协同越密切,自组织程度越高,对无线环境信息的要求也越丰富。 2 基于频谱聚合的协同通信与非对称业务支持 2.1 非对称业务的特点文献[1]从业务的非对称性、传输流的非对称性及频谱的非对称3个方面对3G业务的非对称性做了分析,并且,从用户、小区、系统3个层面,对非对称业务的动态特性进行了分析。分析表明,链路级业务的非对称性具有高度动态特性,随时间/空间变化剧烈;小区级业务的非对称性具有中度动态特性,随时间/空间变化程度中等;而系统级业务的非对称性具有较低的动态特性,随时间/空间变化程度较慢。文献[2]给出的各种业务的非对称性表明,一个移动通信系统的业务是这些对称和非对称业务的综合体现,既有对称、平稳

的业务流分量(相当于直流分量),也有非对称、突发、峰均比高的分量(相当于交流分量)。由于移动通信业务是一小区或者几个相邻小区为单位进行资源配置的,小区内业务非对称性变化是频谱使用的最重要的依据,也就是说,在移动通信系统在考虑小区的上下行频谱资源配置时,要遵照如下原则:以小区为单位配置上下行资源,并且要能够跟上上下行业务非对称性的中度变化。 2.2 TDD与FDD在非对成业务下的性能差异根据文献[3]的分析,在商业区、居民区、商务区这3种场景下,其业务的上下行非对称性和峰均比特性均有差异,由于TDD系统可以动态地适应业务的非对称性和突发特性,从实际可以达到的系统容量(TDD 系统的带宽和FDD系统的上下行带宽之和相同的条件下)来看,由于业务非对称性的差别,TDD 系统的系统容量可以比FDD系统的系统容量高出69%。只有在上行业务的比例分别在33.30%、42.5%的情况下,FDD系统才可以和TDD系统具有相同的容量,在其他业务情况下下,FDD系统的系统容量均低于TDD系统。不考虑TDD和FDD在其他方面的差异,仅仅从其适合的业务类型上看,FDD更适合上下行对称且峰均比低的业务,而TDD适合上下行非对称业务的时变特性。由于文献[1]已经指出了业务模式的不可预见性和空间时间上的变化特性,通过频谱分配阶段为FDD系统划分一个固定的非对称频谱也是不可行的。LTE-A对FDD的频谱规划也应该和传统的FDD划分方式一样,采用上下行对称方式,对不对称业务的适应通过与TDD 的组合或者通过与其他系统的频谱动态共享实现。 2.3 改进FDD系统对非对称业务的支持能力 FDD系统对非对称业务的支持,目前已经在NGMN P-BAG以及3GPPLTE-A中有讨论,归纳起来有如下3个方案:非对称频谱规划。比如为了提高FDD系统对下行业务的支持能力,在频谱规划阶段就打破传统的上下行对称频带的规划方式,给FDD系统的下行频带规划出比上行更大带宽的频带。 TDD频谱用于FDD系统下行传输。为了提高FDD系统的下行业务能力,将TDD的频谱用于部署FDD系统的下行信道,从而增加FDD的下行传输带宽。FDD与TDD系统进行基于频谱聚合的协同通信。该方案的特点是,TDD频谱上部署TDD系统空口,FDD系统上部署FDD空口,在此基础上,将TDD空口与FDD空口之间进行载波聚合。非对称频谱规划需要解决的问题是:FDD系统的下行带宽比上行带宽大多少才能符合业务的非对称需要?由于非对称业务是以小区为单位随时间地点变化的,预先规划好的上下行非对称频谱如何适应这种变化?欧盟IST的研究报告也指出,目前没有预测未来业务的不对称性的方法,因此,目前在理论上就无法让FDD系统去适应非对称业务的方法,因此,这种貌似合理的频谱规划方案不具备实际可操作性。 TDD频谱用于FDD系统下行传输面临与非对称频谱规划相同的问题,在无法预计特定地区特定时间的业务非对称的情况下,将多少TDD频谱用于发射FDD信道才是合理的?在TDD频谱上布设FDD设备的方式实质上就是给FDD系统额外增加一段频谱,这个方案在文献[1]中对额外增加FDD系统给予了讨论,讨论结果是不可行。 FDD与TDD系统进行基于频谱聚合的协同通信的实现方式,在TDD频谱上,部署的是TDD空中接口;在FDD频谱上,部署的是FDD系统的空中接口。再此基础上,根据特定小区特定时刻的上下行业务的非对称比例,灵活调节TDD系统无线帧中上下行时隙的比例,并以TDD空口与FDD空口并行传输的方式,实现与特定终端的通信。图2给出的FDD系统频谱与TDD系统的协同通信,从频谱聚合的角度看,具有如下特点:在TDD频谱上布设FDD设备在FDD频谱上布设TDD设备这种方案不涉及频谱规划问题,也无须TDD 频谱与FDD频谱的重新规划(REFARMING),可以同时达到如下效果:以灵活的方式实现对突发业务、非对称业务的支持可以灵活地适应非对称性随时间空间的变化高的频谱使用效率或高的系统容量这种基于频谱聚合的FDD/TDD系统间的协同通信,利用TDD 灵活的上下行业务能力,提高了FDD非对称业务支持能力,回避了对非对称业务预测这个难题,是一种具有很强适应性的鲁棒解决方案。该方案既充分发挥TDD与FDD系统各自的优势,把两者在支持不同业务上的优点组合起来,两种系统密切协同,相得益彰。此外,从产业发展的角度,也可以促进TDD与FDD的共存和TDD产业链的成长。 3 基于频谱聚合的协同

通信与保护频带利用 3.1 TDD与FDD间保护频带分析为了节约建网成本,运营商需要共享网络资源,包括不同系统间共享站址,共享频谱,甚至共享天线。在这种大趋势下,运营商需要TDD与现有的FDD基站共享站址的解决方案。这就需要分析解决TDD与FDD系统在共站/共天线模式下的系统间干扰问题。传统的TDD系统是上下行使用相同的频带,为了保证TDD系统的基站和终端的发射和接收与其相邻频段上的系统的基站和终端之间不存在干扰或者其干扰处于可接收的范围之内,要求在TDD系统和FDD系统之间预留一个保护频带。在TDD与FDD异站址建网的情况下,这个保护频带大约为3 MHz,而在共站或者共天线建网的情况下,保护频带要在10 MHz以上,因此,需要分析对这个大的保护带利用。从逻辑上看,无论TDD处于那个频段上,也无论该TDD频段上部署的是那种标准的系统,TDD频带与其相邻或者相关的频带之间的排列格局可以概括为图3所示的7种形态。对应每一种TDD/FDD频谱排列格局,TDD系统在频谱使用上可以采用的干扰抑制措施。图3所示的7种TDD/FDD 频谱排列格局涵盖了所有可能的TDD与FDD频谱(包括非移动通信频谱)间可能出现的情况,根据这7种情况,人们可以对每种TDD双工方式的适用性做全面的评估。 3.2 利用TDD 与FDD系统间的保护频带图4给出了一种TDD与FDD的排列格局示意图,图中第1频带是FDD系统上行频带,第2频带是TDD系统的双向使用的频带,第3频带是TDD系统与FDD 系统下行频带之间的保护频带,第4频带是FDD上行频带,第5频带是TDD与FDD上行频带之间的保护频带[4]。文献[5]给出利用保护带的方法是:将第3频带与第5频带配对构成一对HD-FDD链路,具体地,工作在第3频带内的HD-FDD系统提供第1 HD-FDD信道,第1 HD-FDD 信道的发射与TDD的上行发射或者下行发射同步,在第4频带上配置一个第2 FDD信道。除了文献[5]给出的以半双工FDD方式利用保护频带,还可以从基于频谱聚合的协同通信的角度更灵活地利用保护频带,具体实现有如下方式: (1)系统内协同实现频带的扩展图4中的第3频带与第2频带之间进行频谱聚合,实现对TDD下行传输带宽的扩展;或者将第5频带与第2频带之间进行频谱聚合,实现对TDD系统上行传输带宽的扩展。 (2)协同间协同实现频带的扩展图4中的TDD系统的第3频带与第2频带和FDD系统的第1频带之间进行频谱聚合,实现对下行传输带宽的扩展,这种方式即可以对TDD保护频带进行利用,又提高了FDD系统支持非对称业务的能力;或者将TDD系统的第5频带与第2频带与FDD系统的第4频带之间进行频谱聚合,这种方式即可以对TDD保护频带进行利用,又提高了FDD系统支持非对称业务的能力。 4 结束语基于频谱聚合的系统间的协同通信除了扩展空口的传输带宽,还可以解决单一系统难以解决的问题,本文重点讨论了通过基于频谱聚合的系统间的协同通信来解决FDD系统的非对称业务支持问题和共站建网引出的保护带利用问题。在网络演进中,LTE及其后续演进系统将于UMTS以及GSM长期共存。为了重用网络资源和降低建网成本,需要不同系统之间在空口上进行协同通信,而实现这种协同的最直接最有效的方法是系统间的基于载波聚合的协同通信,通过载波聚合实现多模式多频段并行传输[6-11]。在目前3GPP LTE-A标准讨论中,其频谱聚合仍然以构建一个100 MHz传输带宽的单一系统为目标,其讨论的频谱聚合是单一系统内部的频谱聚合。目前将系统间协同通信作为研究重点的标准组织是欧洲电信标准组织(ETSI)的RRS,其目标是将现有的或者未来的无线通信系统有机地协同起来,实现生态学意义上的协同通信。随着运营商现网演进中对资源共享需求的进一步突出,系统间的基于频谱聚合的协同通信将在相关的标准组织的讨论中得到更多的体现。 5

直放站在移动通信中应用论文

直放站在移动通信中应用论文 摘要:目前,2G通信直放站已经在国内得到了重要的应用,现今国内外已有不少运营商已纷纷推出正式商用的3G移动通信直放站,相信在3G到来的时候,直放站会对无线网络起到更重要的补充作用。 关键词:网络覆盖;直放站 随着网络的发展,城市的室内覆盖已不存在问题,覆盖的重点也逐渐向山区、高速公路等高难度覆盖区域转移。直放站以其灵活简易的特点成为解决简单问题的重要方式。本文通过对无线网络覆盖问题的分析,讨论了直放站在移动通信中的重要作用及应用。 1直放站的定义 直放站(又叫中继器)属于同频放大设备,是指在无线通信传输过程中起到信号增强的一种无线电发射中转设备。无论是GSM直放站、CDMA直放站还是3G 直放站,其原理是基本相同的。直放站的基本功能就是一个射频信号功率增强器。 2直放站的分类 2.1从传输信号分有GSM直放站、CDMA直放站和3G直放站 2.1.1GSM移动通信直放站是为消除GSM900MHz/1800MHz频段移动通信网的小范围信号盲区或弱信号区而设计生产的通信设备。被广泛应用于地下商场、停车场、地铁、隧道、高层建筑的办公室等基站信号所无法到达的信号盲区,同时对于消除城市因受高楼大厦影响而产生的室外局部信号阴影区或边远郊区个别村镇的弱信号区也具有相当好的覆盖效果。 2.1.2CDMA直放站可以扩大CDMA基站的覆盖范围,大大节省CDMA网络建设的投资(一个CDMA直放站的投资约为一个CDMA基站的十分之一)。特别是在高层楼宇、地下(如地铁)、以及盲区等特殊环境下,CDMA直放站将充分发挥它的优势。由于各种地理环境和用户的要求不同,所需的CDMA直放站的类型也不同。 2.1.3CDMA直放站是为了消除移动通信网覆盖盲区或弱信号,延伸基站信号覆盖的一种中继设备,它能解决消除城市因受高楼大厦影响而产生的室外局部信号阴影区,地下停车场、地下隧道、商场、电梯等基地无法到达信号的盲区,提高了覆盖范围增强了信号覆盖延伸。

移动通信技术1G~4G发展史

第1章移动通信现状问题与基本解决方法 1.1移动通信1G—4G简述 现在,人们普遍认为1897年是人类移动通信的元年。这一年意大利人.马可尼在相距18海里的固定站与拖船之间完成了一项无线电通信实验,实现了在英吉利海峡行驶的船只之间保持持续的通信,从而标志着移动通信的诞生,也由此揭开了世界移动通信辉煌发展的序幕错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。。 现代意义上的移动通信系统起源于20世纪20年代,距今已有90余年的历史。本文主要简述移动通信技术从1G到4G的发展。移动通信大发展的原因,除了用户需求的迅猛增加这一主要推动力外,还有技术进展所提供的条件,如微电子技术的发展、移动通信小区制的形成、大规模集成电路的发展、计算机技术的发展、通信网络技术的发展、通信调制编码技术的发展等。1.1.1第一代移动通信系统(1G) 20世纪70年代中期至80年代中期是第一代蜂窝网络移动通信系统发展阶段。第一代蜂窝网络移动通信系统(1G)是基于模拟传输的,其特点是业务量小、质量差、交全性差、没有加密和速度低。1G主要基于蜂窝结构组网,直接使用模拟语音调制技术,传输速率约s错误!未找到引用源。。 1978年底,美国贝尔实验室成功研制了先进移动电话系统(Advanced Mobile Phone System, AMPS),建成了蜂窝状移动通信网,这是第一种真正意义上的具有随时随地通信的大容量的蜂窝状移动通信系统。蜂窝状移动通信系统是基于带宽或干扰受限,它通过小区分裂,有效地控制干扰,在相隔一定距离的基站,重复使用相同的频率,从而实现频率复用,大大提高了频谱的利用率,有效地提高了系统的容量错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。。

移动通信直放站系统基础知识

移动通信直放站系统基 础知识 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

√移动通信直放站系统基础知识 综合覆盖系统 综合覆盖系统工程材料介绍 工程作业指导书 工程施工规范 汇编:林书沉、黄环球 2004、3

移动通信概述 1.移动通信概述 移动通信是指通信双方至少有一方在移动状态中进行信息的传输和交换。由于广泛地利用了通信工具,替代了出差、联系工作,即可大量节约能源,又可节约大量的旅途时间,提高了社会生产、流通领域各个环节的速度和效率,创造出更多、更高的社会经济价值。 移动通信发展 移动通信起始于20世纪20年代,是20世纪的重大成就之一。在1895年发明了无线电之后,有关人士将莫尔斯电报用于船舶通信上,曾在1912年的一次海难中起到了通信作用,使得695人获救生还。从此开始了移动通信的发展。 自20世纪70年代后期第一代蜂窝网(1G)在美国、日本和欧洲国家为公众开放使用以来,频谱资源的不足和模拟电子技术的局限性制约着蜂窝移动通信的发展。直至1990年,泛欧数字蜂窝网正式向公众开放使用,采用数字时分多址(TDMA)技术,信道带宽200kHz,使用新的900MHz频谱,称为GSM (全球移动通信系统)系统,属于第二代蜂窝网(2G),这是具有现代网络特征的第一个全球数字蜂窝移动通信系统,从而使GSM成为世界上最流行的数字蜂窝网标准,随后,世界各国政府又联合制定了GSM的等效技术标准――DCS1800,它在1.8~2GHz上提供个人通信业务(PCS)。1991年开始使用数字时分多址(TDMA),1993年又有基于码分多址(CDMA)的数字蜂窝移动通信系统,分别称为IS-54和IS-95。20世纪90年代后,第二代数字蜂窝网广泛使用,数字通信技术成为大势所趋,2G除了提供移动手机互通电话外,还

移动通信技术的现状与发展

移动通信技术的现状与发展-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

下一代互联网技术大作业 题目移动通信技术的现状与发展 姓名 专业网络工程 班级 1402班 学号

1. 移动通信技术的概念及相关知识 1.1 移动通信的基本概念 移动通信是指通信中的移动一方通过无线的方式在移动状态下进行的通信,这种通信方式可以借助于有线通信网,通过通信网实现与世界上任何国家任何地方任何人进行通信,因此,从某种程度上说,移动通信是无线通信和有线通信的结合。移动通信的发展先后经历了第一代蜂窝模拟通信,第二代蜂窝数字通信,以及未来的第三代多媒体传输、无线Internet等宽带通信,它的最终目标是实现任何人在任何时间任何地点以任何方式与任何人进行信息传输的个人通信。 1.2移动通信的发展 目前,移动通信已从模拟通信发展到了数字移动通信阶段,并且正朝着个人通信这一更高级阶段发展。未来移动通信的目标是,能在任何时间、任何地点、向任何人提供快速可靠的通信服务。1978年底,美国贝尔实验室研制成功先进移动电话系统(AMPS),建成了蜂窝状模拟移动通信网,大大提高了系统容量。与此同时,其它发达国家也相继开发出蜂窝式公共移动通信网。这一阶段的特点是蜂窝移动通信网成为实用系统,并在世界各地迅速发展,这个系统一般被当作是第一代移动通信系统。 从20世纪80年代中期开始,数字移动通信系统进入发展和成熟时期。蜂窝模拟网的容量已不能满足日益增长的移动用户的需求。80年代中期,欧洲首先推出了全球移动通信系统(GSM:Global System for Mobile)。随后美国和日本也相继指定了各自的数字移动通信体制。20世纪90年代初,美国Qualcomm 公司推出了窄带码分多址(CDMA:Code-Division Multiple Access)蜂窝移动通信系统,这是移动通信系统中具有重要意义的事件。从此,码分多址这种新的无线接入技术在移动通信领域占有了越来越重要的地位。些目前正在广泛使用的数字移动通信系统是第二代移动通信系统。

移动通信原理与系统-教学大纲

《移动通信》课程教学大纲 一、课程名称:(移动通信原理与系统) ( 32学时) 二、先修课程:通信原理、通信网基础 三、适用专业:通信工程专业 四、课程教学目的 本课程是通信工程本科专业课。移动通信是当今通信领域发展最快、应用最广和最前沿的通信技术。移动通信的最终目标是实现任何人可以在任何地点、任何时间与其他任何人进行任何方式的通信。移动通信技术包括了组网技术、多址技术、语音编码技术、抗干扰抗衰落技术、调制解调技术、交换技术以及各种接口协议和网管等等多方面的技术。因此从某种意义上可以说,移动通信系统汇集了当今通信领域内各种先进的技术。通过本课程的学习使学生了解和掌握移动通信的基本理论,了解和掌握移动通信的发展、蜂窝移动通信系统的基本概念、移动通信的信道、移动通信系统的调制和抗干扰技术、语音编码技术、移动通信中的多址接入、移动通信网以及GSM系统、CDMA系统和3G技术以及未来无线通信的发展等。 五、课程教学基本要求 1.理解和掌握无线信道和传播、传播损耗模型; 2.掌握移动通信中的信源编码的基本概念和调制解调技术; 3.理解和掌握移动通信中的各种抗衰落抗干扰技术; 4.掌握移动通信系统的组网技术; 5.掌握GSM移动通信系统、理解GPRS系统的基本原理以及EDGE的基本原理; 6.掌握基于CDMA20001X系统、WCDMA系统和TD-SCDMA系统的基本原理和应用; 7.了解未来移动通信的发展。 六、教学内容及学时分配(不含实验) 第一章概述 1学时 第二章移动通信电波传播环境与传播预测模型 4学时内容: ●无线传播的特点以及对无线通信的影响; ●无线信道的特性,研究方法 ●无线信道的分析基础(分布,特性参数等) ●简单介绍建模技术和仿真技术基础 ●介绍常见的几种传播预测模型 ●说明应用范围和应用方法

移动通信原理与系统习题答案

移动通信原理与系统习题答案 1.1移动通信特点简介: 回答:①移动通信使用无线电波进行信息传输;(2)移动通信工作在强干扰环境下;(3)通信能力有限;(4)通信系统复杂; ⑤对移动台要求高 1.2移动台受到什么干扰?哪些干扰是蜂窝系统特有的? 回答:①互调干扰;(2)邻信道干扰;(3)同频干扰;(蜂窝系统特有)④多址干扰 1.3简要描述蜂窝移动通信的发展历史,并解释各代移动通信系统的特点 a:第一代(1G)主要以模拟蜂窝网络为特征,这些网络在20世纪80年代末和80年代初就已在市场上销售其中最具代表性的是北美的AMPS(高级移动电话系统)、欧洲的TACS(全接入通信系统)、北欧的NMT和日本的HCMTS系统等。 从技术特性的角度来看,1G专注于解决两个动态的最基本用户,即双动态,并充分考虑了双通道动态。主要措施是利用FDMA实现用户的动态寻址功能,通过蜂窝网络结构和频率规划实现载频复用,从而扩大服务覆盖范围,满足用户日益增长的需求。在信道动态特性的匹配中,适当采用性能优良的模拟调频方法,并采用基站双空间分集方法来抵抗空间选择性衰落。 第二代(2G)主要以数字化为特征,并构成数字蜂窝移动通信系统,

该系统在XXXX早期正式投入商业使用。其中,最具代表性的是欧洲的时分多址(TDMA)GSM(GSM最初指的是集团专用移动,1989年后改为全球移动通信系统),北美的码分多址(CDMA) IS-95两大系统,以及日本的PDC系统等 在技术特性上以数字化为基础,考虑了频道和用户的双重动态特性以及相应的匹配措施主要实施措施是:采用时分多址(GSM)和码分多址(IS-95)实现用户动态寻址功能,采用数字蜂窝网络结构和频率(相位)规划实现载频(相位)复用,从而扩大覆盖服务范围,满足日益增长的用户需求为匹配信道动态特性,采取了以下一系列措施: (1)采用抗干扰性能优良的数字调制:GMSK(GSM)、QPSK(IS-95)、抗干扰性能优良的纠错码:卷积码(GSM、IS-95)、级联码(GSM); (2)采用功率控制技术来抵抗慢衰落和远近效应,这对于码分多址模式下的IS-95尤为重要;(3)自适应均衡和瑞克接收机用于抵抗频率选择性衰落和多径干扰; (4)采用信道交织编码,如帧间交织和块交织(IS-95)来抵抗时间选择性衰落第三代(3G)的主要特征是多媒体服务。它在本世纪初刚刚投入商业运营。其中最具代表性的是北美的CDMA2000、欧洲和日本的WCDMA和我国提出的TD-SCDMA,此外还有欧洲的DECT和北美的UMC-136。 技术上,3G基于2G系统自适应信道和用户的双重动态特性引入服务动态,即在3G系统中,用户服务可以是单一的语音、数据、图像或多媒体服务,用户选择服务是随机的。这是第三种动态的引入,它

现代通信系统的发展现状

1.简要概述现代通信系统的发展现状和发展方向。 人类对通信的需求自古以来从未间断过,从古代的烽火台,旌旗,到近代的灯光信号,再到现代的电话,电报,电视以及互联网等,通信的形式与工具在不断地发生变化,不断地进步,逐渐变得越来越方便与人性化。而在现在的信息时代下的网络则正是集成了通信技术的众多功能,故而通信技术的发展对网络的发展起着至关重要的作用。简而言之即,通信系统的发展必将推动网络的优化,网络的优化与发展必将对我们信息时代的社会经济以及人民生活产生巨大的影响。在这个移动互联网的时代,人民对多媒体技术以及手机等新科技产品的需求越来越大,这使得现代通信系统的发展必然会呈现出多样性的趋势,而企业也开始重视客户的使用感受,产品越来越人性化、轻薄化以及高效化。 随着人民对网络的需求进一步加大,现代通信系统技术也在我国得到快速发展,而光纤通信技术在我国的广泛应用,使得我国的通信系统发生了重大变化。而我国的现代通信系统也逐渐向无线通信系统方向发展,并且已经取得了重大的进步,宽带 IP 技术在电信接入网技术中的运用、数据通信与数据网在光纤通讯技术中的广泛使用、ISDN 与 ATM 技术在互联网通信技术中的运用等都是我国现代通讯技术得以不断发展的具体表现。 目前我国的现代通信系统中常用到的现代通信技术一般包括多媒体技术,接入网技术,光通信技术,移动网络通信技术,无线通信技术以及蓝牙技术等,其中无线通信技术相对应用还不是特别的宽泛。 其中多媒体技术就是通过计算机可以实现对文字、图片、声音、动画的编辑,使之可以在计算机用户之间相互交流。多媒体技术是一种为用户和计算机之间建立的逻辑处理关系,可以为网络通信技术的发展提供声音和图像的处理技术,常常实现声音、数据和视频三者融合的技术支持。接入网技术作为现代通信网系统的核心能够实现用户与终端设备通讯信息的有效连接。而其中的蓝牙技术则在在无线网络技术中占据重要的地位,其主要作用是实现不同设备之间的互联。 而现代通信系统的发展前景可谓是不可限量的。 1.其中无线通信系统无疑是发展最快、应用最广、使用者最多的技术。无线通信技 术是对传统通信技术的革新和突破,打破了对传播介质的限制,使使用者可以方 便的通过网络进行信息的传递。无线通信技术在传播上稳定、抗干扰能力强、兼 容性好,使无线通信技术在未来的应用中具有良好的应用前景,是通信技术和网 络的未来主要发展趋势,具有良好的应用前景。

《移动通信原理与系统》考点

移动通信原理与系统 第1章概论 1.(了解)4G网络应该是一个无缝连接的网络,也就是说各种无线和有线网络都能以IP协议为基础连接到IP核心网。当然为了与传统的网络互连则需要用网关建立网络的互联,所以将来的4G网络将是一个复杂的多协议的网络。 2.所谓移动通信,是指通信双方或至少有一方处于运动中进行信息交换的通信方式。 移动通信系统包括无绳电话、无线寻呼、陆地蜂窝移动通信、卫星移动通信等。无线通信是移动通信的基础。 3.移动通信主要的干扰有:互调干扰、邻道干扰、同频干扰。(以下为了解) 1)互调干扰。指两个或多个信号作用在通信设备的非线性器件上,产生与有用信号频率相近的组合频率,从而对通信系统构成干扰。 2)邻道干扰。指相邻或邻近的信道(或频道)之间的干扰,是由于一个强信号串扰弱信号而造成的干扰。 3)同频干扰。指相同载频电台之间的干扰。 4.按照通话的状态和频率的使用方法,可以将移动通信的工作方式分成:单工通信、双工通信、半双工通信。 第2章移动通信电波传播与传播预测模型 1.移动通信的信道是基站天线、移动用户天线和两副天线之间的传播路径。 对移动无线电波传播特性的研究就是对移动信道特性的研究。 移动信道的基本特性是衰落特性。 2.阴影衰落:由于传播环境中的地形起伏、建筑物及其他障碍物对电磁波的遮蔽所引起的衰落。 多径衰落:无线电波呢在传播路径上受到周围环境中地形地物的作用而产生的反射、绕射和散射,使其到达接收机时是从多条路径传来的多个信号的叠加,这种多径传播多引起的信号在接收端幅度、相位和到达时间的随机变化将导致严重的衰落。 无线信道分为大尺度传播模型和小尺度传播模型。大尺度模型主要是用于描述发射机与接收机之间的长距离(几百或几千米)上信号强度的变化。小尺度衰落模型用于描述短距离(几个波长)或短时间(秒级)内信号强度的快速变化。 3.在自由空间中,设发射点处地发射功率为P t,以球面波辐射;设接收的功率为P r,则 P r=(A r/4πd2)P t G t 式中,A r=λ2G r/4π,λ为工作波长,G t、G r分别表示发射天线和接收天线增益,d为发射天线和接收天线间的距离。 4.极化是指电磁波在传播的过程中,其电场矢量的方向和幅度随时间变化的状态。 电磁波的极化可分为线极化、圆极化和椭圆极化。 线极化存在两种特殊的情况:电场方向平行于地面的水平极化和垂直于地面的垂直极化。在移动通信中常用垂直极化天线。 5.极化失配:接收天线的极化方式只有同被接收的电磁波的极化形式一致时,才能有效地接收到信号,否则将使接收信号质量变坏,甚至完全收不到信号。 6.阴影衰落又称慢衰落,其特点是衰落与无线电传播地形和地理的分布、高度有关。 7.多径衰落属于小尺度衰落,其基本特性表现在信号的幅度衰落和时延扩展。 8.多普勒频移:f d=(v/λ)cosα,式中v为移动速度;λ为波长;α为入射波与移动台方向之间的夹角;v/λ=f m为最大多普勒频移。

移动通信系统的发展历程

通信概论论文 通信概论论文 移动通信系统的发展历程 年级: 学号: 姓名: 专业:

通信概论论文 目录 摘要 ........................................................................................................................................ I 关键词 .................................................................................................................................... I 第1章引言 .......................................................................................................................... I 第2章移动通信技术的发展历程 .................................................................................... II 第3章移动通信系统的关键技术 ................................................................................... I V 第4章移动通信系统的发展方向 ................................................................................... V I 参考文献 .......................................................................................................................... VIII 附录 1 标题 ................................................................................................................ VIII

移动通信技术发展及展望

移动通信技术发展及展望 Mobile communication technology development and prospects 电子通信与物理学院 专业、班级:通信14-1 报告人:杜超 论文结题时间:2014.1

摘要:在过去的10年中,世界电信发生了巨大的变化,移动通信特别是蜂窝小区的迅速发展,使用户彻底摆脱终端设备的束缚、实现完整的个人移动性、可靠的传输手段和接续方式。进入21世纪,移动通信将逐渐演变成社会发展和进步的必不可少的工具。移动通信技术日新月异,先后经历了第一代、第二代移动通信技术的兴起与淘汰,完成了第三代移动通信技术的快速覆盖与普及,目前正在 进行第四代移动通信技术的尝试与推广,以及第五代移动通信技术的研究与探索。相信在越来越先进的科学技术的强有力支持下,以及未来移动数据通信与多媒体业务需求发展的需求下,第四代移动通信技术会给人们带来更加美好的未来。 关键词:移动通信;发展历程;发展趋势 Abstract:I n the past ten years, great changes have taken place in the world telecom, mobile communications, especially the rapid development of the cell, the user completely get rid of the bondage of terminal equipment, to achieve a complete personal mobility, reliable transmission means and ways. Entering the 21st century, mobile communication will gradually evolve into the tools of social development and progress. Mobile communication technology, has experienced the rise of the first generation and second generation of mobile communication technology and eliminated, completed the rapid coverage and popularity of the third generation mobile communication technology, is currently in the fourth generation mobile communication technology to try and promotion, as well as the fifth generation of mobile communication technology research and exploration. Believe that there are more and more advanced under the strong support of science and technology, and the future development of mobile data communication and multimedia business requirements, under the requirements of the fourth generation mobile communication technology will bring people a better future. Key words:Mobile communication; The development course; The development trend

移动通信直放站的调试及研究

摘要 直放站作为移动通信中继设备已经在国内外移动通信系统中广泛应用,无论是在解决网络延伸,还是在扩大网络覆盖区域,它都是最佳的选择。在增强信号,改善通信质量方面,它实现了“小容量、大覆盖”的目标。在现代的建筑物里特别是复杂的室内结构里,移动电话信号弱,手机无法正常使用,形成了移动通信的盲区。室内光纤直放机(直放站)系统将移动电话信号变成光信号后,通过光纤和光无源分配器件将光信号分配到建筑物内各个盲区,光纤与电缆相比,具有频带宽、损耗低、体积小、重量轻、抗电磁干扰等优点,是解决高大建筑物内移动通信问题的最佳方案. 本课题以武汉邮科院虹信通信技术有限责任公司为背景,对移动通信系统及光纤通信系统的特点、组成进行了简要介绍。主要分析了GZF900M-IV型直放机的工作原理、主要技术性能和技术条件以及一些重要参数的测试。基于GSM网络优化在实际运用中的重要性,最后介绍了网络优化中的干扰问题及其解决的方法。 关键字:移动通信,直放机,光纤,三阶互调,增益

Abstract As the repeater equipment in mobile communication, the repeaters have been used widely abroad. It is the best choice not only in the aspect of extending network, but also in the aspect of enlarging network's cover. To strengthen signal and improve the quality of communication, the mobile communications repeaters have realized the aim of “little space, large cover”. In the modern building, especi ally the building with complex structure, signal is very weak, and mobile phone cannot work normally. These areas are the blind area in mobile communication. Indoor optical fiber mobile communications repeater system turns the signal of mobile phone into optical signal, distribute the optical signal to every blind area in the building by optical fiber and solely passive alloter. Compared with cable, optical fiber has many advantages such as wider frequency band, less loss, lighter, better ability of fighting electromagnetism disturb. It is the best way of solving problem of mobile communication in large building. This program is backed up by Wu Han mail technique group HONGXING communication technique Company. It will give a simple introduction of the characteristic and formality of mobile communication system and optical fiber communication system. We will mainly discuss the principle, main technique performance, technical conditions and some important test of parameter of the mobile communications repeater GZF900M-IV. We will introduce disturb problems in the GSM network' Optimization and how to settle the problems based on the importance of GSM network' Optimization in actual application. Keyword: mobile communication, the repeater, optical fiber, third-orderintermodulation distortion , gain

移动通信原理与系统习题答案

移动通信原理与系统习题答案 1.1简述移动通信的特点: 答:①移动通信利用无线电波进行信息传输; ②移动通信在强干扰环境下工作; ③通信容量有限; ④通信系统复杂; ⑤对移动台的要求高。 1.2移动台主要受哪些干扰影响?哪些干扰是蜂窝系统所特有的? 答:①互调干扰; ②邻道干扰; ③同频干扰;(蜂窝系统所特有的) ④多址干扰。 1.3简述蜂窝式移动通信的发展历史,说明各代移动通信系统的特点。 答:第一代(1G)以模拟式蜂窝网为主要特征,是20世纪70年代末80年代初就开始商用的。其中最有代表性的是北美的AMPS(Advanced Mobile Phone System)、欧洲的 TACS (Total Access Communication System)两大系统,另外还有北欧的 NMT 及日本的 HCMTS系统等。 从技术特色上看,1G以解决两个动态性中最基本的用户这一重动态性为核心并适当考虑到第二重信道动态性。主要是措施是采用频分多址 FDMA 方式实现对用户的动态寻址功能,并以蜂窝式网络结构和频率规划实现载频再用方式,达到扩

大覆盖服务范围和满足用户数量增长的需求。在信道动态特性匹配上,适当采用了性能优良的模拟调频方式,并利用基站二重空间分集方式抵抗空间选择性衰落。 第二代(2G)以数字化为主要特征,构成数字式蜂窝移动通信系统,它于20世纪90年代初正式走向商用。其中最具有代表性的有欧洲的时分多址(TDMA)GSM(GSM原意为Group Special Mobile,1989年以后改为Global System for Mobile Communication)、北美的码分多址(CDMA)的 IS-95 两大系统,另外还有日本的 PDC 系统等。 从技术特色上看,它是以数字化为基础,较全面地考虑了信道与用户的二重动态特性及相应的匹配措施。主要的实现措施有:采用 TDMA(GSM)、CDMA(IS-95)方式实现对用户的动态寻址功能,并以数字式蜂窝网络结构和频率(相位)规划实现载频(相位)再用方式,从而扩大覆盖服务范围和满足用户数量增长的需求。在对信道动态特性的匹配上采取了下面一系列措施: (1)采用抗干扰性能优良的数字式调制:GMSK(GSM)、QPSK (IS-95),性能优良的抗干扰纠错编码:卷积码(GSM、IS-95)、级联码(GSM); (2)采用功率控制技术抵抗慢衰落和远近效应,这对于CDMA 方式的IS-95尤为重要; (3)采用自适应均衡(GSM)和 Rake 接收(IS-95)抗频率选择性衰落与多径干扰; (4)采用信道交织编码,如采用帧间交织方式(GSM)和块

移动通信原理与系统(北京邮电出版社)课后习题答案

第一章概述 1.1简述移动通信的特点: 答:①移动通信利用无线电波进行信息传输;②移动通信在强干扰环境下工作;③通信容量有限;④通信系统复杂;⑤对移动台的要求高。 1.2移动台主要受哪些干扰影响?哪些干扰是蜂窝系统所特有的? 答:①互调干扰;②邻道干扰;③同频干扰(蜂窝系统所特有的);④多址干扰。 1.3简述蜂窝式移动通信的发展历史,说明各代移动通信系统的特点。 答:第一代(1G)以模拟式蜂窝网为主要特征,是20世纪70年代末80年代初就开始商用的。其中最有代表性的是北美的AMPS(Advanced Mobile Phone System)、欧洲的TACS(Total Access Communication System)两大系统,另外还有北欧的NMT 及日本的HCMTS系统等。 从技术特色上看,1G以解决两个动态性中最基本的用户这一重动态性为核心并适当考虑到第二重信道动态性。主要是措施是采用频分多址FDMA 方式实现对用户的动态寻址功能,并以蜂窝式网络结构和频率规划实现载频再用方式,达到扩大覆盖服务范围和满足用户数量增长的需求。在信道动态特性匹配上,适当采用了性能优良的模拟调频方式,并利用基站二重空间分集方式抵抗空间选择性衰落。 第二代(2G)以数字化为主要特征,构成数字式蜂窝移动通信系统,它于20世纪90年代初正式走向商用。其中最具有代表性的有欧洲的时分多址(TDMA)GSM(GSM原意为Group Special Mobile,1989年以后改为Global System for Mobile Communication)、北美的码分多址(CDMA)的IS-95 两大系统,另外还有日本的PDC 系统等。 从技术特色上看,它是以数字化为基础,较全面地考虑了信道与用户的二重动态特性及相应的匹配措施。主要的实现措施有:采用TDMA(GSM)、CDMA(IS-95)方式实现对用户的动态寻址功能,并以数字式蜂窝网络结构和频率(相位)规划实现载频(相位)再用方式,从而扩大覆盖服务范围和满足用户数量增长的需求。在对信道动态特性的匹配上采取了下面一系列措施: (1)采用抗干扰性能优良的数字式调制:GMSK(GSM)、QPSK(IS-95),性能优良的抗干扰纠错编码:卷积码(GSM、IS-95)、级联码(GSM); (2)采用功率控制技术抵抗慢衰落和远近效应,这对于CDMA方式的IS-95尤为重要; (3)采用自适应均衡(GSM)和Rake 接收(IS-95)抗频率选择性衰落与多径干扰; (4)采用信道交织编码,如采用帧间交织方式(GSM)和块交织方式(IS-95)抗时间选择性衰落。 第三代(3G)以多媒体业务为主要特征,它于本世纪初刚刚投入商业化运营。其中最具有代表性的有北美的CDMA2000、欧洲和日本的WCDMA及我国提出的TD-SCDMA三大系统,另外还有欧洲的DECT及北美的UMC-136。 从技术上看,3G 是在2G 系统适配信道与用户二重动态特性的基础上又引入了业务的动态性,即在3G 系统中,用户业务既可以是单一的语音、数据、图像,也可以是多媒体业务,且用户选择业务是随机的,这个是第三重动态性的引入使系统大大复杂化。所以第三代是在第二代数字化基础上的、以业务多媒体化为主要目标,全面考虑并完善对信道、用户二重动态特性匹配特性,并适当考虑到业务的动态性能,尽力采用相应措施予以实现的技术。其主要实现措施有: (1)继续采用第二代(2G)中所采用的所有行之有效的措施; (2)对CDMA 扩频方式应一分为二,一方面扩频提高了抗干扰性,提高了通信容量;另一方面由于扩频码互相关性能的不理想,使多址干扰、远近效应影响增大,并且对功率控制提出了更高要求等; (3)为了克服CDMA 中的多址干扰,在3G 系统中,上行链路建议采用多用户检测与智能天线技术;下行链路采用发端分集、空时编码技术; (4)为了实现与业务动态特性的匹配,3G 中采用了可实现对不同速率业务(不同扩频比)间仍具有正交性能的OVSF(可变扩频比正交码)多址码; (5)针对数据业务要求误码率低且实施性要求不高的特点,3G 中对数据业务采用了Turbo 码。

移动直放站技术规范 文档

移动通信直放站技术规范资料 一、移动通信网络基础知识 移动通信:指利用无线信道进行移动体之间或移动体与固定体之间的相互通信。 通信网的三个基本要素是:终端、传输系统和交换系统。

模拟通信网(频分制):终端、传输和交换系统都是以模拟方式实现的通信网。 数字通信网(时分制):终端、传输和交换系统都是以数字方式实现的通信网。。 信道:传输信号的通道。 蜂窝:用正六边形无线小区(又称蜂窝小区)邻接构成的整个通信面状服务区的形状很象蜂窝,故形象地称为蜂窝状网(Cellular System),也称为蜂窝移动通信网。 盲区: ①无基站下行信号或下行信号微弱,小于-95dBm的区域. ②下行信号电平良好,上行信号微弱的地方. ③下行信号电平良好,但接收的下行信号中有多个基站信号,信号强度相差不大时,也可认定为盲区. 施主天线:对着基站方向,接收基站下行信号的天线,也叫前向天线重发天线:对着移动台方向发射基站下行信号,对欲覆盖区进行信号覆盖的天线,也叫反向天线。 二、体制介绍 GSM(Global System Mobile)技术:为1992年欧洲标准化委员会统一推出的标准,它采用数字通信技术,统一的网络标准,使通信质量得以保证,并可以开发出更多的新业务供用户使用。GSM移动通信网的

传输速度为9.6K/s。目前,全球的GSM移动用户已经超过5亿,覆盖了1/12的人口,GSM技术在世界数字移动电话领域所占的比例已经超过70%。由于GSM相对模拟移动通讯技术是第二代移动通信技术,所以简称2G。 a)工作频段 a)频道间隔 相邻两频道间隔为200KHz,每个频道采用时分多址接入TDMA 方式。每一频点(频道或叫载频TRX)上可分为8个时隙。每一时隙为一个信道。因此,一个TRX最多有8个移动用户同时使用。 GPRS GPRS(通用无线分组业务:General Packet Radio Service)是一 种基于GSM系统的无线分组交换技术,提供端到端的,广域的无线IP连接。简单的说,GPRS是一项高速数据处理的技术,其方法是以“分组”的形式传送数据。网络容量只在所需时分配,不要时就释放,这种发送方式称为统计复用。目前,GPRS移动通信网的传输速度可

移动通信原理与系统(总结)

第一、二章 1、900 MHz 频段: 890~915 MHz (移动台发、基站收)—上行 935~960 MHz (基站发、移动台收)—下行 2、移动通信的工作方式:单工通信、双工通信、半双工通信 3、单工通信: (1)定义:通信双方电台交替地进行收信和发信。 (2)方式:根据通信双方是否使用相同的频率,单工制又分为同频单工和双频单工。 4、双工通信定义:通信双方均同时进行收发工作。即任一方讲话时,可以听到对方的话音。有时也叫全双工通信。 5、半双工通信:通信双方中,一方使用双频双工方式,即收发信机同时工作;另一方使用双频单工方式,即收发信机交替工作。 6、移动通信的分类方法: (1)按多址方式:频分多址(FDMA )、时分多址(TDMA )和码分多址(CDMA ) (2)按业务类型:电话网、数据网和综合业务网。 (3)按工作方式:同频单工、双频单工、双频双工和半双工。 7、三种基本电波的传播机制:反射、绕射和散射。 8、阴影衰落定义:移动无线通信信道传播环境中的地形起伏、建筑物及其它障碍物对电波传播路径的阻挡而形成的电磁场阴影效应。阴影衰落的信号电平起伏是相对缓慢的,又称为慢衰落。 9、多普勒频移公式:fd=v *cos α/λ v :移动速度 λ:波长 α:入射波与移动台移动方向之间的夹角。 v/λ=fm :最大多普勒频移 移动台朝向入射波方向运动,则多普勒频移为正(接收信号频率上升),反之若移动台背向入射波方向运动,则多普勒频移为负(接收信号频率下降)。 10、多径衰落信道的分类: (1)由于时间色散导致发送信号产生的平坦衰落和频率选择性衰落。 (2)根据发送信号与信道变化快慢程度的比较,也就是频率色散引起的信号失真,可将信道分为快衰落信道和慢衰落信道。 11、平坦衰落信道的条件可概括为:Bs<> 12、产生频率选择性衰落的条件:Bs>Bc;Ts< 13、信号经历快衰落的条件:Ts>Tc ;Bs>B D 15、衰落率定义:信号包络在单位时间内以正斜率通过中值电平的次数,即包络衰落的速率与发射频率,移台行进速度和方向以及多径传播的路径数有关。 16 v :——运动速度(km/h )f :——频率(MHz )A :——平均衰落(Hz ) 17、衰落深度:信号有效值与该次衰落的信号最小值的差值。 18、电平通过率定义:单位时间内信号包络以正斜率通过某一规定电平值R 的平均次数。描述衰落次数的统计规律。 深度衰落发生的次数较少,而浅度衰落发生得相当频繁。 19、平均电平通过率表达式: 其中f m :——最大多普勒频率 ρ=R/R min 其中Rmin= 为信号有效值,R 为规定电平 T τσ T τσ

移动通信技术的现状与发展

下一代互联网技术大作业题目移动通信技术的现状与发展 姓名 专业网络工程 班级1402班 学号 1.移动通信技术的概念及相关知识 1.1移动通信的基本概念 移动通信是指通信中的移动一方通过无线的方式在移动状态下进行的通信,这种通信方式可以借助于有线通信网,通过通信网实现与世界上任何国家任何地方任何人进行通信,因此,从某种程度上说,移动通信是无线通信和有线通信的结合。移动通信的发展先后经历了第一代蜂窝模拟通信,第二代蜂窝数字通信,以及未来的第三代多媒体传输、无线Internet等宽带通信,它的最终目标是实现任何人在任何时间任何地点以任何方式与任何人进行信息传输的个人通信。 1.2移动通信的发展 目前,移动通信已从模拟通信发展到了数字移动通信阶段,并且正朝着个人通信这一更高级阶段发展。未来移动通信的目标是,能在任何时间、任何地点、向任何人提供快速可靠的通信服务。1978年底,美国贝尔实验室研制成功先进移动电话系统(AMPS),建成了蜂窝状模拟移动通信网,大大提高了系统容量。与此同时,其它发达国家也相继开发出蜂窝式公共移动通信网。这一阶段的特点是蜂窝移动通信网成为实用系统,并在世界各地迅速发展,这个系统一般被当作是第一代移动通信系统。 从20世纪80年代中期开始,数字移动通信系统进入发展和成熟时期。蜂窝

模拟网的容量已不能满足日益增长的移动用户的需求。80年代中期,欧洲首先推出了全球移动通信系统(GSM:Global System for Mobile)。随后美国和日本也相继指定了各自的数字移动通信体制。20世纪90年代初,美国Qualc omm公司推出了窄带码分多址(CDMA:Code-DivisionMultiple Access)蜂窝移动通信系统,这是移动通信系统中具有重要意义的事件。从此,码分多址这种新的无线接入技术在移动通信领域占有了越来越重要的地位。些目前正在广泛使用的数字移动通信系统是第二代移动通信系统。 1.3 移动通信的特征 现代移动通信是一门复杂的高新技术,不但集中了无线通信和有线通信的最新技术成就,而且集中了网络接收和计算机技术的许多成果。移动通信系统包括无绳电话、无线寻呼、陆地蜂窝移动通信、卫星移动通信等,几乎集中了有线和无线通信的最新技术成就,普遍应用于社会的各个领域。目前,移动通信已从模拟通信发展到了数字移动通信阶段,并且正朝着个人通信这一更高级阶段发展。未来移动通信的目标是,能在任何时间、任何地点、向任何人提供快速可靠的通信服务。要实现以上要求移动通信的无线技术的发展是离开不了的。无线通信具有跨越时空进行信息沟通的灵活性,以及连接全球的无缝隙覆盖特性,这使它成为最具吸引力的通信方式。而无线通信的快速发展,也将把人类实现个人通信的梦想一步步变为现实,也为移动通信的发展提供了很大的帮助。 1.4 移动通信的国内国际形势 中国移动同动通信3G最主要的优势是支持多媒体数据业务,而国内移动数据业务的市场要有一个培育的过程,需要运营商、业务供应商和用户多方共同促进。中国第二代移动通信网通过网络优化及加强,无论是系统容量还是移动数据业务都应能满足近期全国用户的需求。目前,第三代移动通信核心网的标准进展缓慢,国际上正在讨论全IP移动网的有关问题,核心网的发展途径并不明朗。我国移动通信3G刚刚发展起来,面对国际成熟的技术条件,中国移动通信的发展任务还有待提升。因此,我们可以冷静观察国际上各种第三代移动通信网的建设情况,发挥“后发优势”,吸取他们宝贵的经验教训。为了积累建设和运营第三代移动通信网经验,我们可以选点建设W-CDMA试验网和cdma2000试验网,

相关主题
文本预览
相关文档 最新文档