当前位置:文档之家› 高中物理必修一、必修二、选修3-1及选修3-2知识点汇总

高中物理必修一、必修二、选修3-1及选修3-2知识点汇总

高中物理必修一、必修二、选修3-1及选修3-2知识点汇总
高中物理必修一、必修二、选修3-1及选修3-2知识点汇总

高中物理必修一、必修二、选修3-1及选修3-2知识点汇总1.弹力

(1)大小:只有弹簧中的弹力我们可以应用胡克定律F=kx计算,而支持力、压力、轻绳中的拉力、轻杆中的弹力等必须根据题中的物理情境应用牛顿运动定律或平衡条件得出。

(2)方向:压力和支持力的方向垂直于接触面指向被压或被支持的物体,若接触面是曲面,则弹力的作用线一定垂直于曲面上过接触点的切线;轻绳中的弹力方向一定沿绳,指向轻绳收缩的方向;对轻杆,若一端由铰链连接,则另一端的弹力只能沿杆的方向拉或压,若杆的一端固定,则杆中的弹力方向可以与杆成任意角度。

2.摩擦力

(1)产生条件:两物体相互接触且发生弹性形变;接触面粗糙;有相对运动或相对运动趋势。

(2)方向:与物体的相对运动或相对运动趋势的方向相反,沿接触面的切线方向。

(3)类别:滑动摩擦力和静摩擦力。

①滑动摩擦力F=μF N,式中压力F N一般情况下不等于重力,滑动摩擦力的大小与速度无关。

②静摩擦力大小和方向随运动状态及外力情况而变化,与压力F N无关。静摩擦力的大小范围:0≤F≤F max,其中最大静摩擦力F max与压力F N成正比。

3.力的合成和分解

不是两个力的数字加减,而是按照平行四边形定则(可简化成三角形定则)进行的矢量合成与分解的运算。实质是一种等效替换的方法,合力或分力与原力等效。

(1)合力可能大于分力,也可能小于分力,还可能等于分力,合力与分力的大小关系如同三角形的边长关系。

(2)力的合成只适用于作用在同一物体上的力,力的分解得到的两个分力与原力性质相同。

4.受力分析

把指定物体(研究对象)在特定的物理情境中所受到的所有外力找出来,并画出受力图。受力分析的常用方法有:

(1)隔离法:将研究对象(可以是某个物体,也可以是几个物体组成的系统)与周围物体分隔开,只分析它实际所受的力,不分析它对周围物体施加的力。隔离法一般适用于分析物体之间的相互作用力,将相互作用的内力转换为外力。

(2)整体法:把几个具有相同加速度的连接体或叠加体看做一个整体进行受力分析的方法。整体法一般适用于分析外界对整体的作用力。

(3)假设法:在未知某力是否存在时,可先对其作出存在或不存在的假设,然后根据假设对物体的运动情况作出判断,看是否与实际情况吻合。如果吻合,则说明假设正确;否则说明假设错误。

5.共点力作用下物体的平衡条件

合力为零,即F合=0。当物体处于平衡状态时,所受的力沿任意方向分力的合力都为零,即∑F x=0,∑F y =0。解答三个共点力作用下物体平衡的基本思路是合成法和分解法。

(1)合成法:对物体进行受力分析,并画出受力分析图。将所受的其中两个力应用平行四边形定则合成为一个等效力,由平衡条件可知该等效力一定与第三个力大小相等方向相反。

(2)分解法:对物体受力分析,画出受力分析图,将其中一个力应用平行四边形定则分解到另两个力的反方向,由平衡条件可知,这两个分力一定分别与另两个力等大反向。

6.共点力作用下物体的平衡条件的推论

(1)物体受共点力的作用而平衡,则其中任意一个力与其他所有力的合力等大反向。

(2)若处于平衡状态的物体受三个或三个以上的力的作用,则宜用正交分解法处理。画出物体受力的矢量图,以物体为坐标原点,建立直角坐标系,将所受的各个力分别沿x 、y 轴正交分解,则有沿x 、y 轴方向分力的合力为零,即∑F x =0,∑F y =0。

(3)物体受三个非平行力而平衡时,这三力的作用线一定相交于一点。

(4)在三个共点力作用下,物体处于平衡状态时,这三个力必处于同一个平面内,且将表示这三力的矢量线段首尾顺次相连时,必组成封闭的三角形,且每个力与所对角的正弦值成正比。

7.描述运动的基本概念对比

(1)位移(矢量)是运动物体由起点指向终点的有向线段;路程(标量)是运动轨迹的长度。

(2)速度是描述质点运动快慢的物理量,它等于位移的变化率,即v =Δx /Δt ;加速度是描述质点速度变化快慢的物理量,它等于质点速度的变化率,即a =Δv /Δt 。

(3)位移-时间图象与速度-时间图象

8.匀变速直线运动规律的三个重要公式

(1)速度公式:v t =v 0+at 。

(2)位移公式:x =v 0t +12

at 2。 (3)位移和速度的关系:v 2t -v 20=2ax 。

9.匀变速直线运动的三个重要推论

(1)平均速度公式:v =v 0+v t 2

。 (2)做匀变速直线运动的物体在连续相等的时间(T )内的位移之差为一恒定值,即Δx =aT 2(又称匀变速直线运动的判别式)。

(3)做匀变速直线运动的物体在某段时间内中间时刻的瞬时速度等于这段时间内的平均速度,即v t /2 =v =v 0+v t 2

。 10.解决匀变速直线运动问题的常用方法

(1)一般公式法:应用匀变速直线运动规律的三个重要公式解题,若题目中不涉及时间,使用v 2t -v 20=2ax 解答。

(2)中间时刻速度法:公式v t /2=v =v 0+v t 2

适用于任何匀变速直线运动,有些题目应用它可避免应用位移公式中含有t 2的复杂方程,从而简化解题。

(3)平均速度法:涉及初末速度、运动时间、位移,可应用v =v 0+v t 2

和x =v t 解答。 (4)比例法:对于初速度为零的匀加速直线运动可采用比例关系求解。

①前1 s 、前2 s 、前3 s …内的位移之比为1∶4∶9∶…

②第1 s 、第2 s 、第3 s …内的位移之比为1∶3∶5∶…

③前1 m 、前2 m 、前3 m …所用的时间之比为1∶2∶3∶…

④第1 m 、第2 m 、第3 m …所用的时间之比为1∶(2-1)∶(3-2)∶…

(5)图象法:应用v -t 图象,可以把较复杂的直线运动问题转化为较为简单的数学问题。尤其是利用图象定性分析选择题,可避开繁杂的数学计算。

(6)逆向思维法:把运动过程的“末态”作为“初态”的反向研究问题的方法。一般应用于末态速度为零的情况,把末态速度为零的匀减速直线运动反演为初速度为零的匀加速直线运动。

(7)巧用隔差公式x m -x n =(m -n )aT 2解题。对一般的匀变速直线运动问题,若题目中出现两个相等的时间间隔对应的位移(尤其是处理纸带、频闪照片或类似的问题),应用隔差公式x m -x n =(m -n )aT 2解题快捷方便。

11.研究匀变速直线运动的方法

(1)用“连续相等时间内位移差是否相等”判断该运动是否做匀变速直线运动。

(2)用“做匀变速直线运动的物体在某段时间内中间时刻的瞬时速度等于这段时间内的平均速度”即公式v n =x n +x n +12T

求打点计时器打n 点时纸带的速度。 (3)用“逐差法”求加速度可使所有的实验数据都得到利用,可以提高实验测量的准确性。由Δx =aT 2得出a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,然后取平均值a =(a 1+a 2+a 3)/3=13(x 4-x 13T 2+x 5-x 23T 2+x 6-x 33T 2)=x 4+x 5+x 6-x 1-x 2-x 39T 2

。 (4)用图象法处理实验数据求出加速度。将利用公式v n =x n +x n +12T

计算出的各个时刻的速度,作出v -t 图象,其v -t 图象的斜率即为运动的加速度。

12.追及与相遇问题的规律

追及与相遇问题一般涉及两个物体,要选择同一参考系研究它们的运动情况。

(1)所谓“追上”或“相遇”是指两个物体同一时刻位于“同一位置”,据此可建立它们的位移关系方程。

(2)明确两个物体运动的时间关系,是同时开始运动还是先后开始运动,由此建立时间关系方程。

(3)两物体的“速度相等”通常是一个重要的临界条件。对于追及问题要注意区分两种情况。

①速度大者减速运动追匀速运动的物体,当两者速度相等时若追者位移仍小于被追者位移,则永远追不上,此时两者之间有最小距离;两者速度相等时恰能追上,是两者避免碰撞的临界条件;两者速度相等时若追者已超过被追者,则被追者还有一次追上追者的机会,其间速度相等时两者之间距离有一个较大值。

②速度小者加速追匀速运动的速度大者,当两者速度相等时两者之间有最大距离。

13.自由落体运动

(1)只受到重力的物体从静止开始下落的运动,其实质是初速度为零、加速度为g 的匀加速直线运动。

(2)下落t 时刻的速度公式v t =gt ;下落高度公式h =12

gt 2;下落高度h 时速度v t =2gh 。

14.竖直上抛运动

(1)只受到重力作用的竖直上抛运动,实质是初速度为v 0,加速度为-g 的匀减速直线运动。

(2)上升和下落两个过程互为逆运动,具有速度对称(上升过程和下落过程经过同一点的速度大小相等、方向相反)和时间对称(上升过程和下落过程经过同一段路程所需时间相同)的特点。

(3)以初速度v 0竖直上抛的最大高度H =v 20/2g ;上升到最高点的时间t =v 0/g 。

15.牛顿三大定律

(1)牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。牛顿第一定律揭示了运动和力的关系:力不是维持物体速度(运动状态)的原因,而是改变物体速度的原因。

(2)牛顿第二定律:物体的加速度a 与物体所受的合外力F 成正比,与物体的质量m 成反比,加速度的方向与合外力的方向相同。数学表达式:F =ma 。牛顿第二定律揭示了力的瞬时效应,定量描述了力与运动(加速度)的关系。由定律可知,力与加速度是瞬时对应关系,即加速度与力是同时产生、同时变化、同时消失;力与加速度具有因果关系。力是产生加速度的原因,加速度是力产生的结果。

(3)牛顿第三定律:作用力与反作用力总是大小相等,方向相反,作用在一条直线上。牛顿第三定律揭示了物体与物体间的相互作用规律。两个物体之间的作用力与反作用力总是同时产生、同时变化、同时消失,一定是同种性质的力,作用在两个物体上各自产生效果,一定不会相互抵消。

16.超重与失重

(1)超重:物体对支持物的压力(或对悬挂物的拉力)大于重力。原因:物体有向上的加速度。

(2)失重:物体对支持物的压力(或对悬挂物的拉力)小于重力。原因:物体有向下的加速度。

(3)完全失重:物体对支持物的压力(或对悬挂物的拉力)为零。原因:物体有向下的加速度且大小为重力加速度g 。

17.一般曲线运动

(1)速度方向:沿曲线的切线方向。

(2)特点:速度方向时刻在改变。曲线运动一定是变速运动,所受合外力一定不为零。

(3)条件:物体所受的合外力的方向与物体的速度方向不在一条直线上。合外力的方向一定指向轨迹弯曲的一侧。

(4)研究方法:把曲线运动分解为两个简单的分运动。合运动与分运动之间存在等时性、独立性、等效性。 ①等时性:合运动与分运动经历的时间相等,即同时开始、同时进行、同时结束。

②独立性:各分运动在其方向上力的作用下独立运动,不受其他方向分运动的影响。

③等效性:各分运动按平行四边形定则合成后与物体的实际运动效果相同。

18.平抛运动

(1)特点:初速度沿水平方向,只受竖直方向的重力作用,其轨迹为抛物线。平抛运动是匀变速(加速度是g 不变)曲线运动。

(2)研究方法:分解为水平方向的匀速直线运动(x =v 0t )和竖直方向的自由落体运动(y =12

gt 2)。 (3)平抛运动物体的速度改变量Δv =g Δt 、方向总是竖直向下,且相等时间内速度改变量总是相等的。

19.几个典型运动的分解

(1)竖直下抛运动可分解为竖直向下的匀速直线运动和自由落体运动。

(2)竖直上抛运动可分解为竖直向上的匀速直线运动和自由落体运动。

(3)平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动。

(4)斜抛运动可分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动。

(5)船渡河运动可分解为船本身的划动和随水流方向的漂流运动。

(6)绳端物体的运动可分解为沿绳方向的运动和垂直绳方向的运动。

20.平抛运动的两个推论

(1)做平抛(含类平抛)运动的物体在任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。

(2)任意时刻速度方向与水平方向夹角的正切值等于位移方向与水平方向夹角的正切值的2倍。

证明:由平抛运动规律x =v 0t ,y =12

gt 2,tan α=gt /v 0=gt 2/v 0t =2y /x =y /x ′,即做平抛(含类平抛)运动的物体在任意时刻瞬时速度方向的反向延长线与初速度延长线的交

点到抛出点的距离都等于水平位移x 的一半。(如图3-1-1)

由平抛运动规律x =v 0t ,y =12gt 2,tan θ=y /x =gt 2v 0=gt v 0·12=12

tan α, 图3-1-1 即tan α=2tan θ,任意时刻速度方向与水平方向夹角的正切值等于位移方向与水平方向夹角的正切值的2倍。

21.匀速圆周运动

(1)特点:合外力大小不变,方向总是指向圆心。匀速圆周运动是加速度(方向)时刻在变化的变速曲线运动。

(2)角速度:ω=θ/t =2π/T ,角速度单位:rad/s ;线速度:v =s /t =2πr /T ;v =rω。

(3)向心加速度:a =v 2/r =rω2=v ω。

(4)做匀速圆周运动的物体所受外力的合力,称为向心力。向心力是一种效果力,任何力或几个力的合力其效果只要是使物体做匀速圆周运动,则这个力或这几个力的合力即为向心力。向心力与向心加速度的关系遵从牛顿第二定律。

(5)只要物体所受合外力大小恒定,且方向总是指向圆心(与速度方向垂直),则物体一定做匀速圆周运动。

(6)转速n 的单位为r/s(转每秒)或r/min(转每分)。当转速n 的单位为r/s 时,转速n 与角速度ω的关系:ω=2πn 。

22.一般圆周运动

(1)当做圆周运动的物体所受外力的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向;沿切线方向的分力只改变速度的大小。

(2)如果沿半径方向的合外力大于物体做圆周运动所需的向心力,物体将做向心运动,运动半径将减小;如果沿半径方向的合外力小于物体做圆周运动所需的向心力,物体将做离心运动,运动半径将增大。如果做圆周运动的物体所受合外力突然变为0,则物体以该时刻的速度做匀速直线运动。

23.竖直平面内圆周运动临界条件

(1)轻绳拉小球在竖直平面内做圆周运动(或小球在竖直圆轨道内侧做圆周运动)时的临界点是在竖直圆轨道的最高点,F +mg =m v 2/r ;由于轻绳中拉力F ≥0,要使小球能够经过竖直圆轨道的最高点,则到达最高点时速度必须满足:v ≥gr 。

(2)由于轻杆(环形圆管)既可提供拉力,又可提供支持力,轻杆拉小球(或环形圆管内小球)在竖直平面内做圆周运动(或小球在竖直平面内双轨道之间做圆周运动)的条件:到达最高点时速度v ≥0。

24.万有引力定律

(1)内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。

(2)数学表达式:F =G m 1m 2r 2,引力常量G 由卡文迪许利用扭秤实验测出。(万有引力定律中物体之间的距离r 是指两质点之间的距离)

(3)应用:测中心天体的质量、密度,发现新天体,航天等。

25.人造地球卫星

(1)轨道特征:轨道平面必过地心。

(2)动力学特征:万有引力提供卫星绕地球做圆周运动的向心力,即有G Mm r 2=m v 2r =m (2πT

)2r 。 (3)轨道半径越大,周期越长,但运行速度越小。

(4)发射人造地球卫星的最小速度——第一宇宙速度v 1=gR =7.9 km/s 。物体脱离地球引力,不再绕地球运行所需的最小速度——第二宇宙速度v 2=11.2 km/s ;物体脱离太阳的引力所需的最小速度——第三宇宙速度v 3=16.7 km/s 。

26.地球卫星的最大运行速度和最小周期

由万有引力提供卫星绕地球运行的向心力,则有G Mm r 2=m v 2r =m (2πT

)2r ,得到卫星绕地球的运行速度v =GM r =gR 2r ,周期T =2πr /v =2πr 3GM =2πr 3gR 2

。当卫星绕地球表面运行时,轨道半径r 等于地球半径R ,运行速度最大v =gR =7.9 km/s ,周期最小T =2π

R g =5 024 s 。 27.卫星发射的超、失重规律

人造卫星刚从地面发射时,加速向上运动,处于超重状态,进入轨道正常运转时,卫星上物体处于完全失重状态(万有引力提供向心力),凡是工作原理与重力有关的仪器均不能使用。

28.地球同步卫星“四定”

(1)运行周期一定,周期为24 h 。

(2)距地面高度一定,大约为3.6×104 km 。

(3)轨道平面一定,轨道平面与赤道面重合。

(4)环绕方向及速度一定,环绕方向为自西向东运行,速度大小约为3.1 km/s 。

29.功和功率

(1)功的两个不可缺少的因素:力和在力的方向上发生位移。

①恒力做功的计算公式:W =Fx cos α。

②当F 为变力时,用动能定理W =ΔE k 或功能关系求功。所求得的功是该过程中外力对物体(或系统)做的总功(或者说是合外力对物体做的功)。

③利用F -x 图象曲线下的面积求功。

④利用W =Pt 计算。

(2)功率:描述做功快慢的物理量。

①功率定义式:P =W /t 。所求功率是时间t 内的平均功率。

②功率计算式:P =F v cos α。其中α是力与速度间的夹角。该公式有两种用法:a.求某一时刻的瞬时功率,这时F 是该时刻的作用力大小,v 取瞬时值,对应的P 为F 在该时刻的瞬时功率;b.当v 为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F 必须为恒力,对应的P 为F 在该段时间内的平均功率。

(3)机车启动:

①机车以恒定功率启动时,由P =F v 可知,其牵引力F 随着速度v 的增大而减小,机车做加速度减小的加速运动。当加速度减小到零即牵引力F =f (阻力)时速度达到最大,最大速度v m =P /f 。

②机车以恒定加速度启动时,由a =F -f m

可知,若所受阻力f 恒定,则牵引力F 为定值,由P =F v 可知,机车输出功率P 随着速度v 的增大而增大。当机车输出功率P 增大到额定功率时,匀加速运动结束,其匀加速运

动的末速度v t =at, 匀加速运动时间t =P 额(ma +f )a

之后,机车在额定功率下继续加速,直至到达最大速度(v m =P 额

/f )后做匀速运动。

30.动能定理

(1)内容:合外力对物体做的功等于物体动能的变化。

(2)数学表达式:W =12m v 22-12

m v 21。 31.机械能

(1)包括动能、重力势能(引力势能)和弹性势能。

①动能:E k =12

m v 2。 ②重力势能:E p =mgh 。高度h 是相对零势面的,重力势能是相对的,选取不同的零势面,重力势能有不同的数值,但重力势能的变化(ΔE p =mg Δh )是绝对的。重力势能是物体和地球系统共有的。

③弹性势能:只与弹簧的劲度系数和形变量有关。同一弹簧,只要形变量相同,其弹性势能就相同。

(2)机械能守恒定律:在只有系统内重力和弹簧弹力做功时,物体的动能与重力势能、弹性势能相互转化,机械能总量保持不变。机械能守恒定律有以下几种表达形式:

①可任选两个状态(一般选择过程的初、末状态),研究对象的机械能相等,即E 1=E 2。利用E 1=E 2建立方程需要选择零势面。

②系统势能(包括重力势能和弹性势能)减少多少,动能就增加多少,反之亦然,即ΔE p =-ΔE k 。

③系统内某一部分机械能减少多少,另一部分机械能就增加多少,即ΔE 1=-ΔE 2。

(3)功能关系:系统机械能的变化等于除重力和弹簧弹力以外的其他力所做的功的代数和。

32.功能关系

(1)重力做功与路径无关,只与重力方向上的位移高度有关。重力做正功,重力势能减少,其减少量转化为其他形式的能量。重力做负功,重力势能增加,其他形式的能量转化为重力势能,且有W G =-ΔE p 。

(2)弹簧弹力(在弹性限度内)做功与路径无关,只与弹簧的形变量有关。弹力做正功,弹性势能减少,其减少量转化为其他形式的能量。弹力做负功,弹性势能增加,其他形式的能量转化为弹性势能,且有W 弹=-ΔE p 。

(3)摩擦力可以做正功,可以做负功,可以不做功。静摩擦力对物体做功的过程是机械能在相互接触的物体之间转移的过程。滑动摩擦力做功的过程,一部分机械能在相互接触的物体之间转移,另一部分转化为内能,机械能转化为内能(产生热量)的数值等于滑动摩擦力f 与相对滑动距离x 相对的乘积,即Q =fx 相对。

(4)电场力做功与路径无关,只与电场力方向上的位移有关,即与电荷的电荷量q 和两点之间的电势差U 有关,W =qU 。电场力做正功,电势能减少,其减少量转化为其他形式的能量。电场力做负功,电势能增加,其他形式的能量转化为电势能。

(5)安培力做正功,将电能转化为其他形式的能量(电动机的工作原理);安培力做负功,其他形式的能量转化为电能(发电机的工作原理);运动的带电粒子所受的洛伦兹力对运动电荷永不做功。

33.力学规律解题的优选原则

(1)在研究某一物体受到恒力作用,且又直接涉及物体运动过程中的加速度问题时,应选用牛顿第二定律和运动学公式。若物体受到变力作用,对应瞬时加速度,只能应用牛顿第二定律分析求解。

(2)对于不涉及物体运动过程中的加速度和时间(对于机车以恒定功率P 运动,其牵引力的功W 牵=Pt ,可以涉及时间t ),而涉及力和位移、速度的问题,无论是恒力还是变力,都可选用动能定理或功能关系求解。

(3)如果物体(或系统)在运动过程中只有重力和弹簧的弹力做功,而又不涉及物体运动过程中的加速度和时间,对于此类问题应优先选用机械能守恒定律求解。

(4)如果物体(或系统)在运动过程中受到滑动摩擦力或空气阻力等的作用,应考虑应用功能关系或能量守恒定律求解。两物体相对滑动时,如果没有外力对系统做功,系统内克服摩擦力做的总功等于摩擦力与相对路程的乘积,也等于系统机械能的减少量,转化为系统的内能。

34.库仑定律

在真空中两个点电荷之间的作用力跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的

方向在它们的连线上。表达式:F =k Q 1Q 2r 2。库仑力的方向沿两点电荷的连线,同种电荷相互排斥,异种电荷相互吸引。

35.电场强度

(1)物理意义:表示电场力性质的物理量,它描述电场的强弱。

(2)定义:放入电场中某点的试探电荷所受的电场力跟它的电荷量q 的比值叫做该点的电场强度,即E =F /q 。

点电荷周围电场的电场强度公式:E =k Q r 2。 36.等量电荷的电场特点

37.电场线的特点

(1)电场线上各点的切线方向表示该点的电场方向。

(2)电场线的密疏表示电场的强弱。

(3)电场线始于正电荷,终止于负电荷。

(4)任意两条电场线都不相交。

(5)顺着电场线的方向电势降低。

38.电势差和电势

(1)电势差:电荷在电场中A、B两点间移动时电场力所做的功W AB跟它的电荷量q的比值,叫做这两点之间的电势差(电压),即U AB=W AB/q。

(2)电势:电场中某点跟零电势点间的电势差叫做该点的电势,有了电势的概念,则A、B两点的电势差可表示为:U AB=φA-φB,其中φA、φB分别为A、B两点的电势。

(3)电势差与电场强度的关系:在匀强电场中,沿电场强度方向的两点之间的电势差等于电场强度与这两点之间距离的乘积,即U=Ed。

39.等势面

(1)电场中电势相等的点组成的面。在等势面上移动电荷电场力不做功。

(2)电场线与等势面垂直。

(3)任意两个电势不等的等势面都不可能相交。

40.等差等势面与电场强度的关系

等差(电势差)等势面越密的地方电场强度越大,等差(电势差)等势面越疏的地方电场强度越小;电场强度越大的地方,等距(距离)等势面电势差越大,电场强度越小的地方,等距(距离)等势面电势差越小。

41.比较电势高低的方法

(1)根据顺着电场线方向,电势逐渐降低比较。

(2)根据越靠近正场源电荷处电势越高,越靠近负场源电荷处电势越低比较。

(3)根据电场力做功与电势能的变化关系比较。

①移动正电荷,电场力做正功,电势能减少,电势降低;电场力做负功(或克服电场力做功),电势能增加,电势升高。

②移动负电荷,电场力做正功,电势能减少,电势升高;电场力做负功(或克服电场力做功),电势能增加,电势降低。只要从A到B电场力做功为零,则A、B两点一定是等电势点。

(4)处于静电平衡状态的导体是等势体,尽管两端有感应电荷,但导体两端电势相等。

42.比较电势能大小的方法

(1)场电荷判断法:

离场正电荷越近,检验正电荷电势能越大,检验负电荷电势能越小;离场负电荷越近,检验负电荷电势能越大,检验正电荷电势能越小。可简记为:同种电荷距离越近,电势能越大,异种电荷距离越远,电势能越大。

(2)电场线法:

正电荷顺着电场线的方向移动时,电势能逐渐减少;逆着电场线的方向移动时,电势能逐渐增加。负电荷顺着电场线的方向移动时,电势能逐渐增加;逆着电场线的方向移动时,电势能逐渐减少。

(3)做功判断法:

根据电场力做功的正负来判断,电场力做正功,电荷的电势能减少;克服电场力做功,电荷的电势能增加。

43.电容器和电容

任何两个彼此绝缘又相隔很近的导体,都可以看成是一个电容器。电容是表征电容器本身储存电荷本领高低的物理量。

(1)定义:电容器所带的电荷量Q 与电容器两极板间的电势差U 的比值叫做电容器的电容,即C =Q /U 。

(2)平行板电容器的电容C =

εr S 4πkd

,式中S 为平行板电容器的正对面积,d 为两极板之间的距离,k 为静电力常量,εr 为介质的介电常数。

44.带电粒子在电场中的运动

(1)带电粒子沿电场线方向进入匀强电场,带电粒子被电场加速,一般应用动能定理,有qU =12m v 22-12

m v 21。 (2)带电粒子垂直电场方向进入匀强电场,带电粒子在电场中做类平抛运动,应用类似于平抛运动的处理方法分析处理。

45.带电粒子连续经过加速电场与偏转电场的运动规律

带电粒子先沿电场方向进入加速电场,再垂直于电场方向进入偏转电场(匀强电场)。设粒子电荷量为q ,质

量为m ,加速电场的电压为U 1,偏转电场的电压为U 2,两平行金属板之间的距离为d ,则由qU 1=m v 20/2解得带电粒子进入偏转电场时的速度v 0=2qU 1m ,在偏转电场中,粒子的加速度a =qE /m =qU 2dm

,垂直电场方向做匀速直线运动,则L =v 0t ,沿电场方向做初速度为零的匀加速运动,则y =at 2/2,联立解得y =U 2L 2

4dU 1

,偏转角的正切值tan θ=at /v 0=U 2L 2dU 1

。 由此可知,比荷不同的同种带电粒子由静止开始经过同一个电场加速后,进入同一偏转电场运动,粒子的偏转位移相同,偏转角相同,其轨迹是重合的。

当偏转电压的大小极性发生变化时,粒子的偏转位移也随之变化。如果偏转电压的变化周期远远大于粒子穿

越电场的时间(T ?L v 0

),则在粒子穿越电场的过程中,仍可把偏转电场当作匀强电场处理。 46.描述直流电路的物理量

(1)电流:规定正电荷定向移动的方向为电流方向。通过导体横截面的电荷量Q 与通过这些电荷所用的时间t 的比值称为电流,即I =Q /t 。设导体中自由电荷定向移动的速度为v ,导体的横截面积为S ,导体中单位体积内的自由电荷数为n ,每个自由电荷电荷量为q ,则t 时间内通过导体横截面的电荷量Q =vtSnq ,根据电流的定义式I =Q /t ,可得导体中电流微观表达式:I =nq v S 。

(2)电压:形成电流的必要条件。电压的单位是伏特(V),电压的大小用电压表测量。

(3)电动势:衡量电源把其他形式的能量转化为电能本领大小的物理量。电动势的大小等于电源的开路电压,在闭合电路中电动势等于内、外电路的电压之和,即E =U 内+U 外。

(4)电阻:表征导体本身阻碍电流作用的物理量。导体两端的电压U 与导体中的电流I 的比值称为电阻R ,即R =U /I 。电阻的单位是欧姆(Ω),电阻测量用伏安法或欧姆表直接测量。

(5)电功:W =UIt =QU ,电流做功的过程,是把电能转化为其他形式能量的过程。

(6)电热(焦耳定律):Q =I 2Rt 。对纯电阻电路,电功等于电热;对含电动机、电解槽的非纯电阻电路,电功大于电热。

(7)电功率:P =UI 。电热功率:P 热=I 2R 。

47.电学中的三个定律

(1)欧姆定律:导体中的电流与导体两端的电压成正比,与导体的电阻成反比,即I =U /R 。欧姆定律适用于

金属导电和电解液导电,不适用于气体导电。

(2)电阻定律:在温度一定的条件下,导体的电阻R与它的长度L成正比,与它的横截面积S成反比,即R =ρL/S,其中ρ为导体的电阻率(金属材料的电阻率随温度的升高而增大,随温度的降低而减小)。

(3)闭合电路欧姆定律:闭合电路中的电流与电源电动势成正比,与内、外电路的电阻之和成反比,即I=E/(R +r)。

48.电路中的功率关系

(1)电源总功率(EI)等于电源内阻消耗功率(I2r)与电源输出功率(外电路消耗功率UI)之和,即EI=I2r+UI。

(2)电动机输入功率(UI)等于电动机内阻发热功率(I2R)与电动机输出功率(P出)之和,即UI=I2R+P出。对于纯电阻用电器,电流做功全部转化为电热;对于非纯电阻用电器,电流做功一部分转化为电热,另一部分转化为其他形式的能量。

(3)输电总功率等于输电线发热功率与用户用电功率之和,即P输=P热+P用。

49.直流电路的分析方法

(1)稳定直流电路的特点与分析方法:对于稳定的直流电路,被忽略电阻的导线上各点为等势点,无电流通过的电阻两端的电势相等。理想电流表和无直流电阻的电感器(线圈)可视为短路,理想电压表和充满电的电容器可视为断路。用电器正常工作是指用电器在额定电压下工作,用电器在额定电压下工作时消耗的功率等于额定功率,流经它的电流等于额定电流。用电器的额定电压、额定功率、额定电流中三个量只要有一个达到额定值则其他两个量也一定达到额定值。在温度变化不大的情况下,一般认为纯电阻用电器的实际工作电阻与正常工作电阻(由额定电压和额定功率计算出的电阻)相同。

(2)动态直流电路的特点与分析方法:在混联电路中任一电阻的阻值增大(或减小),必将引起该电阻中电流的减小(或增大)以及该电阻两端电压的增大(或减小);任一电阻的阻值增大(或减小),必将引起与之并联的支路中电流增大(或减小),与之串联的各电阻电压的减小(或增大)。在直流电路中,无论电阻串联还是并联,只要其中一个电阻增大(或减小),则电路的总电阻一定增大(或减小),总电流一定减小(或增大),内阻不为零的电源的路端电压一定增大(或减小)。

(3)含电容电路的特点:在含有电容器的电路中,当给电容器充电时,可以认为它是“通路”(注意:电流不能通过电容器),当电容器放电时,可以认为它是“电源”,当电路达到稳定状态时,电容器相当于断路。电路稳定后,与电容器串联的电阻中无电流。含电容电路分析思路是:①首先理清电路的串并联关系,根据需要画出等效电路,电路稳定后电容器可视为断路,与之串联的电阻(或用电器)因电流为零而无电压。②确定电容器两极板之间的电压。两极板之间的电压等于与之并联的电阻(或用电器)两端的电压。③电路某部分电阻变化时,电压U、电流I发生变化,引起电容器充电、放电。电容器电压升高,电容器充电;电压降低,电容器放电。电容器极性不变时,电容器电荷量变化为初末带电荷量之差;电容器极性改变时,电容器电荷量变化为初末带电荷量之和。

(4)故障电路的特点与分析方法:用电器不能正常工作。断路的表现为电流为零,短路的表现为电流不为零而两点之间电压为零。用电压表测量电路中两点间的电压,若电压表有读数,说明这两点与电源之间的连线是通路,断路故障点就在这两点之间;若电压表无读数,说明这两点与电源之间的连线是断路,断路故障点就在这两点与电源的连线上。

(5)含电动机电路的特点与分析方法:电动机电路中欧姆定律不适用,可利用电功率公式、路端电压U=E-Ir和能量关系分析解答。电动机输入功率等于电动机内阻发热功率与输出功率之和,即UI=I2R+P出。

50.超导体与半导体

(1)超导体:大多数金属当温度降到转变温度T C时,其电阻率突然减小到零,这种现象被称为超导现象,处于超导状态的导体叫做超导体。

(2)半导体:导电性能介于导体与绝缘体之间。半导体有热敏特性、光敏特性,掺入微量的其他物质后导电性能发生显著的变化。

(3)半导体的利用:利用有些半导体的导电性能随温度升高电阻迅速减小的特性制成热敏电阻或对温度敏感的温度传感器等;利用有些半导体在光照下电阻大大减小的特性制成光敏电阻或对光敏感的光传感器等;光敏电阻能起到开关作用,可应用到自动控制中。利用在纯净半导体中掺入微量杂质会使其导电性能大大增强的特性制成二极管(单向导电性)、三极管和集成电路。

51.磁场的描述

(1)磁感应强度:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积IL的比值,叫做磁感应强度,即B=F/IL。磁感应强度B是由磁场自身性质决定的,是矢量,其方向就是磁场的方向。

(2)磁感线:磁感线上各点的切线方向表示该点的磁感应强度的方向;磁感线的密疏表示磁场的强弱;磁感线是闭合曲线,在磁铁外部由N极指向S极,在磁铁内部由S极指向N极。任意两条磁感线都不相交。

(3)磁场方向:在磁场中任一点,小磁针N极的受力方向(小磁针静止时N极的指向)。

52.判断电流磁场的安培定则

(1)对于通电直导线,用右手握住直导线,大拇指指向电流方向,弯曲的四指所指的方向就是直线电流周围磁感线环绕的方向。

(2)对于通电螺线管,用右手握住螺线管,弯曲的四指指向电流环绕方向,大拇指指向螺线管中心轴线上磁感线的方向(螺线管的N极)。

(3)对于环形电流,让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。

53.磁场的作用力

(1)安培力:磁场对电流的作用,F=BIL sinα,式中α是电流与磁场方向的夹角,L为导线的有效长度。闭合通电线圈在匀强磁场中所受的安培力的矢量和为零。

①左手定则判断安培力的方向:伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内。把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么大拇指所指的方向就是通电导线在磁场中所受安培力的方向。

②安培力的特点:F⊥B,F⊥I,即F垂直于B和I所决定的平面。安培力做正功,电能转化为机械能(电动机原理);安培力做负功(或克服安培力做功),机械能或其他形式的能量转化为电能(发电机原理)。

(2)洛伦兹力:磁场对运动电荷的作用,F=q v B(条件v⊥B),q为带电粒子的电荷量,v为带电粒子的速度,B为磁场的磁感应强度。

①左手定则判断洛伦兹力的方向:伸开左手,使大拇指与其余四个手指垂直,与手掌在同一平面内,让磁感线垂直穿入手心,四指指向正电荷运动的方向,则拇指所指的方向就是正电荷所受的洛伦兹力方向。运动的负电荷在磁场中所受的洛伦兹力,方向跟正电荷受的力相反。

②洛伦兹力的特点:F⊥B,F⊥v,即F垂直于B和v所决定的平面。洛伦兹力对运动电荷一定不做功。

54.带电粒子在匀强磁场中运动

(1)若速度v ∥B 时,则洛伦兹力F =0,带电粒子以速度v 做匀速直线运动。

(2)若速度v ⊥B 时,洛伦兹力提供向心力,带电粒子在垂直于磁感线的平面内以速度v 做匀速圆周运动,q v B

=m v 2/r ,轨道半径r =m v qB ,运动周期T =2πm qB

。 55.解带电粒子在匀强磁场中运动的一般方法

(1)画轨迹:画出带电粒子在磁场中的运动轨迹,并确定其圆心和半径。确定圆心的几种方法:

①因为洛伦兹力F 指向圆心,根据F ⊥v ,画出粒子运动轨迹上任意两点(一般是射入和射出磁场的两点)的F 的方向,沿两个洛伦兹力F 画其延长线,两延长线的交点即为圆心。

②圆心必定在圆中任意一条弦的中垂线上,再作速度的一条垂线或另一弦的中垂线,两线交点即为圆心。 圆心确定以后,再根据洛伦兹力提供向心力或几何关系求出半径。

(2)找联系:

①粒子速度的偏向角(φ)等于回旋角(α),并等于AB 弦与切线的夹角(弦切角θ)的2倍(如图3-1-2所示),

即φ=α=2θ=ωt 。

②圆周运动的对称性:粒子从某一直线边界射入磁场时和从同一边界射出时,速度方

向与边界的夹角相等;沿径向射入圆形磁场区域的粒子,必沿径向射出。

③粒子在磁场中运动时间的确定:t =θ2π

T 或t =s v ,式中θ(单位为弧度)为偏向角,T 为周期,s 为轨迹的弧长,v 为线速度。 图3-1-2

(3)用规律:利用带电粒子只受洛伦兹力时所遵循的半径及周期公式列方程求解。

56.带电粒子在磁场中运动的多解问题

处理带电粒子在磁场中受洛伦兹力作用下的运动问题时,由于种种因素影响,常常使得研究的问题出现多解的情况,出现多解的常见原因有以下几种情况。

(1)带电粒子电性不确定:

受洛伦兹力作用的带电粒子,可能带正电,也可能带负电。当粒子具有相同速度时,正负粒子在磁场中运动轨迹不同,导致多解。

(2)磁场方向不确定:

磁感应强度是矢量,如果题述条件只给出磁感应强度的大小,未告知磁感应强度的方向,此时就应考虑磁场方向不确定而形成的多解。

(3)临界状态不唯一:

带电粒子在有界磁场中运动时,常常涉及临界问题。如果临界状态不是唯一的,就会导致多解。

(4)运动的周期性:

带电粒子在电场和磁场的复合场中运动时,其轨迹往往具有重复性,也会形成多解。

57.带电粒子在复合场中的运动

(1)带电粒子在复合场中的典型运动形式包括:当带电粒子在复合场中所受的合外力为零时,粒子将做匀速直线运动或静止;当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动;当带电粒子所受的合外力的大小、方向不断变化时,则粒子将做变加速运动,这类问题一般只能用能量关系处理。

(2)此类问题的分析方法和力学问题的分析方法基本相同,不同之处就是多了电场力和磁场力,因此在利用力学的三大观点(动力学观点、能量观点、动量观点)分析此类问题的过程中,还要注意:

①洛伦兹力永远与速度方向垂直、不做功。

②重力、电场力做功与路径无关,只由初末位置决定,当重力、电场力做功不为零时,粒子动能变化。因而洛伦兹力也随速率的变化而变化,洛伦兹力的变化导致了所受合外力的变化,从而引起加速度的变化,使粒子做变加速运动。

58.回旋加速器问题

(1)回旋加速器加速带电粒子的条件:高频交流电源在两个D 形盒的狭缝之间产生交变的加速电场的周期(或

频率)等于带电粒子在磁场中运动的周期(或频率),即T =2πm qB (或f =qB 2πm

)。 (2)回旋加速器加速带电粒子获得的最大的动能:E km =m v 2m /2=(m v m )22m =(qBR )22m

。理解此式应注意三点: ①同一带电粒子每次加速获得的动能ΔE k =qU 仅与加速电压U 有关,与磁场的磁感应强度B 和D 形盒半径R 无关。

②同一带电粒子在回旋加速器中加速获得的最大的动能E m 与加速电压无关,而与磁感应强度和D 形盒半径

乘积的二次方(BR )2成正比。这是因为最大能量决定于加速的总次数,磁感应强度B 越大,回旋半径r =m v qB

越小,每回旋一周,半径的增加量Δr 越小,所以D 形盒的半径越大,磁感应强度B 越大,带电粒子的加速次数就越多,最终获得的能量就越大。

③不同的带电粒子通过同一回旋加速器获得的最大动能决定于带电粒子的电荷量q 和质量m ,E m =m v 2m /2

=(m v m )22m =(qBR )22m

∝q 2/m 。 (3)粒子到达最大动能的回旋次数:带电粒子每回旋一周被加速两次,增加的动能ΔE k =2qU ,达到最大动能的回旋次数n =E km /ΔE k =B 2R 2q /(4mU )。

(4)粒子到达最大动能的回旋时间:在磁场中回旋的总时间为t B =nT =B 2R 2q 4mU ×2πm qB =πBR 2

2U

;带电粒子在交变电场中运动时间可以等效为初速度为零的匀加速直线运动,所以t E =v m /a ,a =qU /md ,v m =qBR /m ,联立解得t E =BRd /U 。进而得到带电粒子在回旋加速器中运动的总时间t =t B +t E =

BR (πR +2d )2U 。 59.磁通量

(1)对磁通量的理解:

匀强磁场的磁感应强度B 和在该磁场中与磁场方向垂直的平面面积S 的乘积叫做穿过这个面的磁通量,即Φ=BS 。形象地说,磁通量就是穿过这个面的磁感线的条数。公式Φ=BS 只适用于匀强磁场,且面积S 指完全处在垂直磁场方向的有效面积。磁通量是标量,但有正、负之分,例如在磁感应强度为B 的匀强磁场中,有一与磁场方向垂直的线圈,面积为S ,在它翻转180°的过程中,磁通量的变化量ΔΦ=BS -(-BS )=2BS 。若穿过某一面积的磁感线同时有进有出,则穿过该面积的磁通量Φ=Φ进-Φ出,且穿过某一线圈截面的磁通量与线圈匝数无关。

(2)磁通量、磁通量的变化量、磁通量的变化率的区别:

要注意磁通量Φ、磁通量的变化量ΔΦ与磁通量的变化率ΔΦΔt

的区别。磁通量就是穿过这个面的磁感线的条数。磁通量与时刻对应;磁通量的变化量是两个时刻穿过这个面的磁通量之差,即ΔΦ=Φ2-Φ1。磁通量的变化

量与时间t 2-t 1对应;磁通量的变化率是单位时间内磁通量的变化量,计算式是ΔΦΔt

。磁通量变化率的大小不是单纯由磁通量的变化量决定,还跟发生这个变化所用的时间有关,它描述的是磁通量变化的快慢。以上三个量的区

别很类似于速度v 、速度变化量Δv 与速度的变化率Δv Δt

三者的区别。 60.感应电流

产生条件:①电路是闭合的;②闭合电路中的磁通量发生变化。

61.感应电动势

(1)法拉第电磁感应定律:感应电动势大小跟穿过这一电路磁通量变化率成正比。对于处于变化磁场中的电

路,E =N ΔΦΔt

,一般用来计算Δt 时间内的感应电动势的平均值。对于导体垂直切割磁感线,产生的感应电动势E =BL v ,式中L 为有效切割长度,v 为导体相对于磁场的速度。

(2)感应电动势方向(感应电流方向)判断:

①右手定则:适用于导体切割磁感线产生感应电流的方向的判断。内容为:伸开右手,让大拇指与其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直穿入手心,使大拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向。

②楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

(3)两个公式的选用:

法拉第电磁感应定律的表达式E =N ΔΦΔt 及推导式E =BL v 都可以用来求解感应电动势,公式E =N ΔΦΔt

的研究对象是一个回路,求得的是Δt 时间内回路的平均感应电动势;对于导体切割磁感线产生感应电动势可用法拉第电磁感应定律的特殊形式E =BL v 计算,该公式的适用条件是匀强磁场,且B 、L 、v 互相垂直,它的研究对象是在磁场中运动的一段导体,式中的v 若以平均速度代入,则求得的是平均感应电动势,若以瞬时速度代入,则求

得的为瞬时感应电动势。在具体计算中,可以利用公式E =N ΔΦΔt

求平均感应电动势,利用公式E =BL v 求瞬时感应电动势。

(4)电磁感应现象中通过导体截面的电荷量q =I Δt =N ΔΦR

,R 为回路的总电阻,N 为线圈匝数。 62.楞次定律中“阻碍”含义的理解

(1)从磁通量变化的角度看,电磁感应产生的效果总要阻碍引起电磁感应的原磁通量的变化。也就是说当磁通量增加时,产生的感应电流的磁场与原磁场的方向相反,阻碍增加;当磁通量减少时,产生的感应电流的磁场与原磁场的方向相同,阻碍减少;即“增反减同”。

(2)从导体和磁场的相对运动来看,电磁感应产生的效果总要阻碍引起电磁感应现象的导体和磁场的相对运动。就是当导体与磁场相对靠近时,感应电流的磁场阻碍它们靠近;当导体与磁场相对远离时,感应电流的磁场阻碍它们远离;即“来拒去留”。

(3)从导体中电流变化(自感现象)来看,电磁感应产生的效果总要阻碍引起电磁感应的导体中原来电流的变化。就是当导体中电流增大时,导体中产生的感应电动势的方向与原来电流的方向相反;当导体中电流减小时,导体中产生的感应电动势的方向与原来电流的方向相同。

63.导体棒旋转切割磁感线的规律

长为L 的导体棒,在磁感应强度为B 的磁场中以其中一端为圆心转动切割磁感线时,产生的感应电动势E =BL 2ω/2,ω为导体棒转动的角速度。

64.自感现象

由于导体本身的电流发生变化而产生的电磁感应现象。自感电动势与导体中的电流变化率成正比,比例系数称为导体的自感系数L 。线圈的自感系数L 跟线圈的形状、长短、匝数等因素有关系。线圈的横截面积越大,线圈越大,匝数越多,它的自感系数就越大。有铁芯的线圈的自感系数比没有铁芯的大得多。

65.正弦式交变电流

(1)产生:一个N 匝面积为S 的矩形线圈在匀强磁场B 中绕垂直于磁场的轴以角速度ω匀速转动,产生正弦式交变电流。

(2)正弦式交变电流的四值:

①瞬时值:e =E m sin ωt ,u =U m sin ωt ,i =I m sin ωt 。

②最大值:E m =NBSω。考虑电容器耐压值用最大值。

③有效值:根据电流的热效应规定。计算电功、电功率、热量用有效值,交流电表的读数为有效值,电器铭牌所标的都为有效值。

④平均值:E =N ΔΦΔt

,计算电荷量用平均值。 注意:最大值与有效值的关系:E m =2E ,U m =2U ,I m =2I ,且这种关系仅适用于正弦式交变电流,其他的交变电流的有效值要通过热效应计算得出。

(3)描述交变电流变化快慢的物理量是周期和频率,周期和频率的关系:T =1/f 。

66.交流电路

(1)感抗表示电感对交变电流的阻碍作用。感抗跟线圈的自感系数和交变电流的频率成正比。电感元件具有“通直流、阻交流、通低频、阻高频”的特性。

(2)容抗表示电容对交变电流的阻碍作用。容抗跟电容器的电容和交变电流的频率成反比。电容元件具有“隔直流、通交流,阻低频,通高频”的特性。

67.理想变压器

(1)电压、电流、功率关系:

①电压思路:变压器原、副线圈的电压之比为U 1U 2=n 1n 2;当变压器有多个副线圈时U 1n 1=U 2n 2=U 3n 3

=… ②功率思路:理想变压器的输入功率P 1与输出功率P 2相等,即P 1=P 2;当变压器有多个副线圈时,P 1=P 2+P 3+…

③电流思路:由I =P U 知,对只有一个副线圈的变压器有I 1I 2=n 2n 1

;当变压器有多个副线圈时,则 n 1I 1=n 2I 2+n 3I 3+…

(2)变压器中的制约关系:

①电压制约:当变压器原、副线圈的匝数比(n 1n 2)一定时,输出电压U 2由输入电压决定,即U 2=n 2U 1n 1

,可简述为“原制约副”。

②电流制约:当变压器原、副线圈的匝数比(n 1n 2

)一定,且输入电压U 1确定时,原线圈中的电流I 1由副线圈中

的输出电流I 2决定,即I 1=n 2I 2n 1

,可简述为“副制约原”。 ③负载制约:变压器副线圈中的功率P 2由用户负载决定,P 2=P

负1+P 负2+…。变压器副线圈中的电流I 2

由用户负载及电压U 2确定,I 2=P 2U 2

;总功率P 总=P 线+P 2。 (3)动态分析问题的思路程序可表示为: 112222122U n U I U n R U U I ==???→????→定定

负载决决

121122111()11P P I U I U P I U I P ===??????→???→定定决决 68.电能输送

高压输电时输电线上电阻发热损耗功率:P 损=I 2R =(P U

)2R ,这表明,当输电线上的电阻一定、输送的电功率P 一定时,输电电压U 提高到原来的n 倍,输电线上损失的功率P 损减小到原来的1/n 2。

高一物理必修一知识点大全

高一物理必修一知识点大全 在高一物理必修一中,力学知识和牛顿定律让很多同学都感到头疼,不知道该怎么去运用这些知识点。下面就是给大家带来的高一物理知识点总结,希望能帮助到大家! 高一物理必修一知识点总结1 一、曲线运动 (1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。 (2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。 (3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。 二、运动的合成与分解

1、深刻理解运动的合成与分解 (1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。 运动的合成与分解基本关系: 1分运动的独立性; 2运动的等效性(合运动和分运动是等效替代关系,不能并存); 3运动的等时性; 4运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。) (2)互成角度的两个分运动的合运动的判断 合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。 ①两个直线运动的合运动仍然是匀速直线运动。 ②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。

③两个初速度为零的匀加速直线运动的合运动仍然是匀 加速直线运动。 ④两个初速度不为零的匀加速直线运动的合运动可能是 直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。 2、怎样确定合运动和分运动 ①合运动一定是物体的实际运动 ②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。 ③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。 3、绳端速度的分解 此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度) 4、小船渡河问题

高一物理必修1全册教案

第一章运动的描述(复习) ★新课标要求 1、通过本章学习,认识如何建立运动中的相关概念,并体会用概念去描述相关质点运动的方法。了解质点、位移、速度、加速度等的意义。 2、通过史实初步了解近代实验科学的产生背景,认识实验对物理学发展的推动作用,并学会用计时器测质点的速度和加速度。 3、通过学习思考及对质点的认识,了解物理学中模型和工具的特点,体会其在探索自然规律中的重要作用。如质点的抽象、参考系的选择、匀速直线运动的特点等。 4、体会物理学中,相关条件的特征及作用,科学的方法在物理学中的意义,如瞬时速度、图象等。 ★复习重点 位移、速度、加速度三个基本概念,及对这三个概念的应用。 (一)投影全章知识脉络,构建知识体系 1、知识框架图 2、基本概念图解

(二)本章专题剖析 [ 例1 ]关于速度和加速度的关系,下列论述正确的是( ) A. 加速度大,则速度也大 B. 速度的变化量越大,则加速度也越大 C. 物体的速度变化越快,则加速度就越大 D. 速度的变化率越大,则加速度越大 解析: 对于A 选项来说,由于速度和加速度无必然联系,加速度大,速度不一定大,因此A 错误。B 选项,t v a ??= ,速度变化量越大,有可能t ?更大,a 不一定大,B 也错。

C 选项,加速度a 是描述物体速度变化快慢的物理量,速度变化越快,a 越大,所以C 对。 D 选项, t v ??称为速度变化率,t v a ??=,故有速度的变化率越大,加速度越大。所以D 对。故答案应选C 、D 。 点拨:本题往往会误将A 、B 选项作为正确选项而选择,原因是没有弄清楚a 与v 、v ?的关系。而D 选项部分同学却认为不正确而漏选,其原因是没有把握好加速度定义式 t v a ??= 所包含的本质意义,造成错解。 [ 例2 ]甲乙两物体在同一直线上运动的。x-t 图象如图1所示,以甲的出发点为原点, 出发时刻为计时起点则从图象可以看出( ) A .甲乙同时出发 B .乙比甲先出发 C .甲开始运动时,乙在甲前面x 0处 D .甲在中途停了一会儿,但最后还是追上了乙 分析:匀速直线运动的x-t 图象是一条倾斜的直线,直线与纵坐标的交点表示出发时物体离原点的距离。当直线与t 轴平行时表示物体位置不变,处于静止,两直线的交点表示两物体处在同一位置,离原点距离相等。 答案ACD 拓展思考:有人作出了如图2所示的x-t 图象,你认为正确吗?为什么? (不正确,同一时间不能对应两个位移) [例3]如图所示为一物体作匀变速直线运动的v -t 图像,试分析物体的速度和加速度的特点。 分析:开始计时时,物体沿着与规定正方向相反的方向运动,初速度v 0= -20m/s ,并且是减速的,加速度a 是正的,大小为a =10m/s 2,经2秒钟,物体的速度减到零,然后又沿着规定的正方向运动,加速度的大小、方向一直不变。

人教版高一物理必修一知识点整理

人教版高一物理必修一知识点整理 【一】 一、曲线运动 (1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。 (2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。 (3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。 二、运动的合成与分解 1、深刻理解运动的合成与分解 (1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。 运动的合成与分解基本关系: 1分运动的独立性; 2运动的等效性(合运动和分运动是等效替代关系,不能并存); 3运动的等时性; 4运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。) (2)互成角度的两个分运动的合运动的判断 合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。 ①两个直线运动的合运动仍然是匀速直线运动。 ②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。 ③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。 ④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。 2、怎样确定合运动和分运动 ①合运动一定是物体的实际运动 ②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。 ③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。 3、绳端速度的分解 此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度) 4、小船渡河问题 (1)L、Vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短, (2)渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0.

物理必修二知识点归纳

2017—2018学年度下学期高一物理组 主备教师:夏春青 第五章曲线运动 一、教学目标 使学生在理解曲线运动的基础上,进一步学习曲线运动中的两种特殊运动,抛体运动以及圆周运动,进而学习向心加速度并在牛顿第二定律的基础上推导出向心力,结合生活中的实际问题对曲线运动进一步加深理解。 二、教学内容 1.曲线运动及速度的方向; 2.合运动、分运动的概念; 3.知道合运动和分运动是同时发生的,并且互不影响; 4.运动的合成和分解; 5.理解运动的合成和分解遵循平行四边形定则; 6.知道平抛运动的特点,理解平抛运动是匀变速运动,会用平抛运动的规律解答有关问题; 7.知道什么是匀速圆周运动; 8.理解什么是线速度、角速度和周期; 9.理解各参量之间的关系;10.能够用匀速圆周运动的有关公式分析和解决有关问题;11.知道匀速圆周运动是变速运动,存在加速度。12.理解匀速圆周运动的加速度指向圆心,所以叫做向心加速度;13.知道向心加速度和线速度、角速度的关系;14.能够运用向心加速度公式求解有关问题;15.理解向心力的概念,知道向心力大小与哪些因素有关.理解公式的确切含义,并能用来计算;会根据向心力和牛顿第二定律的知识分析和讨论与圆周运动相关的物理现象; 16.培养学生的分析能力、综合能力和推理能力,明确解决实际问题的思路和方法。 三、知识要点 §5-1 曲线运动 & 运动的合成与分解 一、曲线运动 1.定义:物体运动轨迹是曲线的运动。

涉及的公式: 船 v d t = m in , θsin d x = 2.条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。 3.特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。 ②运动类型:变速运动(速度方向不断变化)。 ③F 合≠0,一定有加速度a 。 ④F 合方向一定指向曲线凹侧。 ⑤F 合可以分解成水平和竖直的两个力。 4.运动描述——蜡块运动 二、运动的合成与分解 1.合运动 与分运动的关系:等时性、 独立性、等效性、矢量性。 2.互成角度的两个分运动的合运动的判断: ①两个匀速直线运动的合运动仍然是匀速直线运动。 ②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a 合为分运动的加速度。 ③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。 ④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。 三、有关“曲线运动”的两大题型(一)小船过河问题 模型一:过河时间t 最短:模型二:直接位移x 最短:模型三:间接位移x 最短: § 一、抛体运动 当v 水v 船时,L v v d x 船 水==θcos min , θ sin 船v d t = ,水 船v v = θ cos

人教版高一物理必修二知识点总结

曲线运动 一、曲线运动 (1)条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。 ①匀变速曲线运动:若做曲线运动的物体受的是恒力,即加速度大小、方向都不变的曲线运动,如平抛运动; ②变加速曲线运动:若做曲线运动的物体所受的是变力,加速度改变,如匀速圆周运动。 (2)特点: ①曲线运动的速度方向不断变化,故曲线运动一定是变速运动。 ②曲线运动轨迹上某点的切线方向表示该点的速度方向。 ③曲线运动的轨迹向合力所指一方弯曲,合力指向轨迹的凹侧。 ④当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动速率将增大;当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力的方向与速度方向的夹角为90度时,物体做曲线运动速率将不变。 2.运动的合成与分解(指位移、速度、加速度三个物理量的合成和分解) (1)合运动和分运动关系:等时性、等效性、独立性、矢量性、相关性 ①等时性:合运动所需时间和对应的每个分运动所需时间相等。 ②等效性:合运动的效果和各分运动的整体效果是相同的,合运动和分运动是等效替代关系,不能并存。 ③独立性:每个分运动都是独立的,不受其他运动的影响 ④矢量性:加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则 ⑤相关性:合运动的性质是由分运动性质决定的 (2)从已知的分运动来求合运动,叫做运动的合成;求已知运动的分运动,叫运动的分解。 ①物体的实际运动是合运动 ②速度、时间、位移、加速度要一一对应 ③如果分运动都在同一条直线上,需选取正方向,与正方向相同的量取正,相反的量取负,矢量运算简化为代数运算。如果分运动互成角度,运动合成要遵循平行四边形定则 3.小船渡河问题 一条宽度为L 的河流,水流速度为V s ,船在静水中的速度为V c (1)渡河时间最短: 设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V 1=V c sin θ,渡河所需时间为:θsin c V L t = , sin90=1当船头与河岸垂直时,渡河时间最短,c V L t = m in (与水 速的大小无关) 渡河位移:222t v L s s += (2)渡河位移最短: ①当V c >V s 时V s = V c cos θ渡河位移最短L s =min ;渡河时间为θ sin v L t = 船头应指向河的上游,并与河岸成一定的角度θ=arccosV s /V c ②当V c >V s 时以V s 的矢尖为圆心,以V c 为半径画圆,当V 与圆相切时,α角最大,V c =V s cos θ,船头与河岸的夹角为:θ=arccosV c /V s 。 渡河的最小位移:L V V L s c s ==θcos

高中物理必修1精品教案全册

绪言·物理学与人类文明 教学目标 通过演示与讲解,让学生对物理学有大致的了解:了解物理学研究哪些问题;了解物理学与其他科学和技术的关系;了解物理学对人类文明所起的作用。通过让学生课后讨论、写读后感的形式,理解为什么要学习高中物理以及怎样才能学好高中物理,为今后深入学习作好思想准备与方法准备。 教具 计算机、大屏幕、投影仪。 教学过程 自我介绍。祝贺同学们升入高中阶段学习。我很高兴能教你们的物理课,我愿意和大家一起努力,为实现你们的理想目标而同甘共苦。第一节物理课是绪论课,题目是:物理学与人类文明。主要讲三个问题:一是了解物理学研究哪些问题;二是了解物理学与其他科学和技术的关系;三是了解物理学对人类文明所起的作用。 1、物理学 物理学是一门自然科学。它起始于伽利略和牛顿的年代。经过三个多世纪的发展,它已经成为一门有众多分支的、令人尊敬和热爱的基础科学。 在远到宇宙深处,近至咫尺之间,大到广表苍穹,小到微观粒子的浩瀚而又精细的时空中,物理学研究物质存在的基本形式,以及它们的性质和运动规律。物理学还研究物质的内部结构,在不同层次上认识物质的各种组成部分及其相互作用,以及它们运动和转化的规律。因此,说物理学是关于“万物之理”的学问并不为过。 物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。由于自然界并不自动地展现其背后的本质、规律和内在联系,所以物理学又是极富洞察力和想像力的科学。在物理学研究中形成的基本概念和理论、基本实验方法和精密测试技术,已经越来越广泛地应用于其他学科,进而极大地丰富了人类对物质世界的认识,极大地推动了科学技术的创新和革命,极大地促进了物质生产的繁荣与人类文明的进步。 2、物理学与其他科学 物理学的发展,促进了技术的进步,引发了一次又一次产业革命。现代物理学更是成为高新科技的基础。 通过大屏幕,投影教材上的图片(图0-1到图0-8)、或播放有关视频、课件(《神奇的太空使者》)。 通过这些精彩的图片、视频或课件,让学生初步了解物理学与其他学科的密切关系,激发学生的学习热情。 3、物理学与社会进步 物理学的发展孕育了技术的革新,促进了物质生产的繁荣,改变了人类的生产和生活方式,推动了社会进步。 通过大屏幕,投影教材上的图片(图0-9到图0-11)、或播放有关视频、课件。 通过这些精彩的图片、视频或课件,让学生初步了解物理学的发展对社会进步的巨大影响,从而激发学生的学习内动力。 4、物理学与思维观念

高中物理必修二知识点整理

德胜学校高一物理校本学案 粤教版高中物理必修二知识点汇总 时间 班级 姓名 第一章 抛体运动 一、曲线运动 1.曲线运动的速度方向 做曲线运动的物体,在某点的速度方向,就是通过这一点的轨迹的切线方向.物体在曲线运动中 的速度方向时刻在改变,所以曲线运动一定是变速运动.(说明:曲线运动是变速运动,只是说明物 体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.) 2.物体做曲线运动的条件: 物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直 线上.当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物 体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合 外力的方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小. 3.曲线运动的轨迹 做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受 合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向. 二、运动的合成与分解的方法 1.运动的合成与分解:平行四边形定则,等效分解。 2.运动分解的基本方法 (1)根据运动的实际效果将描述合运动规律的各物理量(位移、速度、加速度)按平行四边形定则分别分解,或进行正交分解. (2)两直线运动的合运动的性质和轨迹,由两分运动的性质及合初速度与合加速度的方向关系决定. ①根据合加速度是否变化判定合运动是匀变速运动还是非匀变速运动:若合加速度不变则为匀变 速运动;若合加速度变化(包括大小或方向)则为非匀变速运动. ②根据合加速度与合初速度是否共线判定合运动是直线运动还是曲线运动:若合加速度与合初速 度的方向在同一直线上则为直线运动,否则为曲线运动. ③小船过河的两类问题:最短时间过河以及最短路程过河。 如图所示,用v 1表示船速,v 2表示水速.我们讨论几个关于渡河的问题. θ sin 11s v d t v == ,船渡河的位移短直河岸),渡河时间最垂直河岸时(即船头垂当以最小位移渡河:当船在静水中的速度 1v 大于水流速度2v 时,小船可以垂直渡河,显然渡河的最小位移s 等于河宽d ,船头

最新新课标人教高中物理必修一全册学案

新课标人教版高中物理必修一全册经典教案(含有章节练习) 第一章运动的描述 §1.1 质点、参考系和坐标系 【学习目标细解考纲】 1.掌握质点的概念,能够判断什么样的物体可视为质点。 2.知道参考系的概念,并能判断物体在不同参考系下的运动情况。 3.认识坐标系,并能建立坐标系来确定物体的位置及位置变化。 【知识梳理双基再现】 1.机械运动物体相对于其他物体的变化,也就是物体的随时间的变化,是自然界中最、最的运动形态,称为机械运动。是绝对的,是相对的。 2.质点我们在研究物体的运动时,在某些特定情况下,可以不考虑物体的 和,把它简化为一个,称为质点,质点是一个的物理模型。 3.参考系在描述物体的运动时,要选定某个其他物体做参考,观察物体相对于它的位置是否随变化,以及怎样变化,这种用来做的物体称为参考系。为了定量地描述物体的位置及位置变化,需要在参考系上建立适当的。 【小试身手轻松过关】 1.敦煌曲子词中有这样的诗句:“满眼风波多闪烁,看山恰似走来迎,仔细看山山不动,是船行。”其中“看山恰似走来迎”和“是船行”所选的参考系分别是()A.船和山B.山和船C.地面和山D.河岸和流水 2.下列关于质点的说法中,正确的是() A.质点就是质量很小的物体 B.质点就是体积很小的物体 C.质点是一种理想化模型,实际上并不存在 D.如果物体的大小和形状对所研究的问题是无关紧要的因素时,即可把物体看成质点3.关于坐标系,下列说法正确的是() A.建立坐标系是为了定量描写物体的位置和位置变化 B.坐标系都是建立在参考系上的 C.坐标系的建立与参考系无关 D.物体在平面内做曲线运动,需要用平面直角坐标系才能确定其位置 4.在以下的哪些情况中可将物体看成质点() A.研究某学生骑车由学校回家的速度 B.对这名学生骑车姿势进行生理学分析 C.研究火星探测器从地球到火星的飞行轨迹 D.研究火星探测器降落火星后如何探测火星的表面 【基础训练锋芒初显】 5.在下述问题中,能够把研究对象当作质点的是() A.研究地球绕太阳公转一周所需时间的多少 B.研究地球绕太阳公转一周地球上不同区域季节的变化、昼夜长短的变化 C.一枚硬币用力上抛,猜测它落地时正面朝上还是反面朝上 D.正在进行花样溜冰的运动员 6.坐在美丽的校园里学习毛泽东的诗句“坐地日行八万里,巡天遥看一千河”时,我们感觉是静止不动的,这是因为选取作为参考系的缘故,而“坐地日行八万里”是选取作为参考系的。 7.指出以下所描述的各运动的参考系是什么? (1)太阳从东方升起,西方落下; (2)月亮在云中穿行; (3)汽车外的树木向后倒退。 8.一物体从O点出发,沿东偏北30度的方向运动10 m至A点,然后又向正南方向运动5 m至B点。(sin30°=0.5) (1)建立适当坐标系,描述出该物体的运动轨迹; (2)依据建立的坐标系,分别求出A、B两点的坐标。 【举一反三能力拓展】 9.在二战时期的某次空战中,一英国战斗机驾驶员在飞行中伸手触到了一颗“停”在驾驶舱边的炮弹,你如何理解这一奇怪的现象? 【名师小结感悟反思】 本课时学习了质点、参考系、坐标系三个基本概念,质点是重点,是理想化模型,是一种科学抽象。判断物体能否视为质点的依据在于研究问题的角度,跟物体本身的形状、大小无关。因此,分析题目中所给的研究角度,是学习质点概念的关键。 运动是绝对的,运动的描述是相对的;对同一运动,不同参考系描述形式不同。一般选大地为参考系。坐标系是建立在参考系之上的数学工具。坐标系的建立,为定量研究物体的运动奠定了数学基础。

高一物理必修二知识点总结

曲线运动 1.在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。 2.物体做直线或曲线运动的条件: (已知当物体受到合外力F作用下,在F方向上便产生加速度a) (1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。3.物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。 4.平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。 分运动: (1)在水平方向上由于不受力,将做匀速直线运动; (2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。 5.以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下. 6.①水平分速度:②竖直分速度:③t秒末的合速度 ④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角表示 7.匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。8.描述匀速圆周运动快慢的物理量 (1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上9.匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变 (2)角速度:ω=φ/t(φ指转过的角度,转一圈φ为),单位rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的 (3)周期T,频率:f=1/T (4)线速度、角速度及周期之间的关系: 10.向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。 11.向心加速度:描述线速度变化快慢,方向与向心力的方向相同,12.注意: (1)由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。 (2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。 (3)做匀速圆周运动的物体受到的合外力就是向心力。 13.离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动 万有引力定律及其应用 1.万有引力定律:引力常量G=6.67× N?m2/kg2 2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)

人教版高中物理必修一知识点大全

人教版高中物理必修一 知识点大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理学习材料 (灿若寒星**整理制作) 必修一知识点大全 1.参考系 ⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。 ⑵对同一运动,取不同的参考系,观察的结果可能不同。 ⑶运动学中的同一公式中涉及的各物理量应以同一参考系为标准,如果没有特别指明,都是取地面为参考系。 2.质点 ⑴定义:质点是指有质量而不考虑大小和形状的物体。 ⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。 ⑴物体可视为质点的主要三种情形: ①物体只作平动时; ②物体的位移远远大于物体本身的尺度时; ③只研究物体的平动,而不考虑其转动效果时。 3.时间与时刻 ⑴时刻:指某一瞬时,在时间轴上表示为某一点。

⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。 ⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)相对应。 4.位移和路程 ⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置到末位置的有向线段,其大小就是此线段的长度,方向从初位置指向末位置。 ⑵路程:路程等于运动轨迹的长度,是一个标量。 当物体做单向直线运动时,位移的大小等于路程。 5.速度、平均速度、瞬时速度 ⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移所用时间的比值,速度是矢量,它的方向就是物体运动的方向。 ⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速度,即t v x =,平均速度是矢量,其方向就是相应位移的方向。 ⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有一位置时的运动方向。 6.加速度 ⑴加速度是描述物体速度变化快慢的的物理量,是一个矢量,方向与速度变化的方向相同。 ⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度,即t v v t v a 0-=??= ⑶对加速度的理解要点:

高一物理必修二知识点总结

高一物理必修二知识点总结 【篇一】高一物理必修二知识点总结 知识构建: 考试的要求: Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。 Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。 要求Ⅰ:质点、参考系、坐标系。 要求Ⅱ:位移、速度、加速度。 一、质点、参考系和坐标系 ●物体与质点 1、质点:当物体的大小和形状对所研究的问题而言影响不大或没有影响时,为研究问题方便,可忽略其大小和形状,把物体看做一个有质量的点,这个点叫做质点。 2、物体可以看成质点的条件 条件:①研究的物体上个点的运动情况完全一致。 ②物体的线度必须远远的大于它通过的距离。 (1)物体的形状大小以及物体上各部分运动的差异对所研究的问题的影响可以忽略不计时就可以把物体当作质点 (2)平动的物体可以视为质点 平动的物体上各个点的运动情况都完全相同的物体,这

样,物体上任一点的运动情况与整个物体的运动情况相同,可用一个质点来代替整个物体。 小贴士:质点没有大小和形状因为它仅仅是一个点,但是质点一定有质量,因为它代表了一个物体,是一个实际物体的理想化的模型。质点的质量就是它所代表的物体的质量。 ●参考系 1、参考系的定义:描述物体的运动时,用来做参考的另外的物体。 2、对参考系的理解: (1)物体是运动还是静止,都是相对于参考系而言的,例如,肩并肩一起走的两个人,彼此就是相对静止的,而相对于路边的建筑物,他们却是运动的。 (2)同一运动选择不同的参考系,观察结果可能不同。例如司机开着车行驶在高速公路上以车为参考系,司机是静止的,以路面为参考系,司机是运动的。 (3)比较物体的运动,应该选择同一参考系。 (4)参考系可以是运动的物体,也可以是静止的物体。 小贴士:只有选择了参考系,说某个物体是运动还是静止,物体怎样运动才变得有意义参考系的选择是研究运动的前提是一项基本技能。 ●坐标系 1、坐标系物理意义:在参考系上建立适当的坐标系,从而,定量地描述物体的位置及位置变化。

高中物理必修1知识点归纳总结

高中物理必修1知识点归纳总结 质点:一个物体能否看成质点,关键在于把这个物体看成质点 后对所研究的问题有没有影响。如果有就不能,如果没有就可以。 不是物体大就不能当成质点,物体小就可以。例:公转的地球 可以当成质点,子弹穿过纸牌的时间、火车过桥不能当成质点 1.速度、速率:速度的大小叫做速率。(这里都是指“瞬时”,一 般“瞬时”两个字都省略掉)。 这里注意的是平均速度与平均速率的区别: 平均速度=位移/时间 平均速率=路程/时间 平均速度的大小≠平均速率 (除非是单向直线运动) 2.加速度:0t v v v a t t -?==?a ,v 同向加速、反向减速 其中v ?是速度的变化量(矢量),速度变化多少(标量)就是 指v ?的大小;单位时间内速度的变化量是速度变化率,就是v t ??, (理论上讲矢量对时间的变化率也是矢量,所以说速度的变a ,不过我们现在一般不说变化率的方向,只是谈大小:速度变化率大,速度变化得快,加速度大) 速度的快慢,就是速度的大小;速度变化的快慢就是加速度的 大小; 第三章: 3.匀变速直线运动最常用的3个公式(括号中为初速度00v =的演 变) (1)速度公式:0t v v at =+ (t v at =) (2)位移公式:2012 s v t at =+ (212s at =) (3)课本推论:2202t v v as -= (22t v as =) 以上的每个公式中,都含有4个物理量,所以“知三求一”。 只要物体是做匀变速直线运动,上面三个公式就都可以使用。但是在用公式之前一定要先判断物体是否做匀变速直线运动。常见的有刹车问题,一般前一段时间匀减速,后来就刹车停止了。所以经常要求刹车时间和刹车位移 至于具体用哪个公式就看题目的具体情况了,找出已知量,列 方程。有时候得联立方程组进行求解。在解决运动学问题中,物

高一物理必修一知识点总结及各类题型

高一物理必修1期末复习 知识点1:质点 质点是没有形状、大小,而具有质量的点;质点是一个理想化的物理模型,实际并不存在;一个物体能否看成质点,并不取决于这个物体的形状大小或质量轻重,而是看在所研究的问题中物体的形状、大小和物体上各部分运动情况的差异是否为可以忽略。 练习1:下列关于质点的说法中,正确的是( ) A .质点是一个理想化模型,实际上并不存在,所以,引入这个概念没有多大意义 B .只有体积很小的物体才能看作质点 C .凡轻小的物体,皆可看作质点 D .物体的形状和大小对所研究的问题属于无关或次要因素时,可把物体看作质点 知识点2:参考系 在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系;参考系可任意选取,同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。 练习2:关于参考系的选择,以下说法中正确的是( ) A .参考系必须选择静止不动的物体 B .任何物体都可以被选作参考系 C .一个运动只能选择一个参考系来描述 D .参考系必须是和地面连在一起 知识点3:时间与时刻 在时间轴上时刻表示为一个点,时间表示为一段。时刻对应瞬时速度,时间对应平均速度。时间在数值上等于某两个时刻之差。 练习3:下列关于时间和时刻说法中不正确的是( ) A.物体在5 s 时指的是物体在第5 s 末时,指的是时刻 B.物体在5 s 内指的是物体在第4 s 末到第5s 末这1 s 的时间 C.物体在第5 s 内指的是物体在第4 s 末到第5 s 末这1 s 的时间 D.第4 s 末就是第5 s 初,指的是时刻 知识点4:位移与路程 (1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。 (2)位移是矢量,可以用由初位置指向末位置的一条有向线段来表示。因此位移的大小等于初位置到末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。路程一定大于等于位移大小 (3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运动时,路程与 位移的大小才相等。不能说位移就是(或者等于)路程。 练习4:甲、乙两小分队进行军事演习,指挥部通过通信设备,在屏幕上观察 到两小分队的行军路线如图所示,两分队同时同地由O 点出发,最后同时到 达A 点,下列说法中正确的是( ) A .小分队行军路程s 甲>s 乙 B .小分队平均速度 V 甲>V 乙 C .y-x 图象表示的是速率v-t 图象 D .y-x 图象表示的是位移x-t 图象 知识点5:平均速度与瞬时速度 (1)平均速度等于位移和产生这段位移的时间的比值,是矢量,其方向与位移的方向相同。 (2)瞬时速度(简称速度)是指运动物体在某一时刻(或某一位置)的速度,也是矢量。方向与此时物 体运动方向相同。 练习5:物体通过两个连续相等位移的平均速度分别为v 1=10 m/s 和v 2=15 m/s ,则物体在整个运动过程中的平均速度是( ) A .12.5 m/s B .12 m/s C .12.75 m/s D .11.75 m/s 知识点6:加速度0t v v v a t t -?==? (1)加速度是表示速度改变快慢的物理量,它等于速度变化量和时间的比值(称为速度的变化率)。

高中物理必修2知识点归纳总结

必修二基本知识点 第 1 节曲线运动运动的合成与分解 一、曲线运动 1.定义:运动轨迹为曲线的运动. 2.物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上. 3.曲线运动的性质: 做曲线运动的物体,速度的方向时刻改变,故曲线运动一定是变速运动,即必然具有加速度. 4.物体做曲线运动的条件: (1)从动力学角度看:当物体所受合力的方向与它的速度方向不在同一条直线上时,物体做曲线运动. (2)从运动学角度看:物体的加速度方向与它的速度方向不在同一条直线上时,物体做曲线运动. 5.曲线运动的类型 (1)匀变速曲线运动:合力(加速度)恒定不变.如平抛运动 (2)非匀变速(变加速)曲线运动:合力(加速度)变化.如圆周运动 6.合力与轨迹关系:合力指向轨迹弯曲的凹测,轨迹介于合力与速度的方向之间,如图: 7.速率变化情况判断: (1)当合力方向与速度方向的夹角为锐角时,速率增大; (2)当合力方向与速度方向的夹角为钝角时,速率减小; (3)当合力方向与速度方向垂直时,速率不变. 二、运动的合成与分解 1.分运动和合运动: 一个物体同时参与几个运动,参与的这几个运动即分运动,物体的实际运动即合运动. 2.运动的合成:已知分运动求合运动,包括位移、速度和加速度的合成. 3.运动的分解:已知合运动求分运动,解题时应按实际“效果”分解或正交分解. 4.运算法则:位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则. 5.合运动和分运动的关系: 1

(1)等时性:合运动与分运动经历的时间相等. (2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响. (3)等效性:各分运动叠加起来与合运动有完全相同的效果. (4)同一性:分运动与和运动由同一物体参与,合运动一定是物体的实际运动. 5.分解步骤 (1)确定合运动方向(实际运动方向). (2)分析合运动的运动效果(例如蜡块的实际运动从效果上就可以看成在竖直方向匀速上升和在水平方向随 管移动). (3)依据合运动的实际效果确定分运动的方向. (4)利用平行四边形定则、三角形定则或正交分解法作图,将合运动的速度、位移、加速度分别分解到分运 动的方向上. 三、小船渡河模型 1.模型特点:两个分运动和合运动都是匀速直线运动,其中一个分运动的速度大小、方向都不变,另一分运动的速度大小不变,研究其速度方向不同时对合运动的影响.这样的运动系统可看做小船渡河模型. 2.模型分析: (1)船的实际运动是水流的运动和船相对静水的运动的合运动. (2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度). (3)两个极值: ①过河时间最短:v 1⊥v 2,t m i n = d (d 为河宽). v 1 ②过河位移最小:v ⊥v 2(前提 v 1>v 2),如图甲所示,此 v 2 时x m i n =d ,船头指向上游与河岸夹角为α,c o s α= ;v 1⊥ v 1 v (前提v <v ),如图乙所示.过河最小位移为:x = d v 2 1 2 m i n = d . s i n α v 1 第二节:平抛运动

高中物理必修一知识点整理

高中物理必修一知识点整理 高中物理必修一知识点整理 运动的描述质点、参考系和坐标系质点定义:有质量而不计形状和大小的物质。参考系定义:用来作参考的物体。坐标系定义:在 某一问题中确定坐标的方法,就是该问题所用的坐标系。时间和位 移时刻和时间间隔在表示时间的数轴上,时刻用点表示,时间间隔 用线段表示。路程和位移路程物体运动轨迹的长度。位移表示物体(质点)的位置变化。从初位置到末位置作一条有向线段表示位移。矢量和标量矢量既有大小又有方向。标量只有大小没有方向。直线 运动的位置和位移公式:x=x1-x2运动快慢的描述速度坐标与坐标 的变化量公式:t=t2-t1速度定义:用位移与发生这个位移所用时 间的比值表示物体运动的快慢。公式:v=x/t单位:米每秒(m/s) 速度是矢量,既有大小,又有方向。速度的大小在数值上等于单位 时间内物体位移的大小,速度的方向也就是物体运动的方向。平均 速度和瞬时速度平均速度物体在时间间隔内的平均快慢程度。瞬时 速度时间间隔非常非常小,在这个时间间隔内的平均速度。速率瞬 时速度的大小。第四节实验:用打点计时器测速度电磁打点计时器 电火花计时器练习使用打点计时器用打点计时器测量瞬时速度用图 象表示速度速度时间图像(v-t图象):描述速度v与时间t关系 的图象。第五节速度变化快慢的描述加速度加速度定义:速度的变 化量与发生这一变化所用时间的.比值。公式:a=v/t单位:米每二 次方秒(m/s2)加速度方向与速度方向的关系在直线运动中,如果 速度增加,加速度的方向与速度的方向相同;如果速度减小,加速 度的大方向与速度的方向相反。从v-t图象看加速度从曲线的倾斜 程度就饿能判断加速度的大小。高中一年级物理必修一知识点就为 大家介绍到这里,希望对你有所帮助。

(人教版)高中物理必修一(全册)课时练习配套全集

(人教版)高中物理必修一(全册)课时练习配套全集 第一章第1节质点参考系和坐标系 课后强化演练 一、选择题 1.下列关于质点的叙述中正确的是( ) A.质点是真实存在的 B.原子很小,所以原子就是质点 C.质点是一种忽略次要因素的理想化模型 D.地球的质量和体积都很大,所以不能看做质点 解析:质点是忽略了物体的形状和大小而假想的有质量的点,是一种忽略次要因素的理想化模型.因此A错误,C正确.原子虽然很小,但是在研究其内部结构时,不能将原子看成质点.B错误.地球的质量和体积虽然很大,但在研究地球的公转时地球本身的形状和大

小可以忽略,地球可以看成质点,D错误. 答案:C 2.(2013~2014学年中山一中月考)在研究下列问题时,可以把汽车看作质点的是( ) A.研究汽车通过某一路标所用的时间 B.研究汽车在斜坡上有无翻倒的危险 C.研究汽车过桥时,可将汽车看作质点 D.计算汽车从天津开往北京所用的时间 解析:研究汽车通过某一路标所用的时间,汽车的长度对研究的结果有很大的影响,故汽车不能看作质点,选项A错误;研究汽车在斜坡上有无翻倒的危险时,汽车的形状对结果影响很大,故选项B错误;研究汽车过桥时,汽车的长度和桥的长度相比,不能认为远小于桥的长度,故此种情况下,汽车不能看作质点,选项C错误;研究汽车从天津天往北京所用时间时,汽车的长度可忽略不计,汽车可以看做质点,故选项D正确. 答案:D 3.(2013~2014学年洛阳市高一期中考试)甲、乙、丙三人各乘一个热气球,甲看到楼房在下降,乙看见甲、丙都在下降,丙看见甲、乙都在上升,则甲、乙、丙相对地面的运动情况可能的是( ) A.甲、乙上升,丙静止B.甲、乙上升,丙下降 C.乙、丙上升,甲下降D.甲、丙上升,乙下降 解析:以楼房为参考系,甲在上升,楼房相对地面是静止的,所以以地面为参考系,甲在上升;乙看到甲在下降,由此可知以地面为参考系乙也在上升;丙看见甲、乙都在上升,说明丙相对地面可能静止,可能相对地面下降,也可能相对地面上升,故选项A、B正确.答案:AB 4.《西游记》中,常常有孙悟空“腾云驾雾”的镜头,即使在科技日新月异的今天通常也采用“背景拍摄法”:让“孙悟空”站在平台上,做着飞行的动作,在他的背后展现出蓝天和急速飘动的白云,同时加上烟雾效果;摄影师把人物动作和飘动的白云及下面的烟雾等一起摄入镜头.放映时,观众就感受到“孙悟空”在“腾云驾雾”.这时,观众所选的参考系是( )

高中物理必修一知识点总结 (1)

物理(必修一)——知识考点归纳 考点一:时刻与时间间隔的关系 时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。如: 第4s末、4s时、第5s初……均为时刻;4s内、第4s、第2s至第4s内……均为时间间隔。 区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。 考点二:路程与位移的关系 位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小 ..。 ..等于路程。一般情况下,路程≥位移的大小

考点五:运动图象的理解及应用 由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x -t 图象和v —t 图象。 1. 理解图象的含义: (1)x -t 图象是描述位移随时间的变化规律 (2)v —t 图象是描述速度随时间的变化规律 2. 明确图象斜率的含义: (1) x -t 图象中,图线的斜率表示速度 (2) v —t 图象中,图线的斜率表示加速度 考点一:匀变速直线运动的基本公式和推理 1. 基本公式: (1) 速度—时间关系式:at v v +=0 (2) 位移—时间关系式:202 1at t v x + = (3) 位移—速度关系式:ax v v 22 02=- 三个公式中的物理量只要知道任意三个,就可求出其余两个。 利用公式解题时注意:x 、v 、a 为矢量及正、负号所代表的是方向的不同。 解题时要有正方向的规定。 2. 常用推论: (1) 平均速度公式:()v v v += 02 1 (2) 一段时间中间时刻的瞬时速度等于这段时间内的平均速度:()v v v v t += =02 2 1 (3) 一段位移的中间位置的瞬时速度:2 2 202 v v v x += (4) 任意两个连续相等的时间间隔(T )内位移之差为常数(逐差相等): ()2aT n m x x x n m -=-=? 考点二:对运动图象的理解及应用 1. 研究运动图象: (1) 从图象识别物体的运动性质 (2) 能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义 (3) 能认识图象的斜率(即图象与横轴夹角的正切值)的意义 (4) 能认识图象与坐标轴所围面积的物理意义 (5) 能说明图象上任一点的物理意义

相关主题
文本预览
相关文档 最新文档