当前位置:文档之家› The physical nature of thermal anomalies observed before strong earthquakes

The physical nature of thermal anomalies observed before strong earthquakes

The physical nature of thermal anomalies observed before strong earthquakes
The physical nature of thermal anomalies observed before strong earthquakes

The physical nature of thermal anomalies observed before

strong earthquakes

S.A.Pulinets a,*,D.Ouzounov b ,A.V.Karelin c ,

K.A.Boyarchuk c ,L.A.Pokhmelnykh d

a

Institute of Geophysics,UNAM,Mexico City,Mexico

b

NASA Goddard Space Flight Center/SSAI,Greenbelt,Maryland,USA

c

IZMIRAN,Russian Academy of Sciences,Troitsk,Russia

d

ELAT Company,Mexico City,Mexico

Accepted 6February 2006Available online 24May 2006

Abstract

The paper examines the e?ect of air ionization on the thermal balance of the boundary layer of atmosphere.In seismically active areas the increased radon emanation from active faults and cracks before earthquakes is the primary source of air ionization.The problem is analyzed both on microscopic and macroscopic levels and in both cases the signi?cant changes of the air relative humidity and air tem-perature are obtained.This happens due to the water molecules attachment to the newly formed ions (or in other words,condensation)which leads to the excretion of the latent heat.Obtained results permit us to explain the changes of the surface temperature and the sur-face latent heat ?ux increase before earthquakes observed by remote sensing satellites,as well as ground based measurements of the air temperature and relative humidity variations before the Colima earthquake (M7.6)of 2003in Mexico,Hector Mine earthquake (M7.1)of 1999in USA and Park?eld earthquake (M6)of 2004in USA.These ?ndings are also supported by the results of active experiments where the installation of arti?cial ionization of atmosphere is used.ó2006Elsevier Ltd.All rights reserved.

Keywords:Air ionization;Radon;Latent heat;Thermal anomaly;Earthquake

1.Introduction

Thermal anomalies observed within the area of earth-quake preparation a few days before the seismic shock (Tronin,1999;Tramutoli et al.,2001;Tronin et al.,2004)usually were interpreted as the thermal ?ux deposited from the earth’s crust in seismically active areas (Ouzounov and Freund,2004).But discovered recently by Dey and Singh (2003)anomalous variations of the surface latent heat ?ux (SLHF)before earthquakes,involve the variations of air humidity which cannot be explained by the heat deposit from the crust and requires other interpretation.One can ?nd the methodology of the latent heat estimation from

remote sensing data in Schulz et al.(1997).At the same time the IR sensors used by remote sensing satellites,can register the changes of air temperature also as a part of the SLHF variations.The ambiguity of situation was resolved by the developed model of seismo-ionospheric coupling (Pulinets and Boyarchuk,2004).The part of the model describing the generation of anomalous electric ?eld in the zones of earthquake preparation involves the process of formation of gaseous aerosols with water molecules attachment,which is essentially connected with the latent heat variations.During these processes the large amount of heat ($800–900cal/g)is released or consumed (Sedunov et al.,1997).Similar processes take place under action of cosmic rays on the atmosphere.Air ionization provided by cosmic rays results in formation of aerosols as conden-sation nuclei for clouds (Yu and Turco,2001;Timofeev et al.,2003).In normal conditions when the number of

1474-7065/$-see front matter ó2006Elsevier Ltd.All rights reserved.doi:10.1016/j.pce.2006.02.042

*

Corresponding author.Tel.:+525556224139;fax:+5255555502486.E-mail address:pulse@geo?sica.unam.mx (S.A.Pulinets).

https://www.doczj.com/doc/404555431.html,/locate/pce

Physics and Chemistry of the Earth 31(2006)

143–153

large ionized ion clusters is small,the meteorological processes prevail.But when the concentration of hydrated particles created by radon ionization increases up to values 105–106cmà3(Pulinets and Boyarchuk,2004)they provide an essential contribution in the SLHF variations up to anomalous values registered by satellites.The purpose of the present paper is to model the above mentioned pro-cesses and to compare with experimental measurements around the time of recent major earthquakes,as well as with the results of active experiments using the special equipment for arti?cial ionization of the atmosphere.

2.Long-term thermal e?ects associated with seismic activity

Mil’kis(1986)demonstrated the presence of thermal anomalies during the month(or season)of the strong earthquakes in the former Soviet Union.He used the data from more than120meteorological stations in Turkmenia, Uzbekistan and other regions of Central https://www.doczj.com/doc/404555431.html,ing the assemblage of climatic elements(data from the meteorolog-ical stations in Turkmenia and Uzbekistan)their anoma-lous variations were studied around the time of the following earthquakes:Ashkhabad October5,1948(M= 7.3);Gazly April8(M=7),May17(M=7.2)1976;and March20,1984(M=7).Individual climatic parameters were studied also for the following earthquakes:Krasnov-odsk July8,1895(M=8.2);Sarez February18,1911(M= 7.4);Germab May1,1929(M=7.2);Kemine-Chuy June 20,1938(M=6.9);Garm April20,1941(M=6.4);Chat-kal November2,1946(M=7.5);Kazandzhik November 4,1946(M=7.0);Tashkent April26,1966(M=5.6);Ash-khabad November15,1968(M=5.6);and Vyshko-Burun February22,1984(M=6.0).Fig.1presents his results of air temperature measurements(mean monthly temperature for long-term intervals–several tens of years).In every case the month when earthquake takes place is selected for analysis.It means that if an earthquake took place in January,the mean January temperature for several tens of years is monitored.One can see that within interval of tens of years the mean monthly temperature for the year of earthquake practically in all cases is anomalously high and is the local maximum for the multi-year interval.

The same long-term behavior of the mean monthly tem-perature was observed for the Colima earthquake in Mex-ico on23of January2003(M=7.8).Fig.2demonstrates the50-years interval of January mean monthly temperature at Manzanillo meteorological station(closest to the earth-quake epicenter),and for year2003one can observe the absolute maximum of the temperature for the whole inter-val of presented records.

3.Short-term thermal e?ects

We analyzed the meteorological data around the time of Hector Mine earthquake M7.116October1999,USA, Colima earthquake M7.621January2003,Mexico,and Park?eld earthquake M628September2004,USA.More detailed information was collected for Colima earthquake. Data of three meteorological stations(air temperature and relative humidity)are presented in Fig.3.Colima and Manzanillo stations are situated at a similar distance of the epicenter(60and55km,respectively according to USGC location).And the third station(Cuernavaca)is near900km from the epicenter.One can easily see the dif-ference.The?rst two stations(Fig.3a and b)clearly show the sharp drop of relative humidity one week before the seismic shock,and no e?ect is observed at the third station (Fig.3c).Taking into account that Manzanillo is at the ocean shore,the humidity of order of40%at tropics is very unusual.We can mark also the absolute monthly minimum of air temperature at Colima Station on13of January,and temperature maxima at both stations on14and15of Jan-uary.Relative humidity minimum at Colima coincides with the absolute monthly maximum at the same day of14Jan-uary.The map of the surface air temperature distribution over Mexico for1400LT on14of January2003is shown in Fig.4.The most remarkable feature of this distribution is the local temperature maximum close to the epicenter position of impending earthquake,and the temperature increase stretched along the coast in accordance with the subduction trench orientation.

The local time variations of the air temperature and rel-ative humidity somehow mask the main e?ect connected with the radon variations and consequent changes of the atmosphere parameters.Therefore,we used the special parameter which re?ects both the temperature and humid-ity variations,namely the daily temperature range–the dif-ference between the daily temperature maximum and minimum.Variations of this parameter related to the earth-quake moment is presented in Fig.5a.One can see the local minimum9days before the earthquake what corresponds to the local maximum of the relative humidity,then the absolute maximum of the range which corresponds to the relative humidity minimum,and then the gradual drop of the temperature range up to the earthquake occurrence.

The presence of similar temperature variations was checked for the periods around the time of Hector Mine earthquake M7(16October1999)and Park?eld earthquake in California M6(28September2004).Same daily temper-ature range variations for two meteorological stations in the vicinity of Hector Mine earthquake epicenter(Borrego sta-tion)and in the vicinity of Park?eld earthquake(Paso Robles station)are shown in Fig.5b and c,respectively.It is interesting to mark that the time intervals for characteris-tic points of range variations(dashed lines)for Colima earthquake and Hector Mine earthquake are identical.

Not occasional character of atmosphere parameters vari-ations before earthquakes was con?rmed recently by the satellite remote sensing measurements.Ouzounov et al. (2005)and Ouzounov et al.(2006)using the measurements of AVHRR instrument onboard the NOAA satellites dem-onstrated the temporal variations of ongoing longwave radiation(OLR)over the epicenters of strong earthquake at Taiwan M5.7,12February2005,and catastrophic Suma-

144S.A.Pulinets et al./Physics and Chemistry of the Earth31(2006)143–153

tra earthquake M9,26December 2004.Variations of the mean (averaged records for 4NOAA satellites)value of this parameter are shown in Fig.6.Presented variations demon-strate the striking similarity to the ground based records presented in Fig.5showing the same temporal pattern and time scale in relation to the earthquake moment.

Summarizing the obtained results on variations of the meteorological parameters around the time of strong (M >6)earthquakes one can conclude that within the time interval two weeks before the seismic shock the essential variations of the air temperature are observed with increased range between the maximum and minimum daily temperatures.Within the same time interval the relative humidity drop is observed close to the epicenter of impend-ing earthquake.The spatial scale of the thermal anoma-lies before strong earthquakes (M >6)reaches

several

Fig.1.The increases of air temperature in the multi-year regime (the abscissa indicating the year)for individual months and seasons of the year as precursor anomalies of strong earthquakes (data are from the meteorological stations nearest to the epicenter):(a)Krasnovodsk earthquake;(b)Germab earthquake;(c)Kazandzhik earthquake;(d)Ashkhabad 1948earthquake;(e)Tashkent earthquake;(f)Gazly 1976and 1984earthquakes;(g)Sarez earthquake;(h)Garm earthquake;(i,j)Kemine-Chuy earthquake,average monthly temperature in May at the Tokmak meteorological station (i)and the Novorossiyka station (j);(k,1)Chatkal average monthly temperatures for February at the Chatkal (k)and the Toe River Mouth (l)meteorological stations.(After Mil’kis,1986).

S.A.Pulinets et al./Physics and Chemistry of the Earth 31(2006)143–153145

hundreds km(the area is of order of400000km2),Mil’kis (1986).The month or season of the year when the strong earthquake happened is usually with anomalously high temperatures in comparison with other years within the time intervals of tens of years.

4.Physical mechanism

Looking from the perspective of the Lithosphere–Atmo-sphere–Ionosphere(LAI)model presented in Pulinets and Boyarchuk(2004),radon variations are the primary source of the atmosphere electricity changes a few days before the strong earthquakes.As it was demonstrated recently(Inan, 2005),radon variations before earthquake have similar time scale as the observed air temperature variations.The peak of radon emanation is reached4–10days before the seismic shock which happens on the fallo?part of the observed local maximum of the radon variation.Zafrir et al.(2005)observed correlation of the radon variations and the air temperature.These results give us foundation to start calculations of the e?ects on the radon ionization on the air temperature and the relative humidity.

4.1.Macroscopic approach

In the thermal balance of the atmosphere(total heat budget is$185W/m2)the latent heat of the water evapora-tion is very signi?cant($88W/m2).It means that changing of the latent heat balance essentially contributes to the air temperature variations.During water condensation on ions,the large number of the water molecules can be attached to the ion,it means that it grows up to some crit-ical mass m max.The heat deposit w is equal to

w?m max U0e1Twhere U0is the latent heat of evaporation.If the ionization source produces the ions with the velocity d N/d t,the heat P a deposited into the atmosphere can be expressed as(Pokhmelnykh,2003):

P a?wád N=d te2TEach a-particle emitted by222Rn with the average energy E a%6MeV can produce theoretically about of2·105electron–ion pairs.The output of radon can reach 12eman before an earthquake,which corresponds to the ionization rate about7.6·103cmà3sà1.It means that even minor increase of the radon emanation(usually,it is observed the increase by20–30%)can lead to changes of the air temperature if this emanation takes place over the large territory of the earthquake preparation zone.Its radius is determined as(Dobrovolsky et al., 1979):

q?100:43M kme3Twhere M is the earthquake magnitude.

The high e?ectiveness of the air heating is explained by the fact that the energy necessary to the changes of air tem-perature is already stored in water vapor.Actually the large amount of solar energy spent for water evaporation is released and ionization only helps to release the latent heat of the water vapor by creation of the condensation centers in the form of ions.It is because of the fact that the hydra-tion reactions are catalytic reactions in their https://www.doczj.com/doc/404555431.html,ing the arti?cial source of air ionization,it is possible to reach the gain(ratio of the energy spent for air ionization and released in the form of the latent heat)of order of5·108 (Pokhmelnykh,2003).

Taking into account that the ionization anomalies take place within the large areas of the earthquake preparation zone,the e?ects of the meteorological scale can be caused by comparatively small increase of the air ionization. Mil’kis(1986)demonstrates the thermal anomalies before strong earthquake in Central Asia within the areas of order of400000km2.These earlier results are supported now by the satellite remote sensing measurements demonstrating the large areas subjected to thermal anomalies before strong earthquakes(Tramutoli et al.,2001;Tronin et al., 2004;Ouzounov and Pulinets,2005).

4.2.Microscopic approach

The problem of the latent heat release associated with air ionization can be divided into two parts:the problem of water condensation itself,and additional problem con-nected with the fact that water is condensed not on the water drop but on the molecular ion having the chemical potential di?erent from the water molecule chemical potential.This fact changes the rate of evaporation/con-densation.It means that for the same energy deposit the process of evaporation/condensation can be slower or

146S.A.Pulinets et al./Physics and Chemistry of the Earth31(2006)143–153

faster depending on the chemical potential,and conse-quently,the air humidity changes due to the changes of the chemical potential.

Dependence of the saturated water vapor concentration on the temperature can be derived from the Clausius–Clapeyron(Fermi,1956)and Mendeleev–Clapeyron equa-tions Yavorski and Detlaf(1996):

n?

A

T

áexpà

U

káT

e4T

S.A.Pulinets et al./Physics and Chemistry of the Earth31(2006)143–153147

Here,k–Boltzman constant,U–latent heat of evaporation related to one molecule,A–constant.The evaporation la-tent heat related to one molecule(or in other words,the Gibbs chemical potential or work function)can be estimated from the evaporation heat Q=40.683kJ/mol under the boiling temperature U0=Q/N A=0.422eV where N A= 6.022·10231/mol.This work function is equal to the energy of the dipole–dipole interaction of the rotating dipoles on the distance r=2.46A?which is the water molecule radius. Evaporation and condensation are the phase transitions of the?rst order.The phase transition happens under chemical potential equality.For the one-component system the chem-ical potential is equal to the thermodynamic potential re-lated to the one particle.It means that the latent heat of evaporation U is equal to the chemical potential of the mol-ecule in the water drop and can be calculated as(Zatsepina, 1998):

U?

2ál2ál2

3ákáTár6

e5T

where l=1.85·10à18CGS cm–the dipole moment of the water molecule H2O.The same work corresponds to the formation of the drop embryo(Green and Lane, 1964)with the critical radius r=4.76A?and surface tension c=72.88dyn/cm.

W cr?4

3

ápár2

cr

áce6T

Just this demonstrates that the work function is equal to the dipole–dipole interaction energy.And here the second factor appears.The humid atmosphere under action of

the solar radiation,cosmic rays,and other kinds of ionizing radiation as radon is not a one-component system.Under the action of radiation the new formed ions enter in the chain of plasmachemical reactions leading to the complex ion clusters formation.One can?nd the?nal ion composi-tion under action of cosmic rays in Timofeev et al.(2003). Pulinets and Boyarchuk(2004)regarded the similar chain of reactions for the case of the air ionization by radon.Un-der action of radon ionization a large amount of Ot

2

ions is formed in atmosphere in the initial stage both as a result of direct ionization,and as a result of charge exchange be-

tween an initial ion Nt

2

and electrons,which fast adhere to atoms of oxygen,since the oxygen has a signi?cant en-ergy of a?nity to electrons,forming the negative ions Oà

and Oà

2

.As a result of fast ion-molecular reactions during an interval of the order10à7s the main elementary tropo-

spheric ions will be formed:Oà,Oà

2

,NOà

2

,NOà

2

,COà

3

and

Ot

2

,NO+,H3O+.The concentration of electrons is so insig-ni?cant,that they can be neglected.The large amount of water vapor molecules contained in the troposphere ($1017cmà3),having a noticeable dipole moment p= 1.87D,leads to hydration of elementary ions and to the for-

mation of ion complexes of type NOà

2

áeH2OT

n

and NOà

3

á

eH2OT

n

,NOà

3

áeHNO3T

n

eH2OT

m

and Ot

2

áeH2OT,NO+?(H2O)n,H+?(H2O)m and H3O+?(H2O)n which happens rather fast.It is estimated that the ion concentration in the area of earthquake preparation can reach105–106cmà3,which essentially changes the electric properties of the near ground layer of atmosphere.These clusters

of the surface air temperature at Mexico on14January2003at1410LT,reduced to the sea surface level.(q)indicate positions

)-epicenter positions of the Colima earthquake determined by NSGS(white)and SSN(black);(d)show positions of Manzanillo,Colima and Cuernavaca.

148S.A.Pulinets et al./Physics and Chemistry of the Earth31(2006)143–153

become the centers of condensation but with other work function and other chemical potential.The changes of the chemical potential were taken into account in calculations of relative humidity.To facilitate calculations we still re-gard the system as one-component but with the changing chemical https://www.doczj.com/doc/404555431.html,ing the formulas(5)and(6)the changes of the chemical potential a?ecting the relative humidity can be calculated in the following form:

HetT?expeàUetT=káTT

expeàU0=káTT

?exp

U0àUetT

káT

?expà0:032áD Uácos2t

ekáTT2

!

e7T

where U(t)=U0+D U?cos2t,D U–is the chemical poten-tial correction averaged-by-the-volume as a result of exter-nal impact.The daily variations of the solar radiation were taken into account as cosine square.It is taken into ac-count also that U0was calculated for the boiling tempera-ture.The results of calculation for the case of the Colima earthquake are presented in Fig.7for three values of D U=0.019;0.022and0.03eV(from top to bottom).For a better visualization,the reversed value1/H is shown.

The blue line represents the inverse value of the experimen-tally measured relative humidity at Colima station,and the red line–inverse value of calculated relative humidity.One can see that during the period of observation the evapora-tion velocity changed signi?cantly,which corresponds to the di?erent values of D U.The changes of D U can be ex-plained by the formation of a lot of centers of condensation in the form of complex clusters.In this case,the work func-tion for the water molecules is determined as interaction of the charged cluster with the rotating dipole(Zatsepina, 1998):

U cd?

q2ál2

3ákáTár4

;e8Twhere q is the dipole charge.The energy of the dipole-charge interaction on the distance r cd=4.7A?is equal to U cd=0.65eV.

Formation of the large clusters of the aerosol size under action of ionizing radiation was demonstrated in the labo-ratory experiment(Fig.8)where in the gas chamber the thoron was injected periodically(Bricard et al.,1968).

The detailed calculations of the water vapor concentra-tion in the air were made using the complete kinetic model of the air taking into account all the possible components NO,NO2,NO3,N2O5,N2O,O,N,H,HO2,H2,OH, H2O2,HNO,HNO2,HNO3,HNO4,C,CN;excited atoms

and molecules:O?

2

e1DT,O*(1D),O*(1S),N?

2

eAT,N*(2D);

positive ions:N+,Nt

2

,Nt

3

,Nt

4

,O+,Ot

2

,Ot

4

,Ot

6

,Ot

8

,H+,

Ht

2

,Ht

3

,NO+,NOt

2

,NOt

3

,N3O+,N2Ot

2

,N2Ot

3

,H2O+,

OH+,H+O2,H+(H2O),Ot

2

eH2OT,H2O+(H2O),Ot

2

eH2OT

2

, H+(H2O)2,H+(H2O)3,H+(H2O)4,H+(H2O)5,H+(H2O)6, H+(H2O)7,H+(H2O)8,H+(H2O)O2,N2H+,H+(N2O),

N+(H2O),NO+(H2O),NOt

2

eH2OT,H+(H2O)N2,NO+(H2O)2,

NOt

2

eH2OT

2

,NO+(H2O)3,NO+(H2O)N2,NO+(H2O)2N2,C+,

CO+,COt

2

,O+(CO2),Ot

2

eCO2T,CO+(CO),CO+(CO2),

COt

2

eCO2T,Ot

2

eCO2T

2

,CO+(CO2)CO,H+(CO),H+(CO2),

COt

2

eH2O),NO+(CO2),NO+(H2O)CO2,NO+(H2O)2CO2,

CO+(H2O),H+(CO)2;negative ions:Oà,Oà

2

,Oà

3

,NOà

2

,

Oà(NO2),Oà

2

eH2OT,Oà

3

eH2OT,Oà

2

eH2OT

2

,NOà

3

eHNO3T,

NOà

2

eH2OT,NOà

3

eH2OT,NOà

3

eH2OTHNO3,NOà

3

eHNO3T

2

,

Oà(CO2),Oà

2

eCO2T,Oà(CO2)H2O and electrons.The results of calculation are presented in Fig.9for three values of D U=0.019;0.022and0.03eV.One can see from the?gure that the relative humidity can change signi?cantly after several hours of action of ionizing source up to very low levels like30%,and that it is accompanied automatically by the growth of the air temperature.

5.Practical applications using the meteorological data

It is possible to solve the reversed problem–using the meteorological data on the relative humidity and air tem-perature to calculate the changes of the chemical potential D U.Our calculations for the several recent important

Fig.5.Daily surface air temperature range variations registered close to

the epicenters of strong earthquakes.From top to bottom:Colima

earthquake M7.6of2003,(Mexico);Hector Mine earthquake M7.0of

1999,(USA);Park?eld earthquake M6of2004,(USA).()indicates the

earthquake moment,(dashed lines)indicate the parameters peculiarities

which we interpret as precursors phenomena.

S.A.Pulinets et al./Physics and Chemistry of the Earth31(2006)143–153149

earthquakes have demonstrated that this parameter can be used as an indicator of the atmospheric anomaly probably connected with earthquake preparation process.Fig.10 presents several examples of such calculations.The di?er-ence in the data presentation depends on the meteorologi-cal data quality(for some stations we have only the daily maxima and minima,for others–current variations)and the distance of the meteorological station from the epicen-ter.The second important factor is how much of land is included inside the area of the earthquake preparation (3).For example,in the case of Sumatra earthquake (Fig.10d),when the epicenter is in the ocean,only Indone-sian and Indian islands contribute in atmospheric varia-tions through radon emanations.So regardless the very large magnitude of the earthquake(M9),the index D U is not so large as for the Park?eld earthquake(Fig.10b) where both epicenter and the whole earthquake prepara-tion area are on the land.

6.Active experiment on arti?cial ionization–check of the radon ionization phenomena

It is possible to produce arti?cial air ionization by applying high voltage to a narrow wire or to special equip-ment consisting of narrow needles known as‘‘Chizhevsky chandelier’’(Chizhevsky,1960).Such instruments are widely used now in medicine for creation of negative air-ions.Depending on spatial scale and the ion current pro-duced by the installation,di?erent e?ects in the atmosphere can be caused.Pokhmelnykh(2003)made estimations showing the possibility of creation of special installation for the weather correction.The number of condensation heat P c released in the unit column of air can be expressed as

P c?m max U0eà1j ae9Twhere e–elementary electric charge,j a–vertical conductiv-ity current in atmosphere.

Under condition of arti?cial ionization the ion produc-tion rate d N/d t can be expressed as

d N

d t

?I g eà1e10Twhere I g is the current of ion generator.

Using(2)and(9)the heat P a released into the atmo-sphere can be expressed as

P a?m max U0eà1I ge11T

150S.A.Pulinets et al./Physics and Chemistry of the Earth31(2006)143–153

The power consumption P g spent to produce ionization can be expressed as P g ?k

d N

d t

e u i ?kI g u i e12T

where u i –air ionization potential,and k is the ratio of really spent energy for the air molecule ionization to the ionization potential.It was experimentally determined that k is of order of 104.Therefore,the gain K g which is in rela-tion to the thermal energy released in the atmosphere P a to the energy spent for ionization P g will be K g ?P a =P g ?m max U 0=ke u i %5?108

e13T

Using these estimations the ELAT company in Mexico started experiments with installations of arti?cial air ioni-zation to produce the arti?cial precipitation in the desert areas of Mexico.Fig.11demonstrates the changes of the

air temperature after beginning of action of the installation of arti?cial ionization.It is interesting to note that the time scale of the air temperature changes is the same order (near 5days)as of the temperature variations associated with the earthquakes (see Figs.3,5and 6).7.Discussion

The physical mechanism was proposed to explain the observed atmosphere parameters (air temperature and relative humidity)variations around the time of strong earthquakes within the earthquake preparation area.The mechanism is based on the physical and chemical processes taking place in the atmosphere as a result of action of ion-izing radiation by radon gas.The ions formed as a result of ionization process and chemical reactions serve as the cen-ters of water vapor condensation.During condensation the large amount of latent heat of evaporation is released,which leads to the changes of the air temperature.

Because

https://www.doczj.com/doc/404555431.html,parison of the inverse value of the experimentally measured relative humidity at Colima station (continuous line)and the inverse value of calculated relative humidity (dashed grey line).From top to bottom calculated correction of D U =0.019;0.022and 0.03

eV.

Fig.8.Particles formed in ?ltered Parisian air,with the addition of regular cycles of Thoron (from Bricard et al.,1968

).

Fig.9.Model calculations of relative humidity changes under ionization impact for the three values of the chemical potential correction D U =0.019(curve 1);0.022(curve 2)and 0.03eV (curve 3).

S.A.Pulinets et al./Physics and Chemistry of the Earth 31(2006)143–153151

of condensation the air relative humidity is changing as well.The process of aerosol-size particles formation as a result of air ionization has universal character.It is observed in troposphere as a result of the cosmic rays action on the atmosphere (Yu and Turco,2001;Timofeev

et al.,2003),it was proved in the laboratory experiments (Bricard et al.,1968),it takes place under action of the radon in the near ground layer of atmosphere (Pulinets and Boyarchuk,2004).In the case of radon,it is well known that radon emanation can be registered at any time,not just before the earthquake.It means that the all plasmachemical processes described above are not unique for earthquakes,and take place continuously.But the level of radon emanation increases before earthquakes,which leads to the deviations of the plasmachemical composition,air temperature and humidity and atmospheric electricity registered experimentally.

The observed variations are mainly due to the changes of the chemical potential of the new formed particles.We proposed a method which permits to estimate the changes of the chemical potential using the ordinary meteorological data of atmosphere parameters.For the given area it is possible to create the local model for the chemical potential D U and then use it in estimation of the potential danger of the approaching earthquake.

The most important thing which should be taken into account is that it is not necessary to have a powerful source of energy to produce the observable changes of the air tem-perature and humidity.The energy is already provided by the Sun and is stored in the water vapor in the form of the latent heat of evaporation.The ionization is the cata-lytic process which helps to release the stored

energy.

Fig.10.Variations of the chemical potential D U around the time of strong earthquakes:(a)two consequent earthquake at the Paci?c coast of Mexico 14September and 09October 1995;(b)Park?eld earthquake 28October 2004;Niigata seismic swarm in Japan in October 2004(the seismic shocks are indicated by squares,the earthquake magnitude is shown at right axis);Sumatra earthquake 26December 2004.Earthquake moments are indicated by

arrows.

Fig.11.The maximum daily temperature variations at the San Jose de Cabo station during period of activity of the installation for arti?cial air ionization.Solid line –the running average.

152S.A.Pulinets et al./Physics and Chemistry of the Earth 31(2006)143–153

8.Conclusion

From the theoretical considerations presented in the part4we can conclude that the air ionization provided by radon in the seismically active areas is responsible for the observed variations of the air temperature and humi-dity before strong earthquakes.The time scale of the observed variations is of order of one–two weeks before the seismic shock.In the perspective of the long time obser-vations(several tens of years)the month of the seismic event has usually anomalously high temperature in com-parison with other years.

According to the interpretation of the satellite remote sensing measurements of the infrared emission from the ground surface we can now propose rather variations of the near ground air temperature rather than the ground surface temperature as a source of observed variations.

Acknowledgements

This work was supported by the grants of PAPIIT IN 126002,CONACYT40858-F and NASA621-30-30-20. The authors thank the Mexican National Institute of Sta-tistics,Geography and Informatics(INEGI)for providing the GPS data and would like to acknowledge the MODIS science Team and LP DAAC for making their data avail-able to the user community.

References

Bricard,F.,Billard,F.,Madelaine,G.,1968.Formation and evolution of nuclei of condensation that appear in air initially free of aerosols.J.

Geophys.Res.54,39–52.

Chizhevsky,A.L.,1960.Air-ioni?cation in the national economy.Gos-planizdat,Moscow(in Russian).

Dey,S.,Singh,R.P.,2003.Surface latent heat?ux as an earthquake precursor.Nat.Haz.Earth Syst.Sci.3,749–755.

Dobrovolsky,I.R.,Zubkov,S.I.,Myachkin,V.I.,1979.Estimation of the size of earthquake preparation zones.Pageoph117,1025–1044. Fermi,E.,1956.Thermodynamics.Dover Publications,Great Britain,160p. Green,H.L.,Lane,W.R.,1964.Particulate Clouds:Dusts,Smokes and Mists.Spon Ltd.,London,471p.

Inan S.,Researches for possible earthquake precursor(s)In the Marmara region(NW Turkey),International Workshop on Early Warning Systems for Earthquake Monitoring by Using Space Technology, Istanbul,Turkey,1–2February,https://www.doczj.com/doc/404555431.html,’kis,M.R.,1986.Meteorological precursors of earthquakes Izvestiya.

Earth Phys.22,195–204.

Ouzounov,D.,Freund,F.,2004.Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data.Adv.Space Res.33, 268–273.

Ouzounov, D.,Pulinets,S.,2005.Methodology and techniques for monitoring the short term ionospheric and near infrared precursory activities prior to main earthquake,(part II),International Workshop on Early Warning Systems for Earthquake Monitoring by Using Space Technology,Istanbul,Turkey,1–2February.

Ouzounov D.,Pulinets S.,Cervone G.,Ciraolo L.,Singh R.,Kafatos M., Taylor P.,2005.Atmospheric processes in reaction of Northern Sumatra Earthquake sequence December2004–April2005,AGU, 86(18),Jount.Assem.Supl.,Abstract U53B-01.

Ouzounov,D.,Defu,L.,Chun,K.,Taylor,P.,2006.The outgoing long wave radiation variability prior to the major earthquake by analyzing IR satellite data.Tectonophysics421,in press.

Pokhmelnykh,L.A.,2003.Atmosphere electricity as a manifestation of the Earth–Sun interaction with the space.Appl.Phys.4,34–43. Pulinets,S.A.,Boyarchuk,K.A.,2004.Ionospheric Precursors of Earth-quakes.Heidelberg,Springer,Berlin,Heidelberg,315p.

Schulz,J.,Meywerk,J.,Ewald,S.,Schlu¨ssel,P.,1997.Evaluation of satellite-derived latent heat?ux.J.Climate16,2782–2795. Sedunov,Y.S.,Volnovitskii,O.A.,Petrov,N.N.,Reitenbakh,R.G., Smirnov,V.I.,Chernikov, A.A.,1997.Atmosphere.Handbook (Reference data and Models).Gidrometeoizdat,Leningrad. Timofeev,V.E.,Grigor’ev,V.G.,Morozova,V.I.,Skryabin,N.G., Samsonov,S.N.,2003.E?ect of cosmic rays on the latent energy of atmosphere.Geomagn.Aeron.43,640–646.

Tramutoli,V.,DiBello,G.,Pergola,N.,Piscitelli,S.,2001.Robust satellite techniques for remote sensing of seismically active areas.Ann.

Geo?s.44,295–312.

Tronin,A.A.,1999.Satellite thermal survey application for earthquake prediction.In:Hayakawa,M.(Ed.),Atmospheric and Ionospheric Phenomena Associated with Earthquakes.TERRAPUB,Tokyo,pp.

717–746.

Tronin, A.A.,Hayakawa,M.,Molchanov,O.A.,2004.Thermal IR satellite data application for earthquake research in Japan and China.

J.Geodyn.33,519–534.

Yavorski,B.M.,Detlaf,A.A.,1996.Physics Reference Book.Nauka, Fismatlit,Moscow,619p.

Yu,F.,Turco,R.P.,2001.From molecular clusters to nanoparticles:the role of ambient ionization in tropospheric aerosol formation.J.

Geophys.Res.106(D5),4797–4814.

Zafrir,H.,Steinitz,G.,Ginzburg, B.,Shirman, B.,Hrvoic,I.,2005.

Current achievements in the combined research of Rn emanation, earth magnetic?eld and the seismo-activity variations,along the Dead Sea Rift,Israel,as ground truth for space observations.In:First DEMETER Guest Investigators Workshop,CNES,Paris,France,2–4 May2005.

Zatsepina,G.N.,1998.The Physical Properties and Structure of Water.

Moscow State University Publishing,Moscow,184p.

S.A.Pulinets et al./Physics and Chemistry of the Earth31(2006)143–153153

黄自艺术歌曲钢琴伴奏及艺术成就

【摘要】黄自先生是我国杰出的音乐家,他以艺术歌曲的创作最为代表。而黄自先生特别强调了钢琴伴奏对于艺术歌曲组成的重要性。本文是以黄自先生创作的具有爱国主义和人道主义的艺术歌曲《天伦歌》为研究对象,通过对作品分析,归纳钢琴伴奏的弹奏方法与特点,并总结黄自先生的艺术成就与贡献。 【关键词】艺术歌曲;和声;伴奏织体;弹奏技巧 一、黄自艺术歌曲《天伦歌》的分析 (一)《天伦歌》的人文及创作背景。黄自的艺术歌曲《天伦歌》是一首具有教育意义和人道主义精神的作品。同时,它也具有民族性的特点。这首作品是根据联华公司的影片《天伦》而创作的主题曲,也是我国近代音乐史上第一首为电影谱写的艺术歌曲。作品创作于我国政治动荡、经济不稳定的30年代,这个时期,这种文化思潮冲击着我国各个领域,连音乐艺术领域也未幸免――以《毛毛雨》为代表的黄色歌曲流传广泛,对人民大众,尤其是青少年的不良影响极其深刻,黄自为此担忧,创作了大量艺术修养和文化水平较高的艺术歌曲。《天伦歌》就是在这样的历史背景下创作的,作品以孤儿失去亲人的苦痛为起点,发展到人民的发愤图强,最后升华到博爱、奋起的民族志向,对青少年的爱国主义教育有着重要的影响。 (二)《天伦歌》曲式与和声。《天伦歌》是并列三部曲式,为a+b+c,最后扩充并达到全曲的高潮。作品中引子和coda所使用的音乐材料相同,前后呼应,合头合尾。这首艺术歌曲结构规整,乐句进行的较为清晰,所使用的节拍韵律符合歌词的特点,如三连音紧密连接,为突出歌词中号召的力量等。 和声上,充分体现了中西方作曲技法融合的创作特性。使用了很多七和弦。其中,一部分是西方的和声,一部分是将我国传统的五声调式中的五个音纵向的结合,构成五声性和弦。与前两首作品相比,《天伦歌》的民族性因素增强,这也与它本身的歌词内容和要弘扬的爱国主义精神相对应。 (三)《天伦歌》的伴奏织体分析。《天伦歌》的前奏使用了a段进唱的旋律发展而来的,具有五声调性特点,增添了民族性的色彩。在作品的第10小节转调入近关系调,调性的转换使歌曲增添抒情的情绪。这时的伴奏加强和弦力度,采用切分节奏,节拍重音突出,与a段形成强弱的明显对比,突出悲壮情绪。 c段的伴奏采用进行曲的风格,右手以和弦为主,表现铿锵有力的进行。右手为上行进行,把全曲推向最高潮。左手仍以柱式和弦为主,保持节奏稳定。在作品的扩展乐段,左手的节拍低音上行与右手的八度和弦与音程对应,推动音乐朝向宏伟、壮丽的方向进行。coda 处,与引子材料相同,首尾呼应。 二、《天伦歌》实践研究 《天伦歌》是具有很强民族性因素的作品。所谓民族性,体现在所使用的五声性和声、传统歌词韵律以及歌曲段落发展等方面上。 作品的整个发展过程可以用伤感――悲壮――兴奋――宏达四个过程来表述。在钢琴伴奏弹奏的时候,要以演唱者的歌唱状态为中心,选择合适的伴奏音量、音色和音质来配合,做到对演唱者的演唱同步,并起到连接、补充、修饰等辅助作用。 作品分为三段,即a+b+c+扩充段落。第一段以五声音阶的进行为主,表现儿童失去父母的悲伤和痛苦,前奏进入时要弹奏的使用稍凄楚的音色,左手低音重复进行,在弹奏完第一个低音后,要迅速的找到下一个跨音区的音符;右手弹奏的要有棱角,在前奏结束的时候第四小节的t方向的延音处,要给演唱者留有准备。演唱者进入后,左手整体的踏板使用的要连贯。随着作品发展,伴奏与旋律声部出现轮唱的形式,要弹奏的流动性强,稍突出一些。后以mf力度出现的具有转调性质的琶音奏法,要弹奏的如流水般连贯。在重复段落,即“小

我国艺术歌曲钢琴伴奏-精

我国艺术歌曲钢琴伴奏-精 2020-12-12 【关键字】传统、作风、整体、现代、快速、统一、发展、建立、了解、研究、特点、突出、关键、内涵、情绪、力量、地位、需要、氛围、重点、需求、特色、作用、结构、关系、增强、塑造、借鉴、把握、形成、丰富、满足、帮助、发挥、提高、内心 【摘要】艺术歌曲中,伴奏、旋律、诗歌三者是不可分割的重 要因素,它们三个共同构成一个统一体,伴奏声部与声乐演唱处于 同样的重要地位。形成了人声与器乐的巧妙的结合,即钢琴和歌唱 的二重奏。钢琴部分的音乐使歌曲紧密的联系起来,组成形象变化 丰富而且不中断的套曲,把音乐表达的淋漓尽致。 【关键词】艺术歌曲;钢琴伴奏;中国艺术歌曲 艺术歌曲中,钢琴伴奏不是简单、辅助的衬托,而是根据音乐 作品的内容为表现音乐形象的需要来进行创作的重要部分。准确了 解钢琴伴奏与艺术歌曲之间的关系,深层次地了解其钢琴伴奏的风 格特点,能帮助我们更为准确地把握钢琴伴奏在艺术歌曲中的作用 和地位,从而在演奏实践中为歌曲的演唱起到更好的烘托作用。 一、中国艺术歌曲与钢琴伴奏 “中西结合”是中国艺术歌曲中钢琴伴奏的主要特征之一,作 曲家们将西洋作曲技法同中国的传统文化相结合,从开始的借鉴古 典乐派和浪漫主义时期的创作风格,到尝试接近民族乐派及印象主 义乐派的风格,在融入中国风格的钢琴伴奏写作,都是对中国艺术 歌曲中钢琴写作技法的进一步尝试和提高。也为后来的艺术歌曲写 作提供了更多宝贵的经验,在长期发展中,我国艺术歌曲的钢琴伴 奏也逐渐呈现出多姿多彩的音乐风格和特色。中国艺术歌曲的钢琴

写作中,不可忽略的是钢琴伴奏织体的作用,因此作曲家们通常都以丰富的伴奏织体来烘托歌曲的意境,铺垫音乐背景,增强音乐感染力。和声织体,复调织体都在许多作品中使用,较为常见的是综合织体。这些不同的伴奏织体的歌曲,极大限度的发挥了钢琴的艺术表现力,起到了渲染歌曲氛围,揭示内心情感,塑造歌曲背景的重要作用。钢琴伴奏成为整体乐思不可缺少的部分。优秀的钢琴伴奏织体,对发掘歌曲内涵,表现音乐形象,构架诗词与音乐之间的桥梁等方面具有很大的意义。在不断发展和探索中,也将许多伴奏织体使用得非常娴熟精确。 二、青主艺术歌曲《我住长江头》中钢琴伴奏的特点 《我住长江头》原词模仿民歌风格,抒写一个女子怀念其爱人的深情。青主以清新悠远的音乐体现了原词的意境,而又别有寄寓。歌调悠长,但有别于民间的山歌小曲;句尾经常出现下行或向上的拖腔,听起来更接近于吟哦古诗的意味,却又比吟诗更具激情。钢琴伴奏以江水般流动的音型贯穿全曲,衬托着气息宽广的歌唱,象征着绵绵不断的情思。由于运用了自然调式的旋律与和声,显得自由舒畅,富于浪漫气息,并具有民族风味。最有新意的是,歌曲突破了“卜算子”词牌双调上、下两阕一般应取平行反复结构的惯例,而把下阕单独反复了三次,并且一次比一次激动,最后在全曲的高音区以ff结束。这样的处理突出了思念之情的真切和执著,并具有单纯的情歌所没有的昂奋力量。这是因为作者当年是大革命的参加者,正被反动派通缉,才不得不以破格的音乐处理,假借古代的

奈达翻译理论初探

第27卷第3期唐山师范学院学报2005年5月Vol. 27 No.3 Journal of Tangshan Teachers College May 2005 奈达翻译理论初探 尹训凤1,王丽君2 (1.泰山学院外语系,山东泰安 271000;2.唐山师范学院教务处,河北唐山 063000) 摘要:奈达的翻译理论对于翻译实践有很强的指导作用:从语法分析角度来讲,相同的语法结构可能具有完全不同的含义;词与词之间的关系可以通过逆转换将表层形式转化为相应的核心句结构;翻译含义是翻译成败的关键所在。 关键词:奈达;分析;转换;重组;核心句 中图分类号:H315.9 文献标识码:A 文章编号:1009-9115(2005)03-0034-03 尤金?奈达是美国当代著名翻译理论家,也是西方语言学派翻译理论的主要代表,被誉为西方“现代翻译理论之父”。他与塔伯合著的《翻译理论与实践》对翻译界影响颇深。此书说明了中国与西方译界人士思维方式的巨大差别:前者是静的,崇尚“信、达、雅”,讲究“神似”,追求“化境”;后者是动的,将语言学、符号学、交际理论运用到翻译研究当中,提倡“动态对等”,注重读者反应。中国译论多概括,可操作性不强;西方译论较具体,往往从点出发。他在该书中提到了动态对等,详细地描述了翻译过程的三个阶段:分析、转换和重组,对于翻译实践的作用是不言而喻的。笔者拟结合具体实例,从以下角度来分析其理论独到之处。 一 一般来说,结构相同的词组、句子,其语法意义是相同或相近的。然而奈达提出,同样的语法结构在许多情况下可以有不同的含义。“名词+of+名词”这一语法结构可以对此作最好的阐释。如下例: (1)the plays of Shakespeare/ the city of New York/ the members of the team/ the man of ability/ the lover of music/ the order of obedience/ the arrival of the delegation 在以上各个词组中,假设字母A和B分别代表一个名词或代词,它们之间存在着不同的关系。在the plays of Shakespeare 中,Shakespeare是施事,plays是受事,用公式表示就是“B writes A”;在the city of New York中,city和New York是同位关系,用公式表示就是“A is B”;the members of the team中,members和team是所属关系,即“A is in the B”;在the man of ability中,“B is A’s characteristic”;在the lover of music中,lover表示的是活动,即动作,music是它的受事,因此可以理解为(he/she)loves the music, 用公式表示就是“X does A to B”(X施A于B)或“B is the goal of A”(B为A的受事);在the order of obedience中,obedience表示的是活动,order是它的受事,因此用公式表示就是“X does B to A”(X施B于A)或“A is the goal of B”(A为B的受事);在the arrival of the delegation中,arrival表示动作,而delegation是动作的发出者,所以是“B does A”。 因此它们的结构关系如下所示: the plays of Shakespeare——Shakespeare wrote the plays. the city of New York——The city is New York. the members of the team——The members are in the team. the man of ability——The man is able. the lover of music——(He/She) loves the music. the order of obedience——(People) obey the order. the arrival of the delegation——The delegation arrives. ────────── 收稿日期:2004-06-10 作者简介:尹训凤(1976-),女,山东泰安人,泰山学院外语系教师,现为天津外国语学院研究生部2003级研究生,研究方向为翻译理论与实践。 - 34 -

奈达翻译理论简介

奈达翻译理论简介 (一)奈达其人尤金?奈达(EugeneA.Nida)1914年出生于美国俄克勒荷马州,当代著名语言学家、翻译家和翻译理论家。也是西方语言学派翻译理论的主要代表,被誉为西方“现代翻译理论之父”。尤金是当代翻译理论的主要奠基人,其理论核心是功能对等。 尤金先后访问过90个国家和地区,并著书立说,单独或合作出版了40多部书,比较著名的有《翻译科学探索》、《语言与文化———翻译中的语境》等,他还发表论文250余篇,是世界译坛的一位长青学者。他还参与过《圣经》的翻译工作。他与塔伯合著的《翻译理论与实践》对翻译界影响颇深。此书说明了中国与西方译界人士思维方式的巨大差别:前者是静的,崇尚“信、达、雅”,讲究“神似”,追求“化境”;后者是动的,将语言学、符号学、交际理论运用到翻译研究当中,提倡“动态对等”,注重读者反应。中国译论多概括,可操作性不强;西方译论较具体,往往从点出发。他在该书中提到了动态对等,详细地描述了翻译过程的三个阶段:分析、转换和重组,对于翻译实践的作用是不言而喻的。 (二)奈达对翻译的定义 按照奈达的定义:“所谓翻译,是指从语义到文体(风格)在译语中用最切近而又最自然的对等语再现 源语的信息。”其中,“对等”是核心,“最切近”和“最自然”都是为寻找对等语服务的。奈达从社会语言学和语言交际功能的观点出发,认为必须以读者的反应作为衡量译作是否正确的重要标准。翻译要想达到预期的交际目的,必须使译文从信息内容、说话方式、文章风格、语言文化到社会因素等方面尽可能多地反映出原文的面貌。他试图运用乔姆斯基的语言学理论建立起一套新的研究方法。他根据转换生成语法,特别是其中有关核心句的原理,提出在语言的深层结构里进行传译的设想。 奈达提出了词的4种语义单位的概念,即词具有表述事物、事件、抽象概念和关系等功能。这4种语义单位是“核心”,语言的表层结构就是以“核心”为基础构建的,如果能将语法结构归纳到核心层次,翻译过程就可最大限度地避免对源语的曲解。按照4种语义单位的关系,奈达将英语句子归结为7个核心句:(1)Johnranquickly.(2)JohnhitBill.(3)JohngaveBillaball.(4)Johnisinthehouse.(5)Johnissick.(6)Johnisaboy.(7)Johnismyfather. (三)奈达翻译理论的经历阶段 奈达翻译理论的发展经历过三个阶段,分别是描写语言阶段、交际理论阶段和和社会符号学阶段。 第一个阶段始于1943年发表《英语句法概要》,止于1959年发表《从圣经翻译看翻译原则》。这一阶段是奈达翻译思想及学术活动的初期。 第二阶段始于1959年发表的《从圣经翻译看翻译原则》,止于1969年出版的《翻译理论与实践》。主要著作有《翻译科学探索》、《信息与使命》。在这10年中,奈达确立了自己在整个西方翻译理论界的权威地位。1964年出版的《翻译科学探索》标志着其翻译思想发展过程中一个最重要的里程碑。第三阶段始于70年代,奈达通过不断修正和发展自己翻译理论创建了新的理论模式———社会符号学模式。奈达在继承原有理论有用成分的基础上,将语言看成一种符号现象,并结合所在社会环境进行解释。在《从一种语言到另一种语言》一书中,奈达强调了形式的重要性,认为形式也具有意义,指出语言的修辞特征在语言交际及翻译中的重要作用,并且用“功能对等”取代了“动态对等”的提法,是含义更加明确。 三、对奈达翻译理论的评价 (一)贡献 奈达是一位硕果累累的翻译理论家。可以说,在两千年的西方翻译思想发展史上,奈达的研究成果之丰是名列前茅的。他的研究范围从翻译史、翻译原则、翻译过程和翻译方法到翻译教学和翻译的组织工作,从口译到笔译,从人工翻译到机器翻译,从语义学到人类文化学,几乎无所不包,从而丰富并拓展了西方的翻译研究领地。 奈达的理论贡献,主要在于他帮助创造了一种用新姿态对待不同语言和文化的气氛,以增进人类相互之间的语言交流和了解。他坚持认为:任何能用一种语言表达的东西都能够用另一种语言来表达;在语言之间、文化之间能通过寻找翻译对等语,以适当方式重组原文形式和语义结构来进行交际。因此也说明,某

奈达翻译理论动态功能对等的新认识

To Equivalence and Beyond: Reflections on the Significance of Eugene A. Nida for Bible Translating1 Kenneth A. Cherney, Jr. It’s been said, and it may be true, that there are two kinds of people—those who divide people into two kinds and those who don’t. Similarly, there are two approaches to Bible translation—approaches that divide translations into two kinds and those that refuse. The parade example of the former is Jerome’s claim that a translator’s options are finally only two: “word-for-word” or “sense-for-sense.”2 Regardless of whether he intended to, Jerome set the entire conversation about Bible translating on a course from which it would not deviate for more than fifteen hundred years; and some observers in the field of translation studies have come to view Jerome’s “either/or” as an unhelpful rut from which the field has begun to extricate itself only recently and with difficulty. Another familiar dichotomy is the distinction between “formal correspondence” translating on one hand and “dynamic equivalence” (more properly “functional equivalence,” on which see below) on the other. The distinction arose via the work of the most influential figure in the modern history of Bible translating: Eugene Albert Nida (1914-2011). It is impossible to imagine the current state of the field of translation studies, and especially Bible translating, without Nida. Not only is he the unquestioned pioneer of modern, so-called “meaning-based” translating;3 he may be more responsible than any other individual for putting Bibles in the hands of people around the world that they can read and understand. 1 This article includes material from the author’s doctoral thesis (still in progress), “Allusion as Translation Problem: Portuguese Versions of Second Isaiah as Test Case” (Stellenbosch University, Drs. Christo Van der Merwe and Hendrik Bosman, promoters). 2 Jerome, “Letter to Pammachius,” in Lawrence Venuti, ed., The Translation Studies Reader, 2nd ed. (NY and London: Routledge, 2004), p. 23. 3 Nigel Statham, "Nida and 'Functional Equivalence': The Evolution of a Concept, Some Problems, and Some Possible Ways Forward," Bible Translator 56, no. 1 (2005), p. 39.

“功能对等”翻译理论奈达翻译理论体系的核心

[摘要]传统的只围绕直译与意译之争,而奈达从《圣经》翻译提出功能对等即读者同等反应。“功能对等”翻译理论是奈达翻译理论体系的核心,是从新的视角提出的新的翻译方法,它既有深厚的理论基础,也有丰富的实践基础,对翻译理论的进一步完善是一大贡献。 [关键词]功能对等;奈达翻译;英语论文范文 尤金·A·奈达博士是西方语言学翻译理论学派的代表人物之一。在他的学术生涯中,从事过语言学、语义学、人类学、通讯工程学等方面的研究,还从事过《圣经》的翻译工作,精通多国文字,调查过100多种语言。经过五十多年的翻译实践与理论研究,取得了丰硕的成果。至今他已发表了40多部专着、250余篇论文。“自八十年代初奈达的理论介绍入中国以来,到现在已经成为当代西方理论中被介绍的最早、最多、影响最大的理论。他把信息论与符号学引进了翻译理论,提出了‘动态对等’的翻译标准;把现代语言学的最新研究成果应用到翻译理论中来;在翻译史上第一个把社会效益(读者反应)原则纳入翻译标准之中。尤其是他的动态对等理论,一举打破中国传统译论中静态分析翻译标准的局面,提出了开放式的翻译理论原则,为我们建立新的理论模式找到了正确的方向。奈达在中国译界占据非常重要的地位。”“奈达的理论贡献,主要在于他帮助创造了一种新姿态对待不同语言和文化的气氛,以增进人类相互之间的语言交流和了解。”[1] 翻译作为一项独立的学科,首先应回答的问题就是:什么是翻译?传统翻译理论侧重语言的表现形式,人们往往醉心于处理语言的特殊现象,如诗的格律、诗韵、咬文嚼字、句子排比和特殊语法结构等等。现代翻译理论侧重读者对译文的反应以及两种反应(原文与原作读者、译文与译作读者)之间的对比。奈达指出:“所谓翻译,就是指从语义到文体在译语中用最贴切而又最自然的对等语再现原语的信息”,奈达在《翻译理论于实践》一书中解释道,所谓最切近的自然对等,是指意义和语体而言。但在《从一种语言到另一种语言》中,奈达又把对等解释为是指功能而言。语言的“功能”是指语言在使用中所能发挥的言语作用;不同语言的表达形式必然不同,不是语音语法不同就是表达习惯不同,然而他们却可以具有彼此相同或相似的功能。奈达所强调的是“对等”“、信息”“、意义”和“风格”,奈达从语义学和信息论出发,强调翻译的交际功能,正如他自己所说“:翻译就是交际”,目的是要寻求原语和接受语的“对等”。他所说的“信息”包括“意义”和“风格”,着重于交际层面。他实质上要打破的是传统的翻译标准。他把翻译看成是“语际交际”,也就是在用交际学的观点来看问题。交际至少应当是三方的事情:信息源点———信息内容———信息受者,也就是说话者———语言———听话者。奈达注重译文的接受者,即读者,而且都对读者进行了分类。奈达根据读者的阅读能力和兴趣把读者分为四类:儿童读者、初等文化水平读者、普通成人读者和专家。他曾说过,一些优秀的译者,常常设想有一位典型的译文读者代表就坐在写字台的对面听他们口述译文,或者正在阅读闪现在电脑显示屏上的译文。这样,就好像有人正在听着或读着译文,翻译也就不仅仅是寻求词汇和句法的对应过程。运用这种方法,译者就可能更自觉地意识到“翻译就是翻译意思”的道理。 可译性与不可译性是翻译界长期争论的一个问题。奈达对不同的之间的交流提出了新的观点。他认为每种语言都有自己的特点,一种语言所表达的任何东西都可以用另一种语言来表达。尽管不同民族之间难以达到“绝对的”交流,但是可以进行“有效的”交流,因为人类的思维过程、生产经历、社会反应等有许多共性。他这种思想主要基于他对上帝的信仰和对《圣经》的翻译。在他看来,上帝的福音即是真理,可以译成不同的语言,也可以为不同国家的人所理解。因此,他提出“最贴近、最自然的对等”。 奈达把翻译分为两种类型:形式对等翻译和动态功能对等。翻译形式对等是以原语为中心,尽量再现原文形式和内容。功能对等注重读者反映,以最贴近、最自然的对等语再现原文信息,使译文读者能够达到和原文读者一样的理解和欣赏原文的程度。奈达的形式对等要求严格地再现原语的形式,其实也就是“逐字翻译”或“死译”。奈达本人也不主张形式对等的翻译,他认为严格遵守形式无疑会破坏内容。 奈达的“功能对等”理论的提出是对译学研究的一个重大贡献。首先,他提出了一个新的翻译评价标准。他指出:翻译准确与否取决于普通读者正确理解原文的程度,也就是把译文读者反应与原文读者反应进行对照,看两者是否达到最大限度的对等。其次,他提出的“最贴切、最自然的对等”标准也不同于传统的“忠实”

The-theory-and-practice-of-translation-奈达的翻译理论与实践

The theory and practice of translation Eugene A. Nida and Charles R. Taber 1974 Contents 1.A new concept of translation 2.The nature of translating 3.Grammatical analysis 4.Referential meaning 5.Connotative meaning 6.Transfer 7.Restructuring 8.\ 9.Testing the translation Chapter One The old focus and the new focus The older focus in translating was the form of the message, and the translator too particular delight in being able to reproduce stylistic specialties, ., rhythms, rhymes, plays on words, chiasmus, parallelism, and usual grammatical structures. The new focus, however, has shifted from teh form of the message to the response of the receptor. Therefore, what one must determine is the response of the receptor to te translated message, this response must be compared with the way in which the original receptors presumably reacted to the message when it was given in its original setting. Chapter Two Translating consists in reproducing in the receptor language the closest natural equivalent of the source-language message, first in terms of meaning and secondly in terms of style. But this relatively simple statement requires careful evaluation of several seemingly contradictory elements. Reproducing the message Translating must aim primarily at “reproducing the message.” To do anything else is essentially false to one’s task as a translator. But to reproduce the message one must make a good many grammatical and lexical adjustments. Equivalence rather than identity 。 The translator must strive for the equivalence rather than identity. In a sense, this is just another way of emphasizing the reproduction of the message rather than the conversation of the form of the utterance, but it reinforces the need for radical alteration of a phrase, which may be quiet meaningless.

奈达和纽马克翻译理论对比初探

[摘要] 尤金·奈达和彼得·纽马克的翻译理论在我国产生很大的影响。他们在对翻译的认识及处理内容与形式关系方面有共识亦有差异。他们孜孜不倦发展自身理论的精神值得中国翻译理论界学习。 [关键词] 翻译; 动态对等; 语义翻译和交际翻译; 关联翻译法 Abstract :Both Nida and Newmark are outstanding western theorist in the field of translation. They have many differences as well as similarities in terms of the nature of translation and the relationship between the form and content. Their constant effort to develop their theories deserve our respect. Key words :translation ; dynamic equivalence ; semantic translation ; communicative translation ; a correlative approach to translation 尤金·奈达( Eugene A1Nida) 和彼得·纽马克是西方译界颇具影响的两位翻译理论家, 他们在翻译理论方面有诸多共通之处, 同时又各具特色。 一、对翻译的认识 对翻译性质的认识, 理论界的讨论由来已久。奈达和纽马克都对翻译是科学还是艺术的问题的认识经历了一个变化的过程。 奈达对翻译的认识经历了一个从倾向于把翻译看作科学到把翻译看作艺术的转化过程。在奈达翻译理论发展的第二个阶段即交际理论阶段, 他认为, 翻译是科学, 是对翻译过程的科学的描写。同时他也承认, 对翻译的描写可在三个功能层次上进行: 科学、技巧和艺术。在奈达逐渐向第三个阶段, 即社会符号学和社会语言学阶段过渡的过程中, 他越来越倾向于把翻译看作是艺术。他认为翻译归根到底是艺术, 翻译家是天生的。同时, 他把原来提出的“翻译是科学”改为“翻译研究是科学”。到了上世纪90 年代, 奈达又提出, 翻译基本上是一种技艺。他认为: 翻译既是艺术, 也是科学, 也是技艺。 纽马克对翻译的认识也经历了一定的变化。最初, 他认为, 翻译既是科学又是艺术, 也是技巧。后来他又认为翻译部分是科学, 部分是技巧, 部分是艺术, 部分是个人品位。他对翻译性质的阐释是基于对语言的二元划分。他把语言分为标准语言和非标准语言。说翻译是科学, 因为标准语言通常只有一种正确译法, 有规律可循, 体现了翻译是科学的一面。如科技术语。非标准语言往往有许多正确译法, 怎么挑选合适的译法要靠译者自身的眼光和能力, 体现了翻译是艺术和品位的性质。但译文也必须得到科学的检验, 以避免明显的内容和用词错误, 同时要行文自然, 符合语言环境要求。纽马克虽然认为翻译是科学, 但他不承认翻译作为一门科学的存在。因为他认为目前的翻译理论缺乏统一全面的体系, 根本不存在翻译的科学, 现在没有, 将来也不会有。 二、理论核心 奈达和纽马克都是在各自翻译实践的基础上, 为了解决自己实践中的实际问题, 提出了相应的翻译理论。实践中要解决的问题不同, 翻译理论也就各成一派。但毕竟每种实践都要有一定的规律存在, 因此两位的理论又有着不可忽视的相似。 奈达提出了著名的“动态对等”。他对翻译所下的定义: 所谓翻译, 是在译语中用最切近而又最自然的对等语再现源语的信息, 首先是意义, 其次是文体。这一定义明确指出翻译的本质和任务是用译语再现源语信息, 翻译的方法用最切近而又最自然的对等语。同时这一定义也提出了翻译的四个标准: 1 (1) 传达信息; 2 (2) 传达原作的精神风貌;

奈达翻译理论

Eugene Nida的翻译理论(转) 摘要:本文介绍了奈达的翻译思想,对其功能对等理论进行了分析,对奈达理论在翻译界的重要地位和重大影响进行了简单的评述。然后从五个方面探讨了当今翻译界对奈达思想的争论,介绍了争论中提出的新概念,并进行了一定的分析。最后,文章探讨了奈达思想形成的原因和在翻译实践中可以得到的启示。关键词:奈达功能对等争论启示一、奈达的翻译思想尤金·奈达(EugeneA.Nida)是公认的现代翻译理论奠基人之一。他供职于美国圣经协会,从事圣经翻译和翻译理论研究,其理论在中国甚至在全世界都有着重要的地位。奈达把翻译看作是一种艺术,力图把语言学应用于翻译研究。他认为,对翻译的研究应该看作是比较语言学的一个重要的分支;这种研究应以语义为核心包括翻译涉及的各个方面,即我们需要在动态对等的层次上进行这种比较。由于奈达把翻译和语言学密切联系,他把翻译的过程分成了四个阶段:分析(analysis),转换(transfer),重组(restructuring)和检验(test)。则翻译的具体过程就经过了下图的步骤。在这一过程中,奈达实际上是透过对原文的表层结构的分析,理解深层结构并将其转换重组到译文中。因此,在翻译中所要达到的效果是要让译文读者得到一个自然的译本。他曾说:“最好的译文读起来应不像翻译。”所以,他的翻译中另一个非常突出的特点就是“读者反应论”。他认为,翻译正确与否必须以译文的服务对象为衡量标准,并取决于一般读者能在何种程度上正确地理解译文。由此,他提出了他的“动态对等理论”。奈达在《翻译科学探素》(1964)一书中指出,“在动态对等翻译中,译者所关注的并不是源语信息和译语信息的对应关系,而是一种动态关系;即译语接受者和译语信息之间的关系应该与源语接受者和原文信息之间的关系基本相同”。他认为,所谓翻译,是指从语义到文体在译语中的最贴近而又最自然的对等语再现源语的信息(郭建中,2000)。所谓自然,是指使用译语中的表达方式,也就是说在翻译中使用归化,而不是异化。然而由于动态对等引起不少误解,认为翻译只要内容不要形式,在奈达的《从一种语言到另一种语言:论圣经翻译中的功能对等》一书中,他把“动态对等”的名称改为“功能对等”,并指出信息不仅包括思想内容,也包括语言形式。功能对等的翻译,要求“不但是信息内容的对等,而且,尽可能地要求形式对等”。二、奈达理论的评析毫无疑问,奈达是当代最著名也是最重要的翻译家之一,他的翻译理论,特别是他的功能对等理论在全世界的翻译界产生了重大的影响。约翰·比克曼(JohnBeekman)和约翰·卡洛(JohnCallow)的《翻译圣经》中说:“传译了原文意义和原文动态的翻译,称之为忠实的翻译。”而所谓“传译原文的动态”,就是指译文应使用目标语自然的语言结构,译文读者理解信息毫不费力,译文和原文一样自然、易懂。同时,他们也认为译者所要传达的是源语表达的信息,而不是源语的表达形式。在米尔德里德·L·拉森(https://www.doczj.com/doc/404555431.html,rson)的《意义翻译法:语际对等指南》中,当谈到形式与意义时,拉森说得更为直截了当:“翻译基本上是改变形式(achangeofform)……是用接受语(目标语)的形式代替源语的形式。”她还表示,语言的深层结构与表层结构是不同的,我们所要翻译的是深层结构,即意义,而不是表层结构,即语言表达形式。然而正如郭建中(2000)所说:“内容与形式,意译与直译,以译文读者和译文为中心与以原作者和原文为中心……是翻译理论和翻译实践中一个永恒的辩论主题。”虽然奈达在全世界有着重要的影响和极高的地位,但他的理论却也一直引起各家争议。关于奈达理论的争议,主要是围绕以下五点展开的:(一)对等理论的适用范围这是长期以来对奈达翻译理论的争议得最多最激烈的问题。许多的翻译家都认为其理论是不适合文学翻译的。以诗歌翻译为例,林语堂曾经说过:“诗乃最不可译的东西。无论古今中外,最好的诗(而尤其是抒情诗)都是不可译的。”而著名诗人海岸(2005)在他的《诗人译诗,译诗为诗》中也指出:不同文化背景之间的符号系统只能在所指层面达到一定的共享,建立在绝对理解上的诗歌翻译只能是一种难以企及的梦想。特别是英语诗中的音韵节律及一些特殊的修辞手法等均不能完全传译,正如辜正坤在《中西诗比较鉴赏与翻译理论》一书中所言,

相关主题
文本预览
相关文档 最新文档