当前位置:文档之家› 桨叶角度调整

桨叶角度调整

桨叶角度调整
桨叶角度调整

Ref No:CCWE-MDS-090225001

MDS 变桨系统角度传感器调试步骤

译自:MDS Technical Manual from MITA

2.5Initial setup and calibration

1.为安全起见,一次只对一个桨叶进行调整,其他桨叶应当处于安全停止位置。(译注:这是在现场安装完毕后的情况而言,对于在工厂调试不需要按此要求进行)

2.为安全起见,强烈建议不要在没有校准角度变送器的情况下使MDS 控制器以为角度变送器已校准。当角度变送器没有使能或cal.scale(Calibration ->Cal.Sclae)<=90o,MDS 在上电时不会启动电机。但若角度变送器使能并且cal.Scale 的参数不正确的情况下对MDS 上电会使桨叶移动到不正确的位置。因此,在没有校准角度传感器前使角度传感器失效(Control Ex.->Angle Transducer)。

3.检验角度变送器是否涵盖整个桨叶移动范围。将小键盘或手操盒在速度控制方式下在整个范围内移动桨叶。通过键盘(Diagnostic->Analog In 2)检查电流输入值,看是否有跳变或达到极限。当桨叶角度增加时,电流值也要增加。

4.下面描述采用2点或1点及1个调试比例来实现角度传感器的校准步骤。这些点需要在变桨轴承上有明显的点。为得到最大的精度,校准点需要足够分离。最好是接近角度变送器的终点。决不要依靠限位开关来确定角度,因为这些点可能没有调准或不能正确的反映真实的位置。对于不同的速度,限位开关的启动时间也有所不同。若校准点在限位开关以外,当电机在限位开关处停止,复位故障,然后继续向期望的位置移动。

5.为得到最大的精度,使能角度滤波功能(Control Ex.->Tansd.Filter =Enable)。将滤波器值设为最大(Angle->Tansd.Filter =99%)。另外,为消除角度变速箱的间隙,应当从低角度向校准点接近(正方向移动)。

6.用键盘或手操盒在速度控制模式下移动至桨叶校准点1,(最好是接近-10o)。

7.在参数(Calibration ->Set Cal.Pt.Angle 1)中输入真实角度值,通过对参数(Calibration ->Set Cal.Pt.1)按回车键激活此校准点1。

8.如果知道Cal.Scale,可以在参数中输入此值(Calibration ->Cal.Scale)。若不知道,可以通过第2个校准点来计算此值。(执行9-10步)

9.用键盘或手操盒在速度控制模式下移动至桨叶校准点2,(最好是接近90o)。在参数(Calibration ->Set Cal Pt.Angle 2)输入真实的角度并通过对参数(Calibration ->Set Cal.Pt.2)按回车键激活第2个校准点。

10.MDS 控制器这时对三个参数(Calibration ->:Ref.Point value,Ref.Point Angle 及Cal.Scale),进行计算,并可以通过键盘显示得到。显示的参数Ref.Point Value 及Ref.Point Angle 是表示Cal.Pt.#1及第

1个校准点的。这样,角度变送器就校准完成了。

11.若此3个参数需要手动调整,可以在任意时刻手动调整。可以通过键盘检查参数(Angle ->Tansducer Angle)来检查变送器的便送变送角度值。该角度值由下列公式计算:

Angle =Ref.Point.Angle +(Ang.Transd.Val -Ref.Point.Val)*Cal.Scale

注意,Cal.Scale 的单位是[o/trnasducer full range]。这就是说Cal.Scale value 可以告诉我们在4-20mA 范围内覆盖多少角度。

12.用键盘或手操盒在速度控制方式下在整个桨叶移动范围内移动桨叶,检查角度是否正常(Angle ->Transducer Angle).

13.或者用键盘或手操盒在位置控制模式下移动桨叶到特定的角度,手动检查桨叶是否到达位置。

14.将更改的参数永久存储(Control Ex.->Save Permanently)。

1.将正确的电机-桨叶间的变速比输入参数(Calibration ->Gear Ratio)。这个3个桨叶的此参数必须相等。若此参数不知道,可以通过下列操作计算得到。

2.在前面叙述的角度校准中,当激活校准点2时,将计算第4个参数(Calibration ->Gear Ratio Calc).此数值对MDS 控制器没有影响,但若希望的话,可以手动将此值复制到变速箱变速比参数(Calibration ->Gear Ratio)中。

3.若没有连接编码器,变速比参数非常重要,因为它对内部计算桨叶速度非常重要。

4.永久存储参数(Control Ex.->

Svae Permanently).

蔡晓峰

CCWE

减速器试验规范

减速器空载、超载及接触疲劳 试验规范 德阳东汽电站机械制造有限公司 2007-06-28

目录 一、试验目的 (4) 二、试验标准 (4) 三、试验要求: (4) 1. 试验所用仪器 (4) 2. 试验润滑要求 (4) 3. 试验标准 (5) 四、试验前准备 (5) 五、空载试验 (5) 1.试验装置 (5) 2.安装调试 (6) 3.负载与转速测试仪器 (6) 4.试验方法 (6) 5.基本要求 (7) 六、超载试验 (7) 1.试验装置 (7) 2.安装调试 (7) 3.负载与转速测试仪器 (8) 4.加载步骤 (8) 5.超载试验 (8) 6.基本要求 (9) 七、齿轮接触疲劳寿命试验 (9) 八、试验的温度、噪声、振动测试仪器要求 (9)

九、测试数据与数据处理 (10) 1.数据采集 (10) 2.计算转矩(功率)、转速的平均值 (10) 3.减速器传动效率 (11) 4.减速器热功率曲线 (12) 5.负荷性能试验、疲劳寿命试验高速齿轮每齿应为循环数的计算 (12) 6.温升计算与温度限额 (13) 十、试验合格指标 (13) 1.疲劳寿命试验或工业应用试验合格指标 (13) 2.产品质量鉴定、认证及出厂验收试验的合格指标 (14)

一、试验目的 通过试验验证变桨减速器各性能参数达到设计要求,连接稳固,密封可靠。 二、试验标准 减速器空载试验参照《JB/T 9050.3-1999圆柱齿轮减速器加载试验方法》中相关要求进行。 三、试验要求: 1. 试验所用仪器 ①动力源:按齿轮箱的功率选用适当电机 ②试验台:按要求搭建 ③测量仪表: a. 温度计、Pt100仪表:用于测量被试齿轮箱润滑油温度,轴承 温度。 b. 测振仪:测量振动。要求测量高速轴,内齿圈外部等处振动 量。 c. 声级仪:测量试车噪音。 d. 转速表:测量齿轮箱轴及电机轴转速。 e. 必要时应配有一台1/3倍频程频率分析仪,并进行FFT分析。 2. 试验润滑要求 试验用油必须采用与齿轮箱工作时完全一致的油品,润滑油路必须是齿轮箱正常工作时的油路,试验后应更换过滤器。涂装时,为保证齿轮箱油路的完好性,不应拆卸各元件。

伺服电机转角的运动控制

实验三 伺服电机转角的运动控制 1 实验目的: 1)了解反馈控制系统的组成; 2)了解PID(比例-积分-微分)控制器参数对系统性能的影响; 3)熟悉 SIMULINK 的基本操作。 2 实验装置:主计算机、从计算机、小车运动控制装置、互联网 3 实验内容及步骤: 本实验要求构建反馈控制系统,计算或调节PID 控制器参数,使电机快速准确地运动到某个位置。 步骤如下: 第一步: SIMULINK 仿真. 如图1所示. 已知电机转动惯量 J=0.0031, 转动摩擦系数 B=0.1934, 要求设计PD 控制器, 使系统的固有频率=125 rad/s, 阻尼比=1. 求参数Kp, Kd 。这一工作要求在实验之前完成。 求出参数Kp, Kd 后, 在Matlab 命令窗口中输入: J=0.0031, B=0.1934以及Kp 和Ki. 进入Simulink, 打开模板文件simu.mdl, 将其连线成如图 2. 图2 仿真程序框图 执行仿真. 观察输出波形. 第二步:电机转角实时控制. 打开文件MyExp.mdl. 连线构建如图3的实时控制程序框图。其中模块PCI-6024输出控制电压,连接至电机的驱动器,用于驱动电机转动;模块PCI-6601输入脉冲信号,连接至电机的转角编码器,用于测量电机转角。运行该程序将使电机转动90度。 1)双击PID模块,先随意设置PID参数Kp,Ki和Kd. 2)通知指导教师,让其帮助做好主从机连接设置及获得下载许可等。 3)按ctrl+B编译程序将其下载到从计算机中。 等到显示:###Successful completion of xPC Target build procedure for model: MyExp 图1 电机转角PD(比例-微分)控制系统

金属疲劳试验方法

铝合金疲劳实验 李慕姚 1351626 一﹑实验目的 1. 观察疲劳失效现象和断口特征。 2. 了解测定材料疲劳极限的方法。 二、实验设备 1. 疲劳试验机。 2. 游标卡尺。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值 r=m ax m in σσ (2-16) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为σ 1m ax ,经历N 1次循环后,发生疲劳失效,则N 1称为最大应力为σ1 m ax 时的疲劳寿命(简称寿 命)。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力σmax 与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图2-31所示。从图线看出,当应力降到某一极限值σr 时,S-N 曲线趋近于水平线。即应力不超过σr 时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107次循环下仍未失效的最大应力作为持久极限σr 。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

图2-31 疲劳试验曲线图 工程问题中,有时根据零件寿命的要求,在规定的某一循环次数下,测出σmax ,并称之为疲劳强度。它有别于上面定义的疲劳极限。 用旋转弯曲疲劳实验来测定对称循环的疲劳极限σ-1.设备简单最常使用。各类旋转弯曲疲劳试验机大同小异,图2-32为这类试验机的原理示意图。试样1的两端装入左右两个心轴2后,旋紧左右两根螺杆3。使试样与两个心轴组成一个承受弯曲的“整体梁”上,它支承于两端的滚珠轴承4上。载荷P 通过加力架作用于“梁”上,其受力简图及弯矩图如图2-33所示。梁的中段(试样) 为纯弯曲,且弯矩为M=21 P ɑ。“梁”由高速电机6带动,在套筒7中高速旋转,于是试样横截面上任一点的弯曲正应力,皆为对称循环交变应力,若试样的最小直径为d min ,最小截面边缘上一点的最大和最小应力为 max σ=I Md 2min , min σ=-I Md 2min (2-17) 式中I=64π d 4 m in 。试样每旋转一周,应力就完成一个循环。试样断裂后,套筒压迫停止开关使试验机自动停机。这时的循环次数可由计数器8中读出。 四﹑实验步骤 (1)测量试样最小直径d min ; (2)计算或查出K 值;

疲劳试验标准大全

疲劳试验列表 ISO 12108 金属材料疲劳试验疲劳裂纹扩展方法… ISO 12107 金属材料疲劳试验统计方案和数据分析方法… ISO 1352 钢扭应力疲劳试验方法… ISO 1143 金属旋转弯曲疲劳试验方法… GB/T6398 金属材料疲劳裂纹扩展速率试验方法… ASTM E2207-02 薄壁管应变控制轴向扭转疲劳试验方法… ASTM E1949-03 粘贴金属电阻应变片室温疲劳寿命试验方法… ASTM E796-94 金属箔延性试验方法… ASTM E739-91 线性或线性化应力-寿命(S-N)和应变-寿命(e-N)… ASTM E647-05 疲劳裂纹扩展速率试验方法… ASTM E606-04 应变控制疲劳试验方法… ASTM E468-90 金属材料恒幅疲劳试验结果表示方法… ASTM E466-96 金属材料力控制恒幅轴向疲劳试验方法… ISO 12106 金属材料–疲劳试验–轴向应变控制方法… ISO 1099 金属材料–疲劳试验–轴向力控制方法… GB/T3075 金属轴向疲劳试验方法… GB/T4337 金属旋转弯曲疲劳试验方法… GB/T7733 金属旋转弯曲腐蚀疲劳试验方法… GB/T12443 金属扭应力疲劳试验方法… GB/T2107 金属高温旋转弯曲疲劳试验方法… 疲劳试验列表 GB/T15248 金属材料轴向等幅低循环疲劳试验方法… GB/T10622 金属材料滚动接触疲劳试验方法… ISO 12108 金属材料疲劳试验疲劳裂纹扩展方法 标准英文名称 Metallic materials – Fatigue testing – Fatigue crack growth method 标准编号 ISO 12108 实施年份 2002 标准中文名称 金属材料疲劳试验疲劳裂纹扩展方法 适用范围 适用于金属材料疲劳裂纹扩展速率和疲劳裂纹扩展门槛值的测定。应用于材料检验,失效分析,质量控制,选材及新金属材料研发等方面。

电压转角机电伺服控制系统实训报告

自动控制原理与系统课程实训电压一转角机电伺服控制系统的分析 学院(系)_______________________ 专业_____________________ 姓名_____________________ 学号

一、课题简介 二、控制系统的组成与工作原理 三、课程实训的任务与要求 四、控制系统数学建模 五、数学模型的仿真 六、控制系统的性能分析 七、心得体会 八、参考资料

一、课题简介电压—转角伺服控制系统是一类小功率位置随动实验装置,在高校和科研院、所的自动化实验室中可以看到它们的应用。利用这套设备不仅可以完成一些验证性实验(需要设置必要的外部接口和测试孔),例如位置伺服实验、直流电机调速实验、运算放大器性能实验、PID 校正实验和功率放大器性能实验;也可以做一些设计性、研究性的实验,比如将其与计算机接口,从而对一些控制方法进行研究。这类实验设备有多种成型产品,被普遍用于教学和科研。 机电伺服系统主要用于小功率伺服控制。驱动负载能力和响应速度偏低是这类控制方式的缺点。但在信号检测、传递、处理以及新控制策略再生等方面表现的灵活性、准确性、和经济性是其它控制方式所不能比拟的。

二、控制系统的组成与工作原理 电压—转角机电伺服控制系统的电气原理如图所示。该系统的输入量是给定的电压信号U i ,输出量是直流伺服电动机SYL — 5的转角a。运算放大器卩A741构成控制系统中的 PI 校正环节,可以增大系统的开环增益,从而提高系统的稳定精度。功率放大器由前置放大器 MC1536 和三级互补跟随器组成,具有较高的输入阻抗。系统中除了设置位置反馈外还设置了速度反馈,用来增加系统阻尼,减小伺服电机的时间常数,改善传递特性的线性度。从而进一步提高系统的动、静态品质。被控对象是直流伺服电机,它与反馈电位计和测速发电机同轴相连。该系统具有输出转角跟随输入电压变化的功能:当输入信号与位置反馈信号出现差值时,位置偏差信号经 PI 校正环节后与速度反馈信号比较,得到的速度偏差经功率放大后驱动直流伺服电机旋转,同时带动位置反馈电位计和测速发动机一起转动。最终消除偏差,伺服电机停止在与输入信号相应的位置上。位置反馈和速度反馈分别由电位计 WH— 1.5k、测速发电机 70CYD-1 和速度反馈分压电位计完成。由于反馈元件的精度对闭环控制系统的性能有着重要影响,应该选用性能稳定、精度高的元、器件作为反馈元件。

疲劳试验方案

腐蚀钢丝疲劳性能试验 通过对国内外的文献进行查阅,少有对已使用过的腐蚀钢丝进行疲劳性能 试验的相关研究。因此,有必要对锈蚀分级过的腐蚀钢丝(亦有疲劳损伤)进行疲劳 性能试验,为斜拉桥拉索的安全评定及剩余寿命预测提供研究基础。 一﹑实验目的 1. 观察疲劳失效现象和断口特征。 2. 得到S-N 曲线。 3. 试验特定过程中的应力应变关系 二、实验设备 1. 疲劳试验机。 2. 锈蚀分级的拉索钢丝。 三﹑实验方法 试验用拉索钢丝尺寸及构造示意图见图1。疲劳性能试验采用力控制,拉 索疲劳性能试验初始应力幅为 360MPa ,应力比为 0.5,断丝后仍保持荷载幅 不变。疲劳试验拉索钢丝长度为300mm 、自由段长度为 200mm 。钢丝截面直径为7mm ,对应面积为523.84810m -? 。 图1. 拉索钢丝示意图

表1.疲劳试验性能表 编号 Mpa σ? max Mpa σ min Mpa σ R 试件数量 1 290 580 290 0.5 4 2 360 720 360 0.5 4 3 500 1000 500 0.5 4 试件数量4根分别代表全新、锈蚀等级1、锈蚀等级2、锈蚀等级3的拉索钢丝。编号1、2、3力控制分别为:11.161KN —22.321KN 、13.854KN —27.709KN 、19.242KN —38.485KN 。 影响钢丝疲劳性能的参数主要是应力幅和应力循环次数,为在尽可能少的样本下获得钢丝疲劳寿命的概率分布,设计了如表1的拉索钢丝疲劳性能试验方案。 疲劳试验钢丝样本长度 300mm ,考虑到在拉伸疲劳试验时常断在夹持部位,主要是试验机夹具附加力使钢丝表面产生损伤或应力集中造成的,为使试验获得理想可靠的结果,应该对试验钢丝样本两端的夹持部位表面进行夹持处理,使夹持部位钢丝表面产生预压应力,提高其疲劳性能,避免试验过程中在此部位发生破坏。 四﹑试样 采用R 、S 、T 三组不同锈蚀等级的平行钢丝、以及全新钢丝。 五﹑实验结果处理 1. 将所得实验数据列表;然后以lgN 为横坐标,σmax 为纵坐标,绘制光滑的S-N 曲线。 2. 报告中绘出破坏断口,指出其特征。

ASTM 金属疲劳与断裂标准一览

ASTM 金属疲劳与断裂标准一览 ASTM 金属疲劳与断裂标准一览 E468-90(2004)显示金属材料定幅疲劳试验结果的方法 Standard Practice for Presentation of Constant Amplitude Fatigue Test Results for Metallic Materials E561-05 R-曲线测定 Standard Practice for R-Curve Determination E602-03 圆柱形试样的锐切口张力的试验方法 Standard Test Method for Sharp-Notch Tension Testing with Cylindrical Specimens E606-92(2004)e1 应变控制环疲劳试验 Standard Practice for Strain-Controlled Fatigue Testing E647-05 疲劳裂缝增大率测量用测试方法 Standard Test Method for Measurement of Fatigue Crack Growth Rates E1457-00 测量金属蠕变开裂增长速度的试验方法 Standard Test Method for Measurement of Creep Crack Growth Rates in Metals E1290-02 测量裂缝尖端开口位移(CTOD)裂缝韧性的试验方法 Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement E1823-96(2002) 疲劳和裂纹试验相关的标准术语 Standard Terminology Relating to Fatigue and Fracture Testing E1921-05 测定铁素体钢在转变范围内基准温度的标准试验方法 Standard Test Method for Determination of Reference Temperature, To', for Ferritic Steels in the Transition Range E740-03 用表面破裂张力试样做断裂试验 Standard Practice for Fracture Testing with Surface-Crack Tension Specimens Steels Using Equivalent Energy Methodology E1049-85(1997) 疲劳分析的周期计数 Standard Practices for Cycle Counting in Fatigue Analysis E1152 Test Method for Determining J-R Curves3 E1169-02 耐久性试验的实施 Standard Guide for Conducting Ruggedness Tests E1221-96(2002) 测定Kla铁素体钢的平面应变,断裂抑制,破裂韧性的试验方法 Standard Test Method for Determining Plane-Strain Crack-Arrest Fracture Toughness, KIa, of Ferritic Steels

焊缝金属和焊接接头的疲劳试验法

为尽快解决国家标准时效性差和总体水平偏低等问题,建立与国民经济和社会发展相适应的标准体系,更好地为社会提供服务,自2003年起,国家质量监督检验检疫总局和国家标准化管理委员会对截止目前的21575项国家标准进行了清理,近日,国家质检总局和国家标准委发布2005年第146号公告,宣布通过清理后,继续有效的国家标准有44.2%,急需修订的有44.2%,废止的有11.6%。通过此次清理,国家标准总体数量将减少23%。请各有关方面停止使用已经废止的国家标准。有关废止的国家标准目录详见国家质量监督检验检疫总局网站(https://www.doczj.com/doc/454412292.html,)和国家标准化管理委员会网站(https://www.doczj.com/doc/454412292.html,)。 经查阅,与钢结构检测有关的废止的国家标准有: GB/T 38-1976 螺栓技术条件 GB/T 61-1976 螺母技术条件 GB/T 89-1976 螺钉技术条件 GB/T 223.1-1981 钢铁及合金中碳量的测定 GB/T 223.2-1981 钢铁及合金中硫量的测定 GB/T 223.15-1982 钢铁及合金化学分析方法重量法测定钛 GB/T 223.35-1985 钢铁及合金化学分析方法脉冲加热惰气熔融库仑滴定法测定氧量 GB/T 223.45-1994 钢铁及合金化学分析方法铜试剂分离-二甲苯胺蓝Ⅱ光度法测定镁量 GB 2595-1981 冶金分析化学实验室安全技术标准 GB/T 2655-1989 焊接接头应变时效敏感性试验方法 GB/T 2656-1981 焊缝金属和焊接接头的疲劳试验法 GB/T 2971-1982 碳素钢和低合金钢断口检验方法 GB/T 4158-1984 金属艾氏冲击试验方法 GB/T 4675.1-1984 焊接性试验斜Y型坡口焊接裂纹试验方法 GB/T 4675.2-1984 焊接性试验搭接接头(CTS) 焊接裂纹试验方法 GB/T 4675.3-1984 焊接性试验 T型接头焊接裂纹试验方法 GB/T 4675.4-1984 焊接性试验压板对接(FISCO) 焊接裂纹试验方法 GB/T 4675.5-1984 焊接性试验焊接热影响区最高硬度试验方法 GB/T 9447-1988 焊接接头疲劳裂纹扩展速率试验方法 GB/T 12444.1-1990 金属磨损试验方法 MM型磨损试验 GB/T 12469-1990 焊接质量保证钢熔化焊接头的要求和缺陷分级 GB/T 13321-1991 钢铁硬度锉刀检验方法 GB/T 13816-1992 焊接接头脉动拉伸疲劳试验方法 GB/T 13817-1992 对接接头刚性拘束焊接裂纹试验方法 GB/T 15111-1994 点焊接头剪切拉伸疲劳试验方法 GB/T 15747-1995 正面角焊缝接头拉伸试验方法 钢结构检测专家委员会

简易风洞及控制系统

简易风洞及控制系统(G题) 摘要:本帆板控制系统由单片机ATMEGA328作为帆板转角的检测和控制核心,实现按键对风扇转速的控制、调节风力的大小、改变帆板转角θ、液晶显示等功能。引导方式采用角度传感器感知与帆板受风力大小的转角θ的导引线。通过PWM波控制电机风扇风力的大小使其改变帆板摆动的角度θ。风扇控制核心采用L298电机驱动模块,用ATMEGA328单片机为控制核心,产生占空比受数字PID 算法控制的PWM脉冲,实现对直流电机转速的控制,同时利用光电传感器将电机速度转化成脉冲频率反馈到单片机中,实现转速闭环控制,达到转速无静差调节的目的。MMA7455三轴加速传感器把角度输出信号传送给ATMEGA328单片机进行处理。 关键词:ATMEGA328,MMA7455,PWM波,PID算法

目录 1. 系统设计 1.1 任务与要求 1.1.1 主要任务 1.1.2 基本要求 1.1.3 说明 1.2总体设计方案 1.2.1 设计思路· 1.2.2 方案论证与比较 1.2.3 系统的组成 2. 单元电路设计 2.1 风速控制电路 2.2小球测距原理 2.3控制算法 3. 软件设计 3.1风速控制电路设计计算 3.2控制算法设计与实现 3.3程序流程图 4. 系统测试 4.1 调试使用的仪器与方法 4.2 测试数据完整性 4.3 测试结果分析 4.4 结束语 5. 总结 参考文献 附录1 元器件明细表 附录2 电路图图纸 附录3 程序清单

1.1任务与要求 1.1.1 主要任务 设计制作一简易风洞及其控制系统。风洞由圆管、 连接部与直流风机构成,如图所示。 圆管竖直放置,长度约40cm,内径大于4cm且内 壁平滑,小球(直径4cm黄色乒乓球)可在其中上下运 动;管体外壁应有A、B、C、D等长标志线,BC段有 1cm间隔的短标志线;可从圆管外部观察管内小球的位置;连接部实现风机与圆管的气密性连接,圆管底部应有防止小球落入连接部的格栅。控制系统通过调节风机的转速,实现小球在风洞中的位置控制。 1.1.2 基本要求 (1)小球置于圆管底部,启动后5s内控制小球向上到达BC段,并维持5s 以上。 (2)当小球维持在BC段时,用长形纸板(宽度为风机直径的三分之一)遮挡风机的进风口,小球继续维持在BC段。 (3)以C点的坐标为0cm、B点的坐标为10cm;用键盘设定小球的高度位置(单位:cm),启动后使小球稳定地处于指定的高度3s以上,上下波 动不超过±1cm。 (4)以适当的方式实时显示小球的高度位置及小球维持状态的计时。(5)小球置于圆管底部,启动后5s内控制小球向上到达圆管顶部处A端,且不跳离,维持5s以上。 (6)小球置于圆管底部,启动后30s内控制小球完成如下运动:向上到达AB段并维持3~5s,再向下到达CD段并维持3~5s;再向上到达AB段 并维持3~5s,再向下到达CD段并维持3~5s;再向上冲出圆管(可以

弹簧疲劳试验方案

5.试样弹簧 5.1试样 试样应按规定程序批准的图样、技术文件制造,并经过尺寸和特性检验合格。 5.2试样抽取 试样应从同一批产品中随机抽取 5.3 试样数量 5.3.1 对于疲劳寿命验证试验,推荐的最少试样数量最少4件,当有特殊要求时,试样数量可自行确定。 6 试验条件 6.1 试验机 6.1.1 推荐采用机械式或电液伺服试验机,也可安装在配套阀上进行试验。 6.1.2 试验机位移精度应满足试验要求。 6.1.3 试验机得频率应在一定范围内可调。 6.1.4 试验机应具备试验时间或次数预置、自动计时或计数、自动停机及输出试验数据等功能。 6.2 试验频率 6.2.1 试验频率可根据试验机得频率范围和弹簧实际工作频率等情况确定。整个试验过程中试验频率应保持稳定。 6.2.2 试验频率Fr 应避开单个弹簧的固有自振频率F ,一般应满足如下关系式: 10F F r 其中:钢制弹簧固有频率F 按如下公式计算: F=3.56×105×d/nD 2 6.3 试验振幅 振幅分为位移幅(Ha )和载荷幅(Fa )。对于螺旋弹簧的疲劳寿命验证试验一般使用位移幅作为试验振幅。 6.4 试验环境 试验一般在室温下进行,但试验时样件的温升应不高于实际工况最高温度。 7 试验方法 7.1试样的安装 7.1.1试样的安装方法 为了避免试样承受偏载和附加应力,压缩弹簧试样安装时要保证试样两端平整接触,应将试样安放再固定的支座上;拉伸弹簧试样的安装应满足工况要求。 7.1.2 试验。高度 对定型的产品,试样试验的最大高度为实际使用要求的最大高度H1,试验的最小高度为实际使用要求的最小高度H2.试验的平均高度为实际使用工况的最大高度H1与最小高度H2二者之和的平均值。 7.1.3安装高度允许偏差 用多工位试验机,或者多台试验机同时对一批试样进行试验时,应将试样调整到同样的试验安装高度,其最大允许偏差为3%Ha 。 7.2 加载 7.2.1 正常情况下,按试验机的加载方式进行加载。 7.2.2 在有必要情况下,可模拟产品实际工作负载进行加载。 7.3 试验机运转及数据记录

角度传感器简单应用系统

角度传感器简单应用系统 时间:2011-04-24 09:42:20 作者:秩名 论文导读:传感器在现代信息技术中有着举足轻重的地位,传感器为系统提供进行处理和决策所必需的原始信息,很大程度上影响和决定着系统的性能,本设计采用以单片机为控制单元,用单轴倾角传感器检测平衡板倾斜角度,采取步进电机控制平衡板角度自动旋转目的。 本设计以C8051F00单片机为控制核心,通过把单轴倾角传感器SCA60(水平的固定 在平衡板上,达到了实时检测平衡板倾斜角度的目的,并通过对步进电机驱动电路的控制实现了平衡板的转动。 关键词:角度传感器,C8051F00单片机,角度预置,步进电机,显示联动 0.引言: 传感器在现代信息技术中有着举足轻重的地位,传感器为系统提供进行处理和决策所必需的原始信息,很大程度上影响和决定着系统的性能,本设计采用以单片机为控制单元,用单轴倾角传感器检测平衡板倾斜角度,采取步进电机控制平衡板角度自动旋转目的。 1.硬件电路设计 角度传感器硬件连接图如图1所示,当步进电机带动平衡板倾斜到使角度传感器SCA60C处于水平位置时,V端输出+0.5V的模拟电压。传感器SCA60(仅可精确检测到0~90度的角度范围,当平衡板转到使角度传感器与水平面成90度的角度时,此时Vo端输出+5V的模拟电压。在0?90度的倾角范围内,Vo端输出的是正比于倾角大小的+0.5?+5V的模拟电压信号,当平衡板转动到使角度传感器与水平面间的角度从90度到180度的范围变化时,输出端Vo输出的是从+5V依次变化到+0.5V的模拟电压信号[1][2],因此通过测定传感器SCA60C输出端Vo电压的大小即可确定平衡板与水平面的夹角。 步进电机驱动电路的设计本系统中,我们选择4相5线步进电机,其驱动电路主要由L297+L298组成,该驱动电路集驱动与保护于一体。L297是脉冲分配器,只要步进电机A B、C D四项依次连接到J1的1、2、3、4各点,且将剩下的一条线接地,L297就会自动的将输入到端口CW/CC的脉冲分配给步进电机的各个相序,此时步进电机便可转动[3][4]。控制电机时只需单片机通过I/O 口向L297的cw/ccw和clock端发送控制信号即可控制它的转速和正反转。驱动电路原理如下图2。论文参考。论文参考。 图1角度传感器硬件连接图图2步进电机驱动电路原理图 本系统主要由主控制器模块、角度检测模块、A/D转换模块、键盘模块和显示器模块等部分组成,系统连接图如图 3

姿态控制系统

第一章航天器控制的基本概念1.轨道控制 a.轨道确定(导航) 研究如何确定航天器的位置和速度b. 轨道控制(制导) 根据位置、速度、飞行最终目标,对质心施以控制力,以改变运动轨迹的技术轨道机动、轨道保持轨道交会、再入返回控制2.姿态控制a.姿态确定研究航天器相对于某个基准的确定姿态方法;可以是惯性基准或其他基准,如地球;采用姿态敏感器和相应的数据处理方法;确定精度取决于数据处理方法和敏感器精度。b. 姿态控制在规定或预定方向(参考方向)上定向的过程;姿态稳定是指使姿态保持在指定方向;姿态机动是指航天器从一个姿态过渡到另一个姿态的再定向过程。3.姿态稳定 a.特点长期而持续的所需控制力矩较小b.种类定向粗对准精对准4. 姿态机动a.特点短暂过程所需控制力矩较大b.种类再定向捕获跟踪和搜索4. 姿态控制与轨道控制的关系为实现轨道控制,航天器姿态必须符合要求;在某些具体情况或某些飞行过程中,可把姿态控制和轨道控制分开考虑;某些应用任务对航天器轨道没有严格要求,而对航天器姿态确有要求;例如:空间环境探测卫星绕地球的运行往往不需要轨道控制,卫星在开普勒轨道上运行就能满足对环境探测的要求。5.姿态控制系统分类 a.根据姿态稳定方式三轴稳定.保持航天器本体三条正交轴线在某一参考空间的方向自旋稳定.绕自旋轴旋转,依靠旋转动量矩在惯性空间的指向b.根据力来源被动控制.不需消耗星上能源,如重力梯度力矩、磁力矩等主动控制.星上自主控制、星-地大回路控制,消耗电能和工质6.姿态控制系统的设计要求可靠性控制性能a.动量、稳定性b.稳态精度c.动态响应控制系统质量和能源需求附带要求a.经济性b.坚固性c.生产可能性7.姿态控制系统设计任务a.了解任务参数任务类型、质量、结构、轨道几何参数、任务寿命、精度、机动要求b.推导出控制系统质量和能源需求可靠性及寿命动量要求力矩要求:大小、频率、杠臂限制动态响应精度 能源要求c.具体设计 第二章姿态运动学与动力学1.方向余弦阵的性质及特点方向余弦阵只有三个独立参数方向余弦阵是正交矩阵AA T=E方向余弦阵的行列式为1|A|=1方向余弦阵可作为坐标变换矩阵V a=A Vb相继姿态运动的方向余弦阵具有中间脚标的吸收性质。缺点:不直观,缺乏明显的几何图象概念,使用不方便2.用EulerEuler轴/角描述姿态的理论依据Euler定理:刚体绕固定点的任一位移,可由绕通过此点的某一轴转过一个角度得到。姿态描述可用转轴e和绕此轴的转角φ来描述两个坐标系间的相对姿态。Euler轴/角的形式及特点形式转轴e在参考坐标系中的三个方向余弦(ex, ey, ez)转角φ优点具有明确的几何意义,直观,易于理解;是四元素、Rodrigues参数等其它姿态描述方法的基础。缺点仍具有一个约束条件,不是姿态描述的最小实现;与姿态之间不是一一对应的。常用Euler角3-1-3 ψ, θ, ?自旋卫星绕oZ轴旋转, Rz(ψ)绕oX'轴旋转, Rx(θ)绕oZ"轴旋转Rz(?)3-1-2 ψ, ?, θ三轴稳定卫星绕oZ轴旋转, Rz(ψ)绕oX'轴旋转, Rx(?)绕oY"轴旋转,Ry(θ) 在轨道坐标系内ψ为偏航角?为滚动角θ为俯仰角。3. Euler角的特点优点几何意义直观、明显小角度线性化方便在某些情况下,可直接测量缺点包含三角函数,计算效率低运动学方程有奇点4. 四元数特点与方向余弦阵相比,四元素只包含4个变量和1个约束与Euler轴/角相比,四元素姿态矩阵不含三角函数四元素可看作姿态机动参数。缺点:四元数仍存在一个约束条件,不是姿态描述的最小实现。5.Rodrigues参数的优缺点优点姿态描述的最小实现;简单、直观,计算效率高;由其描述的运动学方程结构简洁,无多余约束。缺点当φ→±180°时,x→±∞,不能有效描述姿态;当φ远小于180°时,才能有效描述姿态。6.重力梯度力矩的性质重力梯度力矩与主惯量差成正比重力梯度力矩与轨道角速度的平方成反比重力梯度力矩与姿态偏差角(小角度假设下)成正比当Izz<1000Km),占优势的是太阳辐射力矩;当轨道降至700Km时,太阳辐射力矩与气动力矩是同数量级的;在中高轨道(1000Km左右),重力梯度力矩、磁力矩较大。第三章自旋航天器姿态确定与控制1.如何测量自旋姿态测量工具:姿态敏感器。姿态信息测量: 不能直接测出自旋姿态只能观测到空间中某些参考体相对卫星的方向测量自旋轴与参考体方向之夹角夹角也不是直接得到的,只能测得与夹角相关的信息。姿态确定参考天体在赤道惯性系中的方向可以精确确定根据夹角和参考天体的方向,确定姿态。2.自旋航天器的原理。利用绕自旋轴旋转的陀螺定轴性,实现自旋轴在惯性空间固定自旋轴一般与轨道平面垂直。自旋航天器的特点:简单、抗干扰能力强当受到恒定干扰力矩时,自旋轴以等速漂移,而不是加速漂移可减小推力偏心的影响,静止轨道卫星在远地点点火时通常用自旋稳定。控制系统不需频繁工作,可以采用星-地大回路的工作方式。3.自旋运动稳定条件。a.如果令ωy、ωz是Lyapunov稳定的,必须令Ω2>0;b.Ix>Iy,且Ix>Iz,即星体绕最大惯量轴旋转;c.Ix

金属疲劳试验方法

金属疲劳试验 金属疲劳试验大纲 1.通过金属材料疲劳实验,测定金属材料的σ-1(107),绘制材料的S-N曲线,并观察疲劳破坏现象和断口特征,进而学会对称循环下测定金属材料疲劳极限的方法. 2.主要设备:纯弯曲疲劳试验机,游标卡尺;主要耗材:金属材料试样.(单点法需8-10根试样,成组法至少需20根试样.) 金属疲劳试验指导书 在足够大的交变应力作用下,于金属构件外形突变或表面刻痕或内部缺陷等部位,都可能因较大的应力集中引发微观裂纹。分散的微观裂纹经过集结沟通将形成宏观裂纹。已形成的宏观裂纹逐渐缓慢地扩展,构件横截面逐步削弱,当达到一定限度时,构件会突然断裂。金属因交变应力引起的上述失效现象,称为金属的疲劳。静载下塑性性能很好的材料,当承受交变应力时,往往在应力低于屈服极限没有明显塑性变形的情况下,突然断裂。疲劳断口(见图2-30)明显地分为两个区域:较为光滑的裂纹扩展区和较为粗糙的断裂区。裂纹形成后,交变应力使裂纹的两侧时而张开时而闭合,相互挤压反复研磨,光滑区就是这样形成的。载荷的间断和大小的变化,在光滑区留下多条裂纹前沿线。至于粗糙的断裂区,则是最后突然断裂形成的。统计数据表明,机械零件的失效,约有70%左右是疲劳引起的,而且造成的事故大多数是灾难性的。因此,通过实验研究金属材料抗疲劳的性能是有实际意义的。 图2-30 疲劳试样断口示意图

一﹑实验目的 1. 观察疲劳失效现象和断口特征。 2. 了解测定材料疲劳极限的方法。 二、实验设备 1. 疲劳试验机。 2. 游标卡尺。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值 r=m ax m in σσ (2-16) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为σ 1m ax ,经历N 1次循环后,发生疲劳失效,则N 1称为最大应力为σ1 m ax 时的疲劳寿命(简称寿 命)。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力σmax 与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图2-31所示。从图线看出,当应力降到某一极限值σr 时,S-N 曲线趋近于水平线。即应力不超过σr 时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107次循环下仍未失效的最大应力作为持久极限σr 。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

IGV控制系统

六.IGV控制系统 压气机进口导叶IGV(INLET GUIDE V ANE)控制是通过IGV叶片转角的变化限制进入压气机的空气流量。控制TGV目的有二个, (1)防喘振 (2)IGV温控(1)防喘振,处于起动或停机过程中,燃机转子以部分转速旋转,为了避免压气机出现喘振而关小IGV角度。处于额定转速下正常运行时,刚应完全开放才不致于影响机组的效率。IGV启动时,处于最小角度34°,使压气机进入的空气达到最小,当转速到95%时,就慢慢打开到全速角57°。 (2)IGV温控,IGV温控的含义是指通过对IGV角度的控制实现对燃机排气温度的控制。燃机排气需要进入热量回收设备(HRSG余热锅炉),为了保证余热锅炉的正常工作和最理想的效率,往往要求燃机排气温度处于恒定的比较高的温度值。因此燃机在部分负荷运行时要适当关小IGV,相应减少空气流量而维持较高的排气温度(接近或高出燃机满负荷时的排气温度)。其结果是燃机的效率基本不变而提高了锅炉和汽轮机的效率,使联合循环的总效率得到提高。也就是说通常在联合循环下运行部分负荷时燃机应该投入IGV温控。 IGV的运行 正常起动时IGV保持在全关的位置(34°),一直到转速上升至95%时,才慢慢开始开启到57°。在全速空载或一口咬定20%负荷以下时,IGV都是在全速度57°。这阶段为防喘振作用。 当随着负荷的上升,(1)没选择IGV温控时,IGV以控制排气温度为370℃的标准开大角度,直到开到最大86°为止。(2)如选择了温控方式,在达到联合循环的IGV温控给定点之前,IGV保持在最小全速角57°位置。联全循环的IGV温控点确定在与此相同的CPD偏置点的基本温控点低大约5.6℃的很小差异。根据该点负荷下的IGV排气温控线(CPD温控线减5.6℃)来调节IGV的开度,从而达到最高的排气温度来提高整个联合循环的效率。

单片机实现舵机转角控制

舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图1所示。 图1 舵机的控制要求 单片机实现舵机转角控制 可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放器件的选择有较高要求,从电路体积和功耗考虑也不易采用。5mV以上的控制电压的变化就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都远大于5mV,所以滤波电路的精度难以达到舵机的控制精度要求。 也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。单片机完成控制算法,再将计算结果转化为 PWM 信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM周期信号,本设计是产生20ms的周期信号;其次是脉宽的调整,即单片机模拟PWM信号的输出,并且调整占空比。当系统中只需要实现一个舵机的控制,采用的控制方式是改变单片机的一个定时器中断的初值,将20ms分为

疲劳试验机(高温型)

产品介绍: 馥勒FL疲劳试验机(高温型)用于测试金属材料复合材料在300度~1600度高温环境下的拉压疲劳性能、断裂韧性、裂纹扩展速率等。该机很好地模拟了材料在不同环境温度下的疲劳耐久寿命极限。满足ASTM、ISO、DIN、FUL、JIS等国际疲劳测试标准。广泛应用于航空航天、高校研究所、质检单位等。 技术参数: 1.FLPL-G系列高温疲劳试验机:High temperature fatigue testing machine; 2.试验机制造标准:Q/FPL7050-2016《疲劳试验机制造标准方法》; 3.试验方法:GB/T、ASTM、ISO、DIN、JIS等高温拉压疲劳试验标准方法等; 4.主要技术规格参数:根据实际疲劳试验需求,选择相应的技术规格型号参数等; 5.试验机规格型号:FLPL204G、FLPL504G系列,FLPL105G系列; 6.额定试验力可选:0~20KN、0~50KN、0-100KN; 7.疲劳机精准度等级:1级/0.5级; 8.力测量范围:0.2%-100%FS; 9.试验力示值相对误差:≦示值的±1%/示值的±0.5%; 10.疲劳试验频率范围:0.01-100HZ可选; 11.上下夹头偏心率:≤10%8%; 12.疲劳振幅范围:±75MM; 13.采样频率:10KHZ; 14.试验波形:正弦波、方波、三角波、斜波、随机波形以及外部输入波形等; 15.测试试验夹具选择:馥勒提供专业的拉伸疲劳试验夹具、压缩试验夹具、弯曲试验夹具、剪切试验夹具、断裂韧性试验夹具等可供客户选择; 16.高温、高低温试验部分:可选馥勒高温环境试验箱装置、高温试验炉装置、快速加热试验装置、超高温试验炉、激光加热等试验装置,试验温度从-196度~高温1600度、2000℃等可根据实际测试要求进行选择。 17.疲劳试验机(高温型)试验附件选择:馥勒提供丰富的试验附件如高低温变形测量装置、高温引伸计等供客户选择。 产品特点: 馥勒高性能疲劳测试控制器是基于PCI总线的全数字液压伺服控制器,控制方式:力、位移全数字PID闭环控制,控制模式可平滑无扰切换,数据处理方式:计算机屏幕显示试验参数,自动描绘试验曲线,数据处理多种标准规定的相关试验要求,多用途动态测试软件包括高低周疲劳试验软件模块;系统资源管理模块:可对系统的硬件资源进行配置与显示静力和疲劳试验加载控制。可实现试验过程中的不同控制模式(位控-力控) 转换。试验数据的实时采集、显示与存贮。馥勒疲劳测试应用软件: 安全可靠、功能强大,执行性好,有可升级和扩展能力,以及能够对试验数据进行自动分析处理。

相关主题
文本预览
相关文档 最新文档