当前位置:文档之家› 纳米氧化锆在陶瓷中应用专利

纳米氧化锆在陶瓷中应用专利

纳米氧化锆在陶瓷中应用专利
纳米氧化锆在陶瓷中应用专利

纳米氧化锆在陶瓷中应用专利(2)

1. 美国专利:USP20040506161

熔融和铸造高含量氧化锆VK-R50耐火制品

本发明涉及包括大于85%钇稳定纳米氧化锆VK-R50Y3(ZrO2)的耐火材料,加入涂料中有防腐、抗菌作用,提高耐磨、耐火效果。纳米二氧化锆VK-R50还可以用在高强度、高韧性耐磨制品里,如:磨机内衬、切削刀具、拉丝模、热挤压模、喷嘴、滚珠、泵零件、多种滑动部件等。纳米氧化锆粉体VK-R50烧结成的陶瓷由于其相变增韧的良好性能已成为主要的结构陶瓷之一;在纳米复合材料研究中,将纳米二氧化锆VK-R50Y1作为弥散相对基体进行增强韧化,已取得显著的效果;钇稳定氧化锆VK-R50Y3作为一种理想的电解质已被广泛地应用于固体氧化物燃料电池中。

2. 美国专利:USP198********

生产的极细的氧化锆粉末VK-R50粒径

纳米氧化锆粉末VK-R50的颗粒大小非常适合,特别是氧化锆粉末的高密度陶瓷制作是一个由氯化锆为原材料,用锆英砂制造,如生产粗四氯化锆固体,固体被解散,形成一个ZrOCl2溶液,从ZrOCl2中让晶体干燥,粉碎到所需的颗粒大小,晶体颗粒在受到控制的条件下直接氧化产生一个很好的纳米氧化锆粉末VK-R50,特别适应高密度陶瓷制作。

3. 美国专利:USP20060526460

包括AI2O3陶瓷,氧化钇,氧化锆VK-R50和氧化铪,铌和氧化钽等作出同样的方法

一种陶瓷,包括(i)Nb2O5或Ta2O5中的至少一种,(ii)Al2O3(VK-L30),Y2O3(VK-Y01),ZrO2(VK-R50)或HfO2中的至少一种或两种。本发明实施方案的陶瓷可以制造或转化成光波导,玻璃珠,物品(例如,板),纤维,粒子(例如,研磨粒子)和薄涂层。

4. 美国专利:USP198********

陶瓷的组成,包括高介电常数PbO3,氧化镧,氧化锆VK-R50和二氧化钛

披露一个陶瓷的组成内容包括高介电常数的计算公式如下:纳米氧化锆VK-R50,纳米二氧化钛VK-T25的比例界定的纳米氧化镧VK-La01,氧化铅的主要成分。

5. 美国专利:USP198********

陶瓷体的二氧化锆VK-R50和其制备方法

一种含有二氧化碳的锆,陶瓷体如果需要的话,纳米氧化铝VK-L30,纳米氧化钇VK-Y01和一个或多个稀土氧化物(如纳米氧化铈VK-Ce01)和稳定纳米氧化镁VK-Mg30和0.5-5摩尔氧化钙,5-12摩尔纳米氧化钇VK-Y01,在表面区域的纳米氧化钇VK-Y01,纳米氧化

铈VK-Ce01,纳米氧化镁VK-Mg30,氧化钙或稀土氧化物为1%至20%,比平均的内容,PSZ 型包覆层含量较高,如在一个更加稳定四方或高度层,是一个主要在立方晶钇稳定8Y纳米氧化锆VK-R50Y3中形式制备,表面烧结或只有一个已经部分钇稳定3Y纳米氧化锆

VK-R50Y1,带来了紧凑型与纳米氧化钇VK-Y01,纳米氧化铈VK-Ce01,镁、钙/或其他稀土粉末或纳米二氧化锆粉末VK-R50亲密接触,含有至少12 %摩尔的纳米氧化钇VK-Y01或其他稳定的氧化物。

6. 美国专利:USP20030477869

消防耐火陶瓷成型件,使用的规定和组成的成型件生产

本发明涉及一种具有基于(Mg)2+(Al,Cr)23+O4的尖晶石基体的煅烧耐火陶瓷模制件,其中存在基于铬刚玉或刚玉的较粗颗粒以及基于ZrO2的较粗颗粒-超细氧化锆VK-R60。

7. 美国专利:USP20050085039

氧化锆VK-R50,氧化铝陶瓷复合材料和生产方法为此

提供了一种具有优异耐磨性、硬度、强度和韧性的ZrO2-Al2O3复合陶瓷材料。该陶瓷材料由90%体积或更多的四方相纳米氧化锆VK-R50Y1或VK-R50Y2组成,且优选含有10-12mol%的纳米氧化铈VK-Ce01和纳米Al2O3 VK-L30作为稳定剂组成的稳定ZrO2。复合陶瓷材料包括分散在其中的复合粒子,每一复合粒子具有三重纳米复合结构,即其中含有微ZrO2晶粒的Al2O3晶粒被包围在ZrO2晶粒中。

8. 美国专利:USP19790084227

氧化锆VK-R50和1.5%

进程是为纳米氧化锆VK-R50铜碳酸盐解决方案,纳米氧化锆VK-R50具有抗热震性强、耐高温、化学稳定性好、材料复合性突出等特点。不仅应用于结构陶瓷和功能陶瓷领域,也应用于提高金属材料的表面特性(热传导性、抗热震性、抗高温氧化性等)。

9. 美国专利:USP199********

氧化锆VK-R50基陶瓷材料和生产方法

一种具有优异机械强度和断裂韧性的纳米二氧化锆VK-R50为主要成分的陶瓷材料,包括平均粒度5μm或更小且含有纳米CeO2 (VK-Ce01)为稳定剂的纳米ZrO2(VK-R50)晶粒为第一相;平均粒度为2μm或更小的纳米Al2O3(VK-L30)晶粒为第二相;及Al、Ce 及Mg或Ca中之一的复合氧化物晶体组成的第三相。第一相中的至少90vol%由四方晶形ZrO2(VK-R50Y1或VK-R50Y2)组成。最好是将超细Al2O3晶粒控制在1目或以下,第二阶段的平均粒径内的纳米氧化锆颗粒VK-R50按至少2%的比例分散。

氧化锆陶瓷

112 40 氧化锆陶瓷 编辑 白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。在常压下纯ZrO2共有三种晶态。氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多,氧化锆的提纯主要有氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。 目录 1简介 2种类特点 3粉体制备 4生产工艺 5应用 6增韧方法 1简介

氧化锆陶瓷,ZrO2陶瓷,Zirconia Ceramic 2种类特点 纯ZrO2为白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。世界上已探明的锆资源约为1900万吨,氧化锆通常是由锆矿石提纯制得。在常压下纯ZrO2共有三种晶态:单斜(Monoclinic)氧化锆(m-ZrO2)、四方(Tetragonal)氧化锆 (t-ZrO2)和立方(Cubic)氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化: 温度密度 单斜(Monoclinic)氧化锆(m-ZrO2) <950℃ 5.65g/cc 四方(Tetragonal)氧化锆(t-ZrO2) 1200-2370℃ 6.10g/cc 立方(Cubic)氧化锆(c-ZrO2) >2370℃ 6.27g/cc 上述三种晶态具有不同的理化特性,在实际应用为获得所需要的晶形和使用性能,通常加入不同类型的稳定剂制成不同类型的氧化锆陶瓷,如部分稳定氧化锆(partially stabilized zirconia,PSZ),当稳定剂为CaO、 MgO、Y2O3时,分别表示为Ca-PSZ、 Mg-PSZ、 Y-PSZ等。由亚稳的t- ZrO2组成的四方氧化锆称之为四方氧化锆多晶体陶瓷(tetragonal zirconia polycrysta,TZP)。当加入的稳定剂是Y2O3 、CeO2,则分别表示为Y-TZP、Ce-TZP等。 3粉体制备 氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多,氧化锆的提纯主要有氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。粉体加工方法有共沉淀法、溶胶一凝胶法、蒸发法、超临界合成法、微乳液法、水热合成法网及气相沉积法等。 4生产工艺

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

纳米陶瓷涂层的典型应用领域

纳米陶瓷涂层的一些典型应用领域: 飞机发动机、燃气轮机零部件: 热障涂层(TBC)被广泛地应用在飞机发动机、涡轮机和汽轮机叶片上,保护高温合金基体免受高温氧化、腐蚀,起到隔热、提高发动机进口温度和发动机推重比作用的一种陶瓷涂层材料。8YSZ材料被用做热障涂层材料在军用发动机已应用几十年了,它的缺点是不能突破1200o C的使用温度,但现在军用发动机的使用温度已经超过1200o C,因此急需材料方面的突破。另外,地面燃气轮机的热障涂层材料基本受制于国外,也亟待国产化。国内外研究指出含锆酸盐的双陶瓷热障涂层被认为是未来发展长期使用温度高于1200o C的最有前景的涂层结构之一。用纳米结构锆酸盐粉体喂料制备的纳米结构双陶瓷型n-LZ/8YSZ热障涂层的隔热效果明显好于其它现有涂层,与相同厚度的传统微米结构单陶瓷型8YSZ 热障涂层相比,隔热效果提高了70%。而且,纳米结构的双陶瓷型涂层具有比其它两种涂层层更好的热震性能。 军舰船舶零部件: 纳米结构的热喷涂陶瓷涂层早已广泛应用于美国海军装备(包括军舰、潜艇、扫雷艇和航空母舰)上的数百种零部件。纳米结构陶瓷涂层的强度、韧性、耐磨性、耐蚀性、热震抗力等均比目前国内外商用陶瓷涂层材料中质量好、销量大的美科130涂层的性能显著提高。有着高出1倍的韧性,高出4-8倍的耐磨性,高出1-2倍的结合强度和抗热震性能和高出约10倍的疲劳性能。表1给出了纳米结构的热喷涂陶瓷涂层在美国海军舰船上的一些典型应用。 表1 一些美国海军舰船上应用的热喷涂纳米Al2O3/TiO2陶瓷涂层 零部件船上系统基体材料使用环境 水泵轴储水槽NiCu合金盐水 阀杆主柱塞阀不锈钢蒸汽 轴主加速器碳钢盐水 涡轮转子辅助蒸汽碳钢油 端轴主推进发动机青铜盐水 阀杆主馈泵控制不锈钢蒸汽 膨胀接头弹射蒸汽装置CuNi合金蒸汽 支杆潜艇舱门不锈钢盐水 流量泵燃料油碳钢燃料油 柴油机、工程机械零部件: 高性能纳米结构陶瓷涂层可以大幅度提高材料或零部件的硬度、韧性、耐磨性、抗腐蚀性和耐高温性能,因此可广泛应用于柴油发动机、工程机械等领域。如缸体、泵轴、机轴、曲轴、凸轮轴、轴瓦、连杆瓦、柱塞、阀杆、阀座、液压支杆、缸盖、活塞销、活塞和活塞环等零部件。如:纳米陶瓷涂层来大幅度提高曲轴的抗疲劳强度、硬度和耐磨性;纳米陶瓷涂层用于活塞无疑会是最具有高性价比的工艺技术;纳米陶瓷涂层将给与主轴瓦及连杆瓦以更高的强度、硬度和韧性,显著提高其耐磨性能,极大地减小曲轴的磨损、有效地防止烧瓦、抱瓦及烧

纳米陶瓷及其主要性能简析

纳米陶瓷 及其主要性能简析 [摘要] 纳米陶瓷的超细晶粒、高浓度晶界以及晶界原子邻近状况决定了它们具有明显区别于普通陶瓷的特异性能。本文对纳米陶瓷的这些主要的特异性能进行了阐述。 [关键词] 纳米陶瓷、显微结构、晶界、扩散、烧结、强度、韧性、超塑性 [引言] 陶瓷材料作为材料的三大支柱之一 ,在日常生活及工业生产中起着举足轻重的作用。但是 ,由于传统陶瓷材料质地较脆 ,韧性、强度较差 ,因而使其应用受到了较大的限制。随着纳米技术的广泛应用 ,纳米陶瓷随之产生 ,希望以此来克服陶瓷材料的脆性 ,使陶瓷具有象金属一样的柔韧性和可加工性。英国著名材料专家 Cahn 在《自然》杂志上撰文说:纳米陶瓷是解决陶瓷脆性的战略途径。 一、纳米陶瓷及其结构简介 所谓纳米陶瓷是指在陶瓷材料的显微结构中,晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都是纳米水平的一类陶瓷。 我们知道陶瓷的烧结中粉料的粒度是重要的影响因素。粒度越小,粉粒的表面积越大,表面能越大,烧结的推动力越大;同时晶界所占体积越大,扩散越容易,因而烧结速度越快。当陶瓷中晶粒尺寸减小一个数量级,晶粒的表面积及晶界的体积亦以相应的倍数增加。如晶粒尺寸为nm 6~3,晶界的厚度为nm 2~1时,晶界的体积约占整个体积的%50。由于晶粒细化引起表面能的急剧增加。 纳米陶瓷由纳米量级的粉料烧结而成,是晶粒尺寸在nm 100~1之间的多晶陶瓷。所以结构中包含纳米量级的晶粒、晶界和缺陷。由于晶粒细化,晶界数量大幅度增加。当晶粒尺寸在nm 25以下,若晶界厚度为nm 1,则晶界处原子百分数达%50~%15,单位体积晶界的面积达32/600cm m ,晶界浓度达3 19/10cm 。 纳米陶瓷这样的特殊结构,使得其具有特殊的性能。 二、纳米陶瓷的主要性能及其简析 纳米陶瓷中纳米量级的晶粒、晶界和缺陷决定了它们具有区别于普通陶瓷的特殊性能,是纳米陶瓷性能优于普通陶瓷的根本原因所在。 1、 较低的烧结温度和较快的致密化速度

氧化锆陶瓷行业现状

氧化锆陶瓷行业现状 氧化锆陶瓷作为陶瓷中应用最广的一种材料,其计算机技术和数字化控制技术的发展促进了先进陶瓷材料工业的技术进步和快速发展,诸如自动控制连续烧结窑炉、大功率大容量研磨设备、高性能制粉粒设备等净压成型设备等先进的成套设备有利地推动了行业整体水平的提高,同时在生产效率、产品质量等方面也都明显改善,其中山东金澳科技为其行业之最。 微晶氧化锆陶瓷制品作为其它行业或的基础材料,受着其它行业发展水平的影响和限制。从目前氧化锆陶瓷的应用情况看,应用范围越来越宽,用量越来越大,特别是在防磨工程和建筑陶瓷生产方面的用量增加将更为显著。 作为结构陶瓷用的氧化锆是一个非常复杂的体系,其应用不仅取决于化学性能(纯度和组成)、而且还取决于相结构和氧化锆粉末的物理特性。其中金澳科技在这方面体现的尤为突出,其化学组成容易控制,相结构也是较容易调节的。而氧化锆来控制。在低温下存在四方相可能是受多个因素的影响(包括化学反应的阴离子杂技的影响),在四方相和母体无定型相之间的结构是类似的。在晶体中晶格应变和缺陷中心存在,没有考虑t -m转变发生是低于一个给定的颗粒尺寸。这些晶格应变和缺陷中心可能由于化学杂质存在,引起ZrO从无定型状态变成四方相的结晶体。 目前制备亚微氧化锆粉体的方法很多,常见的有共沉淀法、醇盐水解法、氧氯化锆水解法、水热法(高温水解法)、溶胶-凝胶法等, 这些方法各有特点,但也存在很多不足。如共常常法制务粉末存在严重的团聚现象,制备粉末都不能达到很细,分散性能很差,粒度分布不均匀,即使方法恰当,工艺操作合理,也不能区得最理想的粉末。在制造陶瓷时,由于粉末的流动性差,所以压制坯块均匀性差,烧结密度不高。

氧化锆陶瓷的制备工艺

氧化锆陶瓷的制备工艺 一氧化锆陶瓷的原料 氧化锆工业原料是由含锆矿石提炼出来的。 斜锆石(ZQ)— 自然界锆矿石V 锆英石(ZrO2? SiO X 二氧化锆陶瓷的提炼方法 氯化和热分解— 碱金属氧化物分解法 石灰溶解法 等离子弧法 提炼氧化锆的主要方法V 沉淀法 胶体法 水解法 喷雾热分解法J ㈠氯化和热分解法 ZrQ z SiQ+4C+4Q→ZrC4+SiC4+4CO 其中ZrC4和SiC4以分馏法加以分离,在150-18O C下冷凝出ZrC4 然后加水水解形成氧氯化锆,冷却后结晶出氧氯化锆晶体,经焙烧就得到氧化锆。 ㈡碱金属氧化物分解法 ZrQ z SiQ+NaOH→ Na2ZrO3 +Nε2SiQ+H2O

ZrO2?SiQ+Na2CQ →Na2ZrSiQ+CQ ZrQ^Q+Na2C03→ Na2ZrQ+Na2SiC3+CQ 氨①反应后用水溶解,滤去Na2SiQ3; 水 用水水解调②Na2ZrO3 →水合氢氧化物→用硫酸进行钝化→Zr5θ8(SQ)2 ?xH2O→ 氧化锆粉焙烧PH 值 ㈢石灰熔融法 CaO+ZrO ? Siθ2→ZrO2+CaSiO焙烧后用盐酸浸出除去CaSiQ3 ㈣等离子弧法锆英石砂(ZrQ?SiQ2) ZrQ2和硅酸铀 洗涤 氧化锆 ㈤沉淀法 沉淀法是在羧基氯化锆等水溶性锆盐与稳定剂盐的混合水溶液中加入氨水等碱性类物质,以获得氢氧化物共沉淀的方法。将共沉淀物干

燥后一般得到的是胶态非晶体,经500—700C左右焙烧而制成ZrQ 粉末。 ㈥胶体法 胶体法是合成粉体中各种前驱体在溶胶状态下混合均匀,而后固体从溶胶中析出的方法。 溶胶法 ①溶胶一凝胶技术②溶胶一沉淀法 金属氧化物或氢氧化物的溶胶胶体沉淀剂(在锆盐溶液中加有机化合物) 转化 在碱中共沉淀 ψ 凝胶" 由有机化合物构成的凝胶中干燥分散金属氢氧化物复合体 " 焙烧 I ψ 焙烧清除添加剂 ΨI 氧化物 Zrθ2粉末 ㈦水解法 ①醇盐水解法:将有机溶液中混合着锆和稳定剂的醇盐,进行加水分 解的方法。 ②水解法:高温、高压下,氢氧化锆在水中的溶解度大于常温、常压 ①溶胶一凝胶法②溶胶一沉淀法

纳米陶瓷技术

纳米陶瓷技术 摘要:纳米陶瓷粉体是介于固体与分子之间的具有纳米数量级尺寸的亚稳态中间物质。随着粉体的超细化,其表面电子结构和晶体结构发生变化,产生了块状材料所不具有的特殊的效应。纳米陶瓷的超细晶粒、高浓度晶界以及晶界原子邻近状况决定了它们具有明显区别于普通陶瓷的特异性能。本文对纳米陶瓷的这些主要的特异性能及其制备进行了阐述。 关键词:纳米陶瓷;性能;制备 陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。所以随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。 一、纳米陶瓷 纳米陶瓷是80年代中期发展起来的先进材料。利用纳米技术开发的纳米陶瓷材料是指在陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处在纳米水平,使得材料的强度、韧性和超塑性大幅度提高,克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁学、光学等性能产生重要影响,为替代工程陶瓷的应用开拓了新领域。 二、纳米陶瓷材料的性能研究 2.1 力学性能 研究表明当陶瓷材料成为纳米材料后,材料的力学性能得到极大改善,主要表现在以下三个方面: 1)断裂强度大大提高;2)断裂韧性大大提高;3)耐高温性能大大提高。与此同时,材料的硬度、弹性模量、热膨胀系数都会发生改变。 不少纳米陶瓷材料的硬度和强度比普通陶瓷材料高出4~5倍。在陶瓷基体中引入纳米分散相并进行复合,不仅可大幅度提高其断裂强度和断裂韧性,明显改善其耐高温性能,而且也能提高材料的硬度、弹性模量和抗热震、抗高温蠕变的性能。 2.2 低温超塑性 陶瓷的超塑性是由扩散蠕变引起的晶格滑移所致,扩散蠕变率与扩散系数成正比,与晶粒尺寸的3次方成反比,普通陶瓷只有在很高的温度下才表现出明显的扩散蠕变。而纳米陶瓷的扩散系数提高了3个数量级,晶粒尺寸下降了3个数量级,因而其扩散蠕变率较高,在较低的温度下,因其较高的扩散蠕变速率而对外界应力做出迅速反应,造成晶界方向的平移,表现出超塑性,使其韧性大为提高。

氧化锆陶瓷材料的抗热震性能分析

氧化锆陶瓷材料的抗热震性能分析 摘要:文章通过对氧化锆陶瓷材料的热膨胀性以及相变的特征进行分析,着重探讨有效利用氧化锆的相变提高氧化锆材料实际抗热震性能的具体方法,以及如何提高材料抗热震性的可行性办法。 关键词:氧化锆陶瓷材料抗热震性能 材料具有的热学性能以及力学性能决定了陶瓷材料当中热应力的大小,另外构件的几何形状以及环境的介质等也会影响陶瓷材料的热应力的大小。因此,抗热震性代表着陶瓷材料抵抗温度变化能力的大小,也肯定是它热学性能以及力学性能相对应各种受热条件时一个全面的反映。关于陶瓷材料在抗热震能力方面的研究开始于上个世纪五十年代,到目前形成了很多关于抗震性的相关评价理论,不过都在一定程度上有着片面性和局限性。 一、陶瓷材料的抗热震性具体理论分析 陶瓷材料热震破坏包括:在热冲击的循环直接作用下发生的开裂和剥落;在热冲击的作用下瞬间的断裂。基于此,有关脆性的陶瓷材料具体的抗热震性相关的评价理论也涵盖了两个观点。首先是基于热弹性的理论。其说的是材料原本的强度无法抵抗热震温差导致的热应力的时候,就造成了材料的“热震断裂”。通过这个理论,陶瓷材料需要同时具备热导率、高强度和低热膨胀系数、泊松比、杨氏弹性模量、黏度以及热辐射的系数,这样方能够具备较高的抗热震断裂能力。另外,想要提高陶瓷材料实际的抗热震能力,还可以通过对材料的热容以及密度进行适当的降低。 另一理论基于断裂力学的具体概念,也就是材料当中热弹性的应变能完全能够裂纹成核以及扩展而新生的表面需要的能量的时候,裂纹形成并且开始扩展,进而造成了材料热震的损伤。按照该理论,在抗热震损伤性能方面比较好的材料应当符合越高越好的弹性模量以及越低越好的强度。以此能够发现,以上要求和高抗热震断裂的能力具体的要求完全对立。另外,将陶瓷材料实际的断裂能提高以及对材料的实际断裂韧性进行改善,很明显有助于提高材料的抗热震的损伤能力。另外,存在一定量的微裂纹也对提高抗热震的损伤性能有很大的帮助,比如:在气孔率是10%到20%之间的非致密的陶瓷当中,热扩展裂纹的形成通常会遭受来自气孔的抵制,存在的气孔能够帮助钝化裂纹以及减小应力的集中。 作为氧化锆陶瓷材料,有着极为鲜明的常温力学的性能,熔点比较高、在化学稳定性以及热稳定性上都比较好。所以,其的使用经常处于高温的条件之下,因而其抗热震性的性能也是判断其性能的关键指标。氧化锆的许多性质都非常的特殊,比如:氧化锆能够以单料以及四方、立方这三种具体晶型共同存在,还有它特殊的相变特性,这么多特性都可以被我们所利用,用来提高其热膨胀的行为,加强其的抗热震方面的性能。

氧化锆陶瓷

氧化锆陶瓷 一.简介 1.氧化锆的性质: (1)含锆的矿石:斜锆石(ZrO2),锆英石(ZrO2 ·SiO2); (2)颜色:白色(高纯ZrO2);黄色或灰色(含少量杂质的ZrO2),常含二氧化铪杂质;(3)密度:5.65~6.27g/cm3; (4)熔点:2715℃。 (5)氧化锆具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。 2.氧化锆晶型转化和稳定化处理: 在常压下纯ZrO2共有三种晶态:单斜(Monoclinic)氧化锆(m-ZrO2)、四方(Tetragonal)氧化锆(t-ZrO2)和立方(Cubic)氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化,如表1。ZrO2四方相与单斜相之间的转变是马氏体相变,由于四方相转变为单斜相时有3~5%的体积膨胀和7~8%的切应变。因此,纯ZrO2制品往往在生产过程(从高温到室温的冷却过程)中会发生t-ZrO2 转变为m-ZrO2的相变并伴随着体积变化而产生裂纹,甚至碎裂,因此无多大的工程价值。但是,当加入适当的稳定剂(如Y2O3,MgO2,CaO,CeO2等)后,可以降低c-ZrO2 t-ZrO2→m-ZrO2的相变温度,使高温稳定的c-ZrO2 和t-ZrO2相也能在室温下稳定或亚稳定存在。当加入的稳定剂足够多时,高温稳定的c-ZrO2可以一直保持到室温不发生相变。进一步研究发现氧化锆发生马氏体相变时伴随着体积和形状的变化,能吸收能量,减缓裂纹尖端应力集中,阻止裂纹的扩展,提高陶瓷韧性。因此氧化锆相变增韧陶瓷的研究和应用得到迅速发展,氧化锆相变增韧陶瓷有三种类型,分别为部分稳定氧化锆陶瓷;四方氧化锆多晶体陶瓷及氧化锆增韧陶瓷。 晶态温度密度 <950℃ 5.65g/cc 单斜(Monoclinic)氧化锆 (m-ZrO2) 四方(Tetragonal)氧化锆 1200-2370℃ 6.10g/cc (t-ZrO2) 立方(Cubic)氧化锆(c-ZrO2) >2370℃ 6.27g/cc 表1 在常压下纯ZrO2三种晶态 (1)当ZrO2中稳定剂加入量在某一范围时,高温稳定的c-ZrO2通过适当温度下时效处理使c-ZrO2大晶粒(c相)中析出许多细小纺锤状的t-ZrO2(t相)晶粒,形成c相和t 相组成的双相组织结构。其中c相是稳定的而t相是亚稳定的并一直保存到室温。在外力诱导下有可能诱发t相到m相的马氏体相变并伴随体积膨胀,耗散部分能量、抵消了部分外力从而起到增韧作用,称为应力诱导相变增韧。这种陶瓷称之为部分稳定氧化锆,当稳定剂为CaO、MgO、Y2O3时,分别表示为Ca-PSZ、Mg-PSZ、Y-PSZ等。 (2)当ZrO2中稳定剂加入量控制在适当量时可以使t-ZrO2以亚稳状态稳定保存到室温,那么块体氧化锆陶瓷的组织结构是亚稳的t- ZrO2细晶组成的四方氧化锆多晶体称之为四方氧化锆多晶体陶瓷(。在外力作用下可相变t-ZrO2发生相变,增韧不可相变的ZrO2基

纳米陶瓷的应用前景及存在的问题

纳米陶瓷的应用前景及存在的问题 学院:纺织与材料工程学院 专业班级: 学生姓名: 教师: 2013年5月19日

纳米陶瓷的发展前景及存在的问题 前言:纳米陶瓷——所谓纳米陶瓷是指陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处于纳米尺寸水平。包括晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都是纳米级。 一、纳米陶瓷的发展前景 未来纳米陶瓷发展的方向主要有以下几个方面: (1)在设备技术方面,应该向低温烧结、纳米材料的调控和复合、小型化方向发展,完善和发展陶瓷粉体、纳米陶瓷结构和性能表征方法。研究制备过程中纳米粉体的形成、生长机制及各种条件的影响、纳米粉体在化学制备过程中的团聚体形成机理等(2)在性能方面,应该向开发制备高效率、低成本、多功能和智能化的方向发展。纳米陶瓷粉体新的制备方法和工艺条件的研究与开发;开发高效率、低成本的制备技纳米陶瓷粉体新的制备方法和工艺条件的研究与开发;开发高效率、低成本的制备技术。 (3)在应用方面,应该向着智能化敏感陶瓷元件计算机用光纤陶瓷材料、计算机硬盘和高稳定性陶瓷电容器、纳米粉体对环境的污染机理等方向发展 (4)纳米粉体形成纳米陶瓷的反应机理研究;加速纳米粉体工业生产和应用的进程(5)在环境方面,研究纳米粉体对环境的污染机理,做好应用过程中的环境保护;(6)在经济方面,加速纳米粉体的工业化生产和应用进程。在21世纪,纳米陶瓷粉体将飞速发展,在各领域的应用将全面展开,并将产生一批新技术、新产品;在电子、通信等高技术领域的广泛应用,将成为经济发展的新的增长点。 二、纳米陶瓷存在的问题 (1)纳米陶瓷基础理论存在的问题: 1)纳米材料的结构、成分、制造等科学技术问题; 2)纳米材料的物理性质、化学性质及其测定方法的研究; 3)量子力学、量子化学对纳米陶瓷的结构和性质的影响; 4)纳米复相陶瓷的形成机理。 (2)纳米陶瓷应用中存在的问题: 1)纳米陶瓷材料特性产生的原理与其形成机制研究不深入; 2)在纳米陶瓷粉体的制备过程中,团聚的形成机理研究与分析不完善; 3)纳米陶瓷的烧结动力学分析和相应的物理化学反应机理研究有所欠缺; 4)未能研究开发出简便易行、生产成本较低的制备工艺。 结束语:根据上课所学的纳米陶瓷的知识,纳米陶瓷将解决陶瓷的强化和增韧问题。在生物医疗方面也应用颇多,解决纳米陶瓷最主要解决团聚问题。以及在经济中如何控制低成本产业化的问题。还有安全也是一个重要的问题,据《自然》杂志报道,纳米颗粒可以通过呼吸系统、皮肤接触、食用、注射等途径,进入人体组织内部。纳米颗粒进入人体后,由于其体积小,白由度大,反应活性高等特性,几乎不受任何阻碍就可以进入细胞,与体内细胞发生反应,引起发炎、病变等症状。同时,纳米颗粒也可能进入人的神经系统,影响大脑,导致更严重的疾病发生。纳米颗粒长期停留在人体内,同样会引发病变,如停留在肺部的石棉纤维会导致肺部纤维化。要使纳米材料的发展真正造福于人类,安全问题不可忽视。最后是环境问题,我们要研究出对环境无污染,最好能循环利用的纳米产品,使纳米材料真正服务大众。

纳米陶瓷的应用及发展趋势

纳米陶瓷的应用及发展趋势 摘要:介绍了纳米材料的特性以及纳米陶瓷的制备方法。针对纳米陶瓷特有的性能,进一步分析了纳米技术在陶瓷领域的最新应用及发展状况,并认为纳米陶瓷将在工程领域乃至日常生活中得到更广泛的应用。 关键词:纳米技术; 纳米陶瓷;前景预测 前言 当人们在研究中发现,纳米材料存在小尺寸效应、表面界面效应、量子尺寸效应及量子隧道效应等基本特性,近几十年来纳米材料备受世界各国的关注。纳米材料的这些特性使得纳米材料有着传统材料无法比拟的独特性能和极大的潜在应用价值。 传统的陶瓷材料质地较脆,韧性和强度都较差,因而使其应用受到了较大的限制。随着纳米技术的广泛应用,纳米陶瓷随之产生。所谓纳米陶瓷材料,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上。目前,虽然纳米陶瓷还有许多关键技术需要解决,但其优良的保温和高温力学性能,使其在切削刀具、轴承、汽车发动机部件等许多方面都有广泛的应用,并在许多超高温、强腐蚀等苛刻环境下起着其他材料不可替代的作用。 1纳米技术与纳米陶瓷 1.1 纳米技术与纳米复合材料 纳米技术是20 世纪90年代出现的一门新兴技术,它是在0.10- 100nm的尺度空间内,研究电子、原子和分子的运动规律和特性。纳米材料研究是目前材料科学研究的一个热点, 其相应发展起来的纳 米技术,被公认为21世纪最有前途的科研领域。在纳米材料中,纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级;高浓度晶界及晶界原子的特殊结构,导致材料的力学性能、磁性、光学性能乃至热力学性能的改变。纳米相材料与普通的金属、陶瓷和其它固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。纳米材料具有常规粗晶粒材料所不具备的奇异特性和反常特性,例如纳米铁材料的断裂应力比一般铁材料高12倍;纳米相铜的强度

氧化锆陶瓷材料在汽车上的应用

氧化锆陶瓷材料在汽车上的应用 一、陶瓷在汽车发动机上的应用 新型陶瓷是氧化锆等无机非金属烧结而成。氧化锆陶瓷与以往使用的氧化铝陶瓷相比,强度是其三倍以上,能耐1000摄氏度以上高温,新材料推进了汽车上新用途的开发。例如:要将柴油机的燃耗费降低30%以上,可以说新型陶瓷是不可缺少的材料。 现在汽油机中,燃烧能量中的78%左右是在热能和热传递中损失掉的,柴油机热效率为33%,与汽油机相比已十分优越,然而仍有60%以上的热能量损失掉。因此,为减少这部分损失,用隔热性能好的陶瓷材料围住燃烧室进行隔热,进而用废气涡轮增压器和动力涡轮来回收排气能量,有试验证明,这样可把热效率提高到48%。 氧化锆陶瓷零件 氧化锆陶瓷零件 同时,由于新型陶瓷的使用,柴油机瞬间快速起动将变得可能。采用新型陶瓷的涡轮增压器,它比当今超耐热合金具有更优越的耐热性,而比重却只有金属涡轮的约三分之一。因此,新型陶瓷涡轮可以补偿金属涡轮动态响应低的缺点。 其他正在进行研究的有:采用新型陶瓷的活塞销和活塞环等运动部件。由于重量的减轻,发动机效率可望得到提高。 二、特种敏感陶瓷在汽车传感器上应用 对汽车用传感器的要求是能长久适用于汽车特有的恶劣环境(高温、低温、振动、加速、潮湿、噪声、废气),并应当具有小型轻量,重复使用性好,输出范围广等特点。陶瓷耐热、耐蚀、耐磨及其潜在的优良的电磁、光学机能,近年来随着制造技术的进步而得到充分利用,敏感陶瓷材料制成的传感器完全能够满 足上述要求。 三、陶瓷在汽车制动器上的应用 陶瓷制动器是在碳纤维制动器的基础上制造而成的。一块碳纤维制动碟最初由碳纤维和树脂构成,它被机器压制成形,之后经过加热、碳化、加热、冷却等几道工序制成陶瓷制动器,陶瓷制动器的碳硅化合物表面的硬度接近钻石,碟片内的碳纤维结构使它坚固耐冲击,耐腐蚀,让碟片极为耐磨。目前此类技术除了在F1赛车中应用,在超级民用跑车中也有涉及,例如奔驰的CL55 AMG。 四、陶瓷在汽车减振器上的应用高级 轿车的减振装置是综合利用敏感陶瓷正压电效应、逆压电效应和电致伸缩效应研制成功的智能减振器。由于采用高灵敏度陶瓷元件,这种减振器具有识别路面且能做自我调节的功能,可以将轿车因粗糙路面引起的振动降到最低限度。 五、陶瓷材料在汽车喷涂技术上的应用 近年来,在航天技术中广泛应用的陶瓷薄膜喷涂技术开始应用于汽车上。这种技术的优点是隔热效果好、能承受高温和高压、工艺成熟、质量稳定。为达到低散热的目标,可对发动机燃烧室部件进行陶瓷喷涂,如活塞顶喷的氧化锆,缸套喷的氧化锆。经过这种处理的发动机可以降低散热损失、减轻发动机自身质量、减小发动机尺寸、减少燃油消耗量。六、智能陶瓷材料在汽车中应用 作为氧化锆陶瓷产品分类的智能陶瓷材料,其中包括在汽车制造中使用的对环境敏感且能对环境变化作出灵敏反应的材料,目前已成为材料科学及工程领域中研究的焦点。 汽车上使用的智能陶瓷产品,包括功能材料、驱动系统与反馈系统相结合的智能材料系统或结构。由于其综合性功能的发挥,可使汽车产品在行驶时感知与响应外界环境的变化,

纳米陶瓷材料的应用与发展

纳米陶瓷材料的应用与发展 新材料技术是介于基础科技与应用科技之间的应用性基础技术。而军用新材料技术则是用于军事领域的新材料技术,这部分技术是发展高技术武器的物质基础。目前,世界范围内的军用新材料技术已有上万种,并以每年5%的速 度递增,正向高功能化、超高能化、复合轻量和智能化的方向发展。常见的军用新材料技术:高级复合材料,先进陶瓷材料,高分子材料,非晶态材料,功能材料。 先进陶瓷材料是当前世界上发展最快的高技术材料,它已经由单相陶瓷发展到多相复合陶瓷,由微米级陶瓷复合材料发展到纳米级陶瓷复合材料。先进陶瓷材料主要有功能陶瓷材料和结构陶瓷材料两大类。其中,在结构材料中,人们已经研制出氮化硅高温结构陶瓷,这种材料不仅克服了陶瓷的致命的脆弱性,而且具有很强的韧性、可塑性、耐磨性和抗冲击能力,与普通热燃气轮机相比,陶瓷热机的重量可减轻 30%,而功率则提高 30%,节约燃料 50%。 陶瓷是人类最早使用的材料之一, 在人类发展史上起着重要的作用。但是, 由于传统的陶瓷材料脆性大, 韧性和强度较差、可靠性低, 使陶瓷材料的应用领域受到较大限制。随着纳米技术的广泛应用, 纳米陶瓷随之产生。所谓纳米陶瓷, 是指陶瓷材料的显微结构中, 晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都是在纳米级的水平上。纳米陶瓷复合材料通过有效的分散、复合而使异质纳米颗粒均匀弥散地保留于陶瓷基质结构中, 这大大改善了陶瓷材料的韧性、耐磨性和高温力学性能。纳米陶瓷材料不仅能在低温条件象金属材料那样可任意弯曲而不产生裂纹, 而且能够象金属材料那样进行机械切削加工甚至可以做成陶瓷弹簧。纳米陶瓷材料的这些优良力学性能, 使其在切削刀具、轴承、汽车发动机部件等多方面得到广泛应用并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用。纳米陶瓷在人工关节、人工骨、人工齿以及牙种植体、耳听骨修饰体等人工器官制造及临床应用领域有广阔的应用前景。此外, 纳米陶瓷的高磁化率、高矫顽率、低饱和磁矩、低磁耗, 特别是光吸收效应都成为材料开拓应用的新领域, 是当今材料科学研究的热点。 表1 纳米陶瓷材料力学性能的改善

氧化锆陶瓷在口腔修复中的应用

氧化锆陶瓷在口腔修复中的应用 发表时间:2016-05-11T10:05:54.550Z 来源:《心理医生》2015年16期供稿作者:钱晨 [导读] 江苏泰兴新时代口腔门诊部自从上世纪90年代陶瓷材料应用于口腔修复科以来,因其在美观性,生物相容性,热稳定性。 钱晨 (江苏泰兴新时代口腔门诊部江苏泰兴 225411) 【摘要】目的:研究氧化锆陶瓷应用于口腔修复治疗中的优势及注意事项。方法:45例患者(50颗患牙),分为对照组和观察组2组,对照组采用普通金属陶瓷修复,观察组采用氧化锆陶瓷修复,对2组患者修复后6个月至24个月内的复诊记录进行分析。结果:观察组的疗效和患者满意度效果明显好于对照组,差异具有统计学意义(P<0.01)。结论:在口腔修复治疗中,氧化锆陶瓷修复体更具优势,值得进一步推广使用。 【关键词】氧化锆陶瓷;普通金属陶瓷;口腔修复;优势 【中图分类号】R782 【文献标识码】A 【文章编号】1007-8231(2015)16-0085-02 自从上世纪90年代陶瓷材料应用于口腔修复科以来,因其在美观性,生物相容性,热稳定性,耐腐蚀性等各方面的优势,受到广大医生和患者的青睐。一般的陶瓷修复体都是使用金属内冠与釉面瓷层结合。随着时间的累积和临床使用病例的增加,普通金属陶瓷修复体的缺点与其局限性也展露出来,近年来,氧化锆陶瓷修复体在临床应用越来越广泛,本文今天这项研究,是比较了普通金属陶瓷修复体和氧化锆陶瓷修复体在进行口腔修复治疗后,6个月至24个月内出现的不良反应,并发症,对这两种修复材料的效果进行探讨。 1.资料和方法 1.1 基本资料 选择自2013年5月~2013年11月期间来我院就诊的患者,共计45例(50颗患牙),男性患者23例,女性患者22例,年龄19~55岁,平均年龄(29.1±17.3)岁。前牙区患牙29颗,后牙区患牙21颗,连桥修复10颗,其余40颗全为单冠修复。为了尊重患者意愿,患者自行选择分组,观察组患者25例,男性10例,女性15例,平均年龄(32.44±9.87)岁,患牙共计28颗。对照组20例,男性13例,女性7例,平均年龄(40.15±8.76)岁,患牙共计22颗。2组间的患者年龄,性别,患牙部位,数量差异不具备统计学意义(P>0.05)。纳入标准:(1)患者无对颌牙缺失,或者咬合功能紊乱,牙周组织健康,无牙槽骨吸收,口腔卫生习惯良好。(2)牙冠缺损,氟斑牙,四环素牙,但已经进行完善的根冠治疗或者是正常活髓牙,1°松动以下。(3)X线片显示无其他炎症,且符合常规陶瓷固定桥适应症。后期观察组采用氧化锆陶瓷修复体进行修复,对照组采用普通金属陶瓷修复体进行修复。 1.2 治疗程序和方法 1.2.1根据各个不同患牙的牙位及解剖形态进行牙体制备,近远中侧,唇侧,舌侧间隙约为1~1.5mm,切端轴面约1.5mm,肩台清晰,确保牙体制备无倒凹,线条圆滑,使用排龈线进行牙龈预备,龈沟深度约为1~1.5mm。使用硅橡胶进行印模,超硬石膏灌注模型,自然光线下,使用VITA比色板进行比色,并制作临时修复体对基牙进行保护。 1.2.2加工厂制作完成修复体后给患者进行试戴,检查修复体的形态,颜色,牙龈边缘密合程度,邻牙间隙松紧度,调整到最佳咬合情况。患者满意后,使用3M玻璃离子水门汀或者是3M树脂进行粘结,抛光。 1.2.3嘱患者保持口腔卫生,避免用患牙拒绝过硬食物,出现问题随诊,若无问题则按照6个月,12个月,24个月的时间点进行复诊。 1.3 观察指标 参照改良的美国公共卫生署评价标准[1](The Modified U.S.Public Health Service Criteria , USPHS)对修复体进行评价检查,从继发龋、牙龈情况(有无牙龈变色),边缘适合性(有无牙龈萎缩)、颜色匹配(是否发生变色),修复体完整性(崩瓷,脱落)这几个方面进行判断。全部达标为治疗成功。 1.4 统计学分析 采用SPSS17.0软件处理全部数据,以单颗牙为单位,计数资料使用χ2检验。计量资料使用x-±s表示,采用t检验P<0.01为差异具有统计学意义。 2.结果 经过修复结束后24个月的对比,观察组的成功率为92.85%,对照组的成功率为63.64%,观察组的成功率明显高于对照组,对照组失败病例出现的时间也早于观察组,差异也具有统计学意义(P<0.01),详细数据请见附表(1-2)。 3.讨论 本次研究发现,氧化锆陶瓷修复优势主要表现在以下几个方面:(1)因其不含金属成分,在口腔内酸碱环境下更耐腐蚀,不会有金属离子氧化析出,刺激牙龈变色,萎缩,可长时间的保持其修复体边缘密合性,降低继发龋发生概率。(2)氧化锆全瓷修复体是采用 CAD/CAM系统制作,可以达到最佳的精确度,所以只要模型精确,都能做到轻松就位[2],且精密度非常高,降低了失败率,制作过程中也

纳米陶瓷的制备与应用

第23卷第3期20∞年6月黔东南民族师范高等专科学校学报Jo啪al0fS0utheastGlli出ouNatiorlalTe8ch一8CoⅡegeVd.23No.3Jun.20Q5 纳米陶瓷的制备与应用 杨章富,邹勇 (黔东南民族师范高等专科学校化学系,贵州凯里556000) 【摘要】蚋米陶瓷改变了传统陶瓷的脆性,大幅度提高了材料的强度、硬度、韧性和超塑性.综述了近年国内外纳米陶瓷的性能、稍备工艺.提出目前在生产纳米陶瓷工艺上存在的主要问题及应用前景. [关奠词]蚋米陶瓷;嗣备工艺;应用 【中圈分类号】m174.75+8【文献标识码】A【文章编号】1002—699“2005)03—00019—02 hlcorporateapplicationandthe preparation0fnan0porcelmn YANGZhang—fu,ZOUY0ng (及卵,由,l耐矿洲l竹,s口舳国谢船Ⅳa砌础弛∞恼75蝴,肠讲,556000,‰)Ah嘶t:hlcorporatetheh丑lrdIne稻,t伽旧city蚰dSt尬ngtlltllatn8noporcelainchange8tllebrittleness0f训itioIl8l porcel8in,rai8髓mateIial鲫.bst蛐tially砒lde舶∞dpl龉ticity.Smm瑚d∞illrecemyea璐dom洲c姐diIltem撕伽Ialil地orpomteplqHu碰ontecllIlolo舒舡ldtlle劬ction0fnanoporcelain.Sllgg鹪ttll砒nawi8produciIlgtoill∞Ipomte印plicationpmspect舢ldmee】【istemmajorpmblemonrl锄potterstm. 1妯ywords:IIlcorpomteapplicalion;nanoporcelain;pr印蹦ti∞ 所谓纳米陶瓷是指在显微结构中物相所具有的纳米级尺度的陶瓷材_|辟,就是说晶粒尺寸,晶界的宽度,第二相分布,缺陷尺寸等都是在纳米量级的水平上,它被认为是陶瓷研究发展的第三个台阶[I】.晦瓷粉料颗粒大小决定了陶瓷材料的徽观结构和宏观性能[2】.纳米陶瓷的力学性能,包括纳米陶瓷材料的硬度、断裂韧度和低温延展性等,在高温下其硬度、强度比普通尚瓷有较大提高,有助于解决陶瓷的强度和增韧问题.对纳米晶粒Si02进行研究表明[,J,纳米陶瓷具有在较低温度下烧结就能达到致密化的优越 性.1998年址i等人用纳米碳化硅来补强氮化硅陶瓷使氮化硅陶瓷的力学性能显著改善【4】.许多纳米陶瓷材料的硬度和强度比普通陶瓷材料高出4—5倍b】.在100℃下,纳米Ti02陶瓷的显微硬度为1300k∥—n2,而普通n02陶瓷的显徽硬度低于200k∥衄2.纳米陶瓷的晶粒尺寸极小,纳米材料具有极大的晶面,晶面的原子排列混乱。纳米晶粒易在其他晶粒上运动,使纳米陶瓷在受力时易于变形而不呈现臆性,而表现出一定的延展性和较好的韧性.纳米材料中有大量的界面,这些界面原子提供了短程扩散途径及较高的扩散速率,材料的烧结驱动力也随之剧增,加速了整个烧结过程,使得烧结温度大幅度降低.纳米晶体的自扩散率为传统晶体扩散率的10“至lO”倍,使纳米材料的固态反应可以在室温或低温下进行.纳米材料中利用晶界表面的不饱和链,造成沿晶界方向的平移,实现纳米陶瓷的超塑性【6-7】.由于纳米陶瓷硬度高、耐高温、耐磨损、质量轻和导热性好,使得它成为现代工业的基本材料之一. 1纳米冉瓷的崩备工艺 1.1气相合成法 气相合成法主要有热化学气相反应法,激光气相法和等离子体气相合成法. 1.I.I热化学气相反应法(cvD法).cvD法是目前世界上用于制 备纳米粉体的常用方法,cvD法稍备纳米粉体工艺是一个热化学 气相反应和形核生长的过程.在高于热力学计算,临界反应温度条件下,反应产物的蒸气形成很高的过饱和蒸气压,使得反应产物自动凝聚形成大量的核,这些核在加热区不断地长大聚积成颗粒,在合适的温度下会晶化成为徽晶.随着载气气流的输运和真空的抽送,反应产物迅速离开加热区进入低温区,颗粒生长、聚集、晶化过程停止,最后进入收集室收集起来,就可以获得所需的纳米粉体.此工艺过程可通过调节浓度、流速、温度和组成比例等工艺参数获得最佳工艺条件,实现对纳米粉体组成、形貌、尺寸和晶相等的控制.cvD法可制备出Sic,si3N4等单相粉体,并且被用来制备各种复合粉体.能制备出小于35姗的无定形Sic/si3N4纳米粉体,且做到sic/si3N‘比例可调,该设备简单,采用电阻炉外加热方式,通 【收稿日期】2004~06一16 [作者简介】杨章富(198l一),男,贵州剑河人,黔东南民族师范高等专科学校化学系Ol(本)学生;邹勇,黔东南民族师范高等专科学校化学系副教授,指导教师.  万方数据

纳米陶瓷材料

纳米陶瓷原理与应用 利用纳米技术开发的纳米陶瓷材料是利用纳米粉体对现有陶瓷进行改性,通过往陶瓷中加入或生成纳米级颗粒、晶须、晶片纤维等,使晶粒、晶界以及 他们之间的结合都达到纳米水平,使材料的强度、韧性和超塑性大幅度提高。 纳米陶瓷是由纳米陶瓷粉体烧结而成。纳米陶瓷粉体是介于固体与分子 之间的具有纳米数量级( 1~ 100 nm) 尺寸的亚稳态中间物质。随着粉体的超细化, 其表面电子结构和晶体结构发生变化,产生了块状材料所不具有的特 殊效应。具体地说纳米粉体材料具有以下的优良性能。 1.极小的粒径、大的比表面积和高的化学性能, 可以显著降低材料的烧结致密化程度、节约能源。 2.使陶瓷材料的组成结构致密化、均匀化, 改善陶瓷材料的性能, 提 高其使用可靠性。 3.可以从纳米材料的结构层次( 1~ 100 nm)上控制材料的成分和结构, 有利于充分发挥陶瓷材料的潜在性能。 另外, 陶瓷粉料的颗粒大小决定了陶瓷材料的微观结构和宏观性能。如 果粉料的颗粒堆积均匀,烧结收缩一致且晶粒均匀长大, 那么颗粒越小产生的缺陷越小, 所制备材料的强度就相应越高, 这就可能出现一些大颗粒材料所不具 备的独特性能。 纳米陶瓷具有的独特性能, 如做外墙用的建筑陶瓷材料则具有自清洁和防雾功能。纳米陶瓷具有广谱吸波效果, 不仅能吸收和反射红外光, 还能吸 收高频雷达波和屏蔽通讯波段的电磁波。纳米陶瓷的红外反射率可 达0. 3~ 0. 95 范围, 根据需要广范围可调, 其对高频电磁波的吸收 波率和透波特性也广范围可调, 不仅可用于军工攻防武器装置和重要军事设施, 还可用于高层建筑及医院外墙涂料的大面积电磁波屏蔽材料。纳米陶瓷发光材料, 尤其是长余辉发光材料, 涂在室外墙体上, 可在天黑后持续发光十小时

二氧化锆陶瓷的制备及性能分析

特种陶瓷综合论文 院(部、中心)材料科学与工程学院 姓名 x x x 学号 xxx 专业材料科学与工程班级 xx 课程名称特种陶瓷材料综合论文 设计题目名称氧化锆陶瓷的制备及性能分析 起止时间 成绩 指导教师 xxx大学教务处制

目录 一、氧化锆的基本性质及应用 (1) 1.1氧化锆的基本性质 (1) 1.2氧化锆的应用 (1) 二、氧化锆粉料的制备 (1) 2.1常用微粉 (2) 2.2 超细粉制备 (2) 三、氧化锆陶瓷的成型 (4) 3.1 热压铸成型 (4) 3.2 干压成型 (4) 3.3 等静压成型 (6) 3.4注浆成型 (6) 3.5流延成型 (6) 3.6凝胶注模成型 (7) 四、氧化锆陶瓷的烧结 (7) 4.1 真空烧结炉 (8) 4.2实验室烧结炉 (10) 五、氧化锆陶瓷的性能测试 (11) 5.1体积密度、吸水率和气孔率的测定 (11) 5.2 抗压强度的测定 (12) 5.3 三点抗弯强度 (12) 5.4 SEM 测试分析 (12)

一、氧化锆的基本性质及应用 1.1氧化锆的基本性质 氧化锆是自然界中以斜锆石存在的一种矿物,是一种耐高温、耐磨损、耐腐蚀的无机非金属材料。它的熔点高达2700摄氏度。白色重质无定形粉末,无臭、无味。溶于2份硫酸和1份水的混合液中,微溶于盐酸和硝酸,慢溶于氢氟酸,几乎不溶于水。有刺激性。相对密度5.85。熔点 2680℃。沸点4300℃。硬度次于金刚石[1]。能带间隙大约为5-7eV 。一般常含有少量的氧化铪。化学性质不活泼,且高熔点、高电阻率、高折射率和低热膨胀系数的性质,使它成为重要的耐高温材料、陶瓷绝缘材料和陶瓷遮光剂。纯的ZrO 2在常压下共有三种晶型:从低温到高温一次为单斜相、四方相、和立方相。氧化锆晶型转变如下:[2] 221170℃2370℃t 2 950℃m ZrO ZrO c ZrO --- 1.2氧化锆的应用 主要用于压电陶瓷制品、日用陶瓷、耐火材料及贵重金属熔炼用的锆砖、锆管、坩埚等。也用于生产钢及有色金属、光学玻璃和氧化锆纤维。还用于陶瓷颜料、静电涂料及烤漆[3]。 氧化锆还是一种很优秀的高科技生物材料。生物相容性好,优于各种金属合金,包括黄金。氧化锆全瓷牙具有极高的密合性,且对牙龈无刺激、无过敏反应,很适合应用于口腔。导热性能极低,仅为黄金的十七分之一,更有利于牙髓的保护。质量轻,密度仅为黄金的四分之一,患者佩戴更舒适。 二、氧化锆粉料的制备 氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多。氧化锆的提纯主要有氯化和热分解法、碱

相关主题
文本预览
相关文档 最新文档