当前位置:文档之家› 高压共轨燃油喷射系统的组成与工作原理

高压共轨燃油喷射系统的组成与工作原理

高压共轨燃油喷射系统的组成与工作原理
高压共轨燃油喷射系统的组成与工作原理

高压共轨燃油喷射系统的组成与工作原理

(3)断路(开路)检测方法

如图3-74所示的配线有断路故障,可用“检查导通性”或“测量电压”的方法来确定断路的部位。

图3-74 断路检测

①“检查导通性”方法

a. 脱开连接器A和C,测量它们之间的电阻值,如图3-75所示。若连接器A的端子1与连接器C的端子1之间的电阻值为∞,则它们之间不导通(断路);若连接器A的端子2与连接器C的端子2之间的电阻值为0Ω,则它们之间导通(无断路)。

图3-75 导通检测

b.脱开连接器B,测量连接器A与B、B与C之间的电阻值。若连接器A的端子1与连接器B的端子1之间的电阻值为0Ω,而连接器B的端子1与连接器C的端子1之间的电阻为∞,则连接器A的端子l与连接器B的端子l之间导通,而连接器B的端子1与连接器C 的端子1之间有断路故障存在。

②“测量电压”方法。

在ECU连接器端子加有电压的电路中,可以用“测量电压”的方法来检查断路故障。如图3-76所示)。

图3-76 电压检测

在各连接器接通的情况下,ECU输出端子电压为5 V的电路中,如果依次测量连接器A 的端子1、连接器B的端子1和连接器C的端子1与车身(搭铁)之间的电压时,测得的电压值分别为5 V、5 V和0 V,则可判定:在连接器B的端子1与连接器C的端子1之间的配线有断路故障存在。

(4)短路检查方法

如果配线短路搭铁,可通过检查配线与车身(搭铁)是否导通来判断短路部位。如图3-77所示。

图3-77 短路检测

①脱开连接器A和C,测量连接器A的端子1和端子2与车身之间的电阻值。如果测得的电阻值分别为0 Ω和∞,则连接器A的端子1与连接器C的端子1的配线与车身之间有搭铁短路故障。

②脱开连接器B,分别测量连接器A的端子1和连接器C的端子1与车身之间的电阻值。如果测得的电阻值分别为∞和0Ω,则可以判定:连接器B的端子1与连接器C的端子1之间的配线与车身之间有搭铁短路故障。

九、信号检测线

信号检测线的作用是在进行发动机 ECU 端子的检测时,为防止接头破损,需连接信号检查线束,并将测试棒抵住信号检查线束的接触箱进行检测。

1.信号检测线的连接使用方法

(1)将起动器钥匙置于「OFF」(锁定),从发动机 ECU 上取下接头。注意接头不可使锁定部位的锁扣弯折。

(2)将信号检查线束连接在发动机 ECU 以及机械线束上。

(3)将测试棒抵住信号检测线的信号检测接头测量。

(4)信号检测线为共轨式燃料喷射系统专用。如图3-78所示。

如3-78 信号检测法

十、故障诊断仪

当系统发生异常情况时,在仪表盘上会显示出故障指示。采用故障诊断仪进行故障诊断可快速准确地检测到故障部位,并能检测历史故障和适时工况监测等。如图3-79所示。

1.故障诊断仪的使用连接

(1)通过故障诊断接口箱,将安装了诊断软件的电脑与车辆侧的故障诊断接头相连接。(2)将起动器钥匙置于“ON”( 开启),起动故障诊断。

图3-79 故障诊断仪

(一)高压共轨燃油喷射系统的组成

现代机械装备上已广泛应用高压共轨燃油喷射系统。如豪沃载重自卸车、日立ZX-3系列、卡特D系列、神钢-8系列等挖掘机发动机都采用了高压共轨燃油喷射系统。与传统的直喷式燃油喷射系统相比高压共轨电喷燃油系统更具高效和出色的燃油经济性和降低排放及噪音等优点。高压共轨燃油喷射系统由供给泵、共轨、喷射器以及控制它们的发动机ECU、传感器、开关、电磁阀等构成。如图3-107所示。

图3-107电控燃油喷射系统组成图

(二)高压共轨燃油喷射系统工作原理

1.电控燃油喷射工作原理

供给泵将燃油加压后输入共轨内,再经高压燃油管将该高压燃油分配给各汽缸的喷射器。共轨内燃油压力通过发动机ECU收集压力传感器、发动机转速、发动机负荷等信号控制安装在供给泵上的燃油调节量电磁阀SCV(Suction Control Valve)来进行实现。燃油喷射量和喷射时期由ECU驱动安装在喷油器上的复式电磁阀「ON/OFF」状态来进行控制。如复式电磁阀置于「ON」(通电)状态,泄油孔被打开,控制室内的高压燃油则通过节流孔流出,控制室内的压力下降,当活塞上的压力和喷嘴弹簧的合力将至低于作用于喷油嘴针阀承压锥面上的压力时,针阀被打开,燃油经喷嘴上的喷孔喷人燃烧室。反之,如果把复式电磁阀置于「OFF」(不通电)状态,泄油孔被关闭,燃油从进油孔进入阀控制室建立起油压,这个油压为共轨压力,这个压力作用在柱塞端面上产生向下压力,再加上喷嘴弹簧的合力大于喷嘴室中高压燃油作用在针阀锥面上的压力,使喷嘴针阀下降而结束喷射。因此,根据复式电磁阀的通电开始时期可控制喷射定时,而根据复式电磁阀的通电时间就能控制喷射量。该系统通过提高各部件的耐压强度,实现了燃料压力更加高压化,雾化质量更好,使燃烧

更加充分,提高了经济效率和降低了污染排放。

图3-108 共轨燃油系统工作原理图

2.发动机ECU

ECU是电子控制单元的简称。如图3-109所示。

图3-109发动机ECU示意图

电子控制单元由微型计算机、输入、输出及控制电路等组成。电控单元的功用是根据其内存的程序和数据对空气流量计及各种传感器输入的信息进行运算、处理、判断,然后输出指令,向喷油器提供一定宽度的电脉冲信号以控制喷油量。它还具备故障自诊断和保护功能,当系统产生故障时,它还能在RAM中自动记录故障代码并采用保护措施从上述的固有程序中读取替代程序来维持发动机的运转。同时这些故障信息会显示在仪表盘上并保持不灭,可以使用户及时发现问题。随着现代机械装备电子化自动化的提高,ECU的使用将会日益增多,线路也会日益复杂。为了简化电路和降低成本,机械装备上多个ECU之间的信息传递就要采用一种称为多路复用通信网络技术,将整车的ECU形成一个网络系统,也就是CAN数据总线。发动机ECU控制电路如图3-110所示。

图3-110 发动机ECU控制系统框图

3.供给泵

供给泵输出燃油使共轨内产生燃油压力。输出的燃油量由供给泵的燃油调节量电磁阀(SCV=Suction Control Valve)进行控制,SCV由发动机ECU进行电子控制。为适应高压喷射,使发动机达到了均速转动,强化了轴承、挺杆等部品。另外,从强制机油润滑更改为燃油润滑。供给泵如图3-111所示。

图3-111 供给泵

4.SCV(吸入控制阀 = 燃料调节量电磁阀)

通过采用线性电磁阀控制从ECU到SCV的通电时间(通电时间控制),达到控制由高压柱塞所供给的燃料流量目的。

由于控制目标轨道压力仅吸入必要的量,所以降低了供给泵的驱动负荷。

电流通入SCV时,内部的电枢对应通电时间比转动,燃油流量与电枢动作连动,圆形阀柱依据燃油通路被阻塞的量控制燃油。

SCV处于OFF的状态时,圆形阀柱被回油弹簧压住,通路完全打开,通过柱塞,燃油被供给。(全量吸入→全量输出)

SCV处于ON的状态时,回油弹簧缩紧,燃油回路关闭。

SCV处于ON/OFF的状态时,燃料依照驱动通电时间比的开口面积程度被供给,燃油通过柱塞输出。SVC示意图如图3-112所示,其控制原理如图3-113所示。

图3-112 SCV示意图

图3-113 SCV控制原理

5.燃油泵

燃油泵为摆线型泵,燃油经过燃油滤芯、SCV被送进2个柱塞。燃油泵通过凸轮轴驱动。

内滚轮转动时,依据外/内所形成的空间的增减,形成在吸入侧吸入燃油、输出侧送出燃油的结构。

被吸入的燃油随着滚轮的转动向输出油口侧移动,从输出油口输出。

被输出的燃油供给SCV必要的量,剩余的经由调节阀返回吸油口一侧。如图3-114所示。

图3-114 燃油泵示意图

6.共轨

储藏从燃油泵被压送过来的高压燃油,并将燃油分配到各汽缸的喷射器内。共轨上安装有燃油压力传感器和压力控制器。压力传感器用来检测共轨内的燃油压力,并将其信号传送给ECU。ECU依据所传达的信息控制燃油泵的SCV,控制共轨内的燃油压力。共轨示意图如图3-115所示。

图3-115 共轨示意图

7.压力控制器

压力控制器作用是当共轨内压力达到异常高压时,打开阀释放压力。共轨内的压力达到约200Mpa(2039kg/ cm2)时阀打开,从压力控制器流出的燃油返回到燃油油箱。当压力下降到约50Mpa时就恢复至原来的状态,维持共轨内压力。如图3-116所示。

图3-116 压力控制器

8.压力传感器

压力传感器被安装在共轨上,检测共轨内的燃油压力并将信号发送给ECU。其构造是利用向金属隔膜施加压力时半导体压变电阻的电阻值产生变化这一特性,向ECU输入信号的压力传感器。如图3-117所示。

图3-117压力传感器

3.喷射器

(1)喷射器外形

喷射器是将共轨分配过来的高压燃油变成微细的喷雾状态,直接喷射到燃烧室的一种装置。如图3-118所示。

图3-118 喷射器

喷射器是由复式电磁阀、燃油压力活塞、喷嘴所构成。通过控制复式电磁阀部的控制室内压力来控制喷射量、喷射时间、喷射率。

喷射器主体采用夹钳压制方式。另外,在汽缸缸头的插入部位配置O形圈,防止发动机机油进入到汽缸缸头的喷射器孔内。

新型的喷射器针对高压化的情况,在电磁阀的密封构造上,从金属制锥形密封改进为陶瓷制平面密封,提高了密封性及耐久性。

采用缩小了控制室的排除容量的复式电磁阀,缩短了间隔,实现了1行程4次多段喷射。

(2)喷射器动作

喷射器基本动作如图3-119所示。

图3-119 喷射器基本动作

a无喷射 b 开始喷射 c喷射结束

①无喷射

在电磁阀不通电的状态下,阀座被阀弹簧推压至下方关闭。在控制室内,共轨的高压压力被施加在燃油压力活塞上,促使燃油压力活塞向下移动,喷嘴被关闭,不进行喷射。如图3-119a所示。

②开始喷射

复式电磁阀开始通电时,由于电磁力作用,阀座被提升。控制室的燃油经由出口孔流出,控制室压力降低,喷嘴针阀因喷嘴部位燃油压力的作用而上升,喷射燃油。因为喷嘴针阀是慢慢上升的,所以喷射量不断增加,如持续通电则会达到最大喷射率。如图3-119b所示。

③喷射结束

停止复式电磁阀的通电时,在阀弹簧的作用下阀座下降,关闭阀座。这时,在共轨的高压燃油共同作用于控制室,喷嘴针阀被立即关闭,实现喷射迅速结束。如图3-119c所示

高压钠灯工作原理

高压钠灯工作原理 当灯泡启动后,电弧管两端电极之间产生电弧,由于电弧的高温作用使管内的钠汞齐受热蒸发成为汞蒸气和钠蒸气,阴极发射的电在向阳极运动过程中,撞击放电物质有原子,使其获得能量产生电离激发,然后由激发态回复到稳定态;或由电离态变为激发态,再回到基戊无限循环,多余的能量以光辐射的形式释放,便产生了光。高压钠灯中放电物质蒸气压很高,也即钠原子密度高,电子与钠原子之间碰撞次数频繁,使共振辐射谱线加宽,出现其它可见光谱的辐射,因此高压钠灯的光色优于低压钠灯。高压钠灯是一种高强度气体放电灯泡。由于气体放电灯泡的负阻特性,如果把灯泡单独接到电网中去,其工作状态是不稳定的,随着放电过程继续,它必将导致电路中电流无限上升,最后直至灯光或电路中的零、部件被过流烧毁。 高压钠灯同其他气体放电灯泡一样,工作是弧光放电状态,伏—安特性曲线为负斜率,即灯泡电流上升,而灯泡电压却下降。在恒定电源条件下,为了保证灯泡稳定地工作,电路中必须串联一具有正阻特性的电路无件来平衡这种负阻特性,稳定工作电流,该元件称为镇流器或限流器。电阻器、电容器、电感受器等均肯有限流作用。电阻性镇流器体积小,价格便宜,与高压钠灯配套使用会发生启动困难,工作时电阻产生很高的热量,需有较大的散热空间、消耗功率很大,将会使电路总照明效率下降。它一般在直流电路中使用,百交流电路中使用灯光有明显所闪烁现象。电容性镇流器虽然不象电阻性镇流器自身消耗功率很大,温升低,在电源频率较低时,电容器充电时,

会产生脉冲峰值电流,对电极造成极大损害,灯光闪烁,影响灯泡使用寿命;在高频电路中工作,电压波动能达到理想状态,成为理想的镇流器。电感性镇流器损耗小,阻抗稳定,阻抗菌素性偏差小,使用寿命长,灯泡的稳定度比电阻性镇流器好,目前与高压钠灯配套使用的镇流器均为电感性镇流器。其缺点较苯重及价格偏高。另外,电子镇流器已经开始出现,目前其价格昂贵,可靠性还不能与高压钠灯相匹配,除特殊场合使用外,一般情况下很少被采用。所以,高压钠灯必须串联与灯泡规格相应的镇流器后方可使用。高压钠灯的点灯电路是一个非线性电路,功率因数较低,因此在网路上考虑接补偿电容,以提高网路的功率因数。 高压钠灯特点和启动特性 白炽灯泡工作时发出暖色光,而且显色性极佳(显色指数Ra=100 ),从它诞生至今的相当长时间时里,仍然被人们广泛使用的照明光源。虽然使用高压钠灯虽然有许多优点,但是光色(Ra=30 )、色温约2000K 。为了保持高压钠灯的长寿命、高发光效率和暖色调气氛;在改善显色性方面,人们经过孜孜不倦地努力,已研制出符合上述要求的高显色高压钠灯(又称白光高压钠灯)。高显色高压钠灯是在高压钠灯的基础上,采用提高钠蒸气压和增大电弧管管径,同时在电弧管两端裹上一层铌箔,提高冷端温度等措施来改善显色性;另外,提高充入电弧管内氙气压力,使电弧中心部分温度升高,而其余放电部分温度较低,通过改变电弧温度分布的途径来改善显色性,其显色指数已提高到Ra =70 ~80, 发光效率可达80

电控柴油机_高压共轨_燃油供给系统故障诊断与分析

第6卷第3期电控柴油机(高压共轨)燃油供给系统主要由油 箱、LP泵 、滤清器、油水分离器、高低压油管、高压泵、 高压共轨组件、喷油器、预热装置及各种传感、ECM等 基本部分组成。其基本功用是根据柴油机的工作要 求,定时、定量、定压地将雾化良好的柴油以一定的要 求喷入气缸内,并使这些燃油与空气迅速地混合和燃 烧。所谓定时就是按照供油相位要求;定量就是保证 一定的油量,满足动力性的要求;定压则要求喷入气 缸的燃油具备一定的动能与空气进行混合。优良的混 合气是提高柴油机动力性、燃油经济性、降低排放率 和噪音率的关键,也就是要求喷射系统产生足够高的 喷射压力,确保燃油雾化良好,同时还必须精确控制 喷油始点和喷油量。其中燃油供给压力就是柴油机一 直困扰人们的常见问题。电控柴油机(高压共轨)燃油 供给系故障就是指其燃油供给异常,影响发动机工作 性能的故障现象,就其故障产生原因,现就华泰现代 柴油车系为例分别从燃油供给系统低压部分、高压部 分、电控部分等因素引起的电控柴油机(高压共轨)燃 油供给系统故障进行简要分析与判排。 一、燃油供给系统低压部分引起的燃油系统故障 共轨喷油系统的低压供油部分包括:燃油箱(带有 滤网,油位显示器,油量报警器)、输油泵、燃油滤清器 总成及低压油管等1.输油泵压力异常引起燃油系统故障图1LP示意图输油泵是一种带有滤网的滚柱叶片泵 (容积式 泵),它将燃油从燃油箱中吸出,将所需的燃油连续供给高压泵。安装在油箱外部的专用支架上,叶片泵主 要由转子、与转子偏心的定子(即泵体)及在转子和定收稿日期 :2010-9-30作者简介:姜伦(1967~)男,高级工程师,工学学士,主要研究方向:汽车检测与维修技术.电控柴油机(高压共轨)燃油供给系统 故障诊断与分析姜伦( 湖南民族职业学院,湖南岳阳414000) 【摘要】:随着人类社会发展的需要,环保与低碳走进了我们日常生活的点点滴滴,"低碳"是当今人类科研 与人们谈论的大环境。轿车发展到今天,柴油版轿车凭借其优越的经济性与环保性备受广大车友的青睐,未来轿 车的发展方向除混合动力外,柴油轿车必将重拳出击,在未来的轿车市场分一杯甜羹!电控柴油燃油供给系统一 直是柴油车系难以突破的难点,该系统的工作状况对柴油机的功率和油耗有重要的影响,而其中的燃油供给压 力是该系统必须力克的难关。现就电控柴油机(高压共轨)燃油供给系统的燃油压力异常问题作重点阐述,进而 对其他因素引起的柴油机燃油供给系统故障作简要的分析与判排。

高压共轨燃油喷射系统的结构和工作原理

高压共轨燃油喷射系统的结构和工作原理 李明诚,《电控柴油机的基本结构及工作原理》,2011 1、高压共轨喷射系统简介 它是由燃油泵把高压油输送到公共的、具有较大容积的配油管——油轨内,将高压油蓄积起来,再通过高压油管输送到喷油器,即把多个喷油器,并联在公共油轨上。在公共油轨上,设置了油压传感器、限压阀和流量限制器。由于微电脑对油轨内的燃油压力实施精确控制,燃油系统供油压力因柴油机转速变化所产生的波动明显减小(这是传统柴油机的一大缺陷),喷油量的大小仅取决于喷油器电磁阀开启时间的长短。 特点: ①、将燃油压力的产生与喷射过程完全分开,燃油压力的建立与喷油过程无关。燃油从喷油器喷出以后,油轨内的油压几乎不变; ②、燃油压力、喷油过程和喷油持续时间由微电脑控制,不受柴油机负荷和转速的影响; ③、喷油定时与喷油计量分开控制,可以自由地调整每个气缸的喷油量和喷射起始角。 2、高压共轨燃油喷射系统的基本结构 高压共轨燃油喷射系统包括燃油箱、输油泵、燃油滤清器、油水分离器、高低压油管、高压油泵、带调压阀的燃油共轨组件、高速电磁阀式喷油器、预热装置及各种传感器、电子控制单元等装置。 高压共轨燃油喷射系统的低压供油部分包括:燃油箱(带有滤网、油位显示器、油量报警器)、输油泵、燃油滤清器、低压油管以及回油管等;共轨喷射系统的高压供油部分包括:带调压阀的高压油泵、燃油共轨组件(带共轨压力传感器)以及电磁阀式喷油器等。 3、电控燃油喷射系统的工作原理 电子控制单元接收曲轴转速传感器、冷却液温度传感器、空气流量传感器、加速踏板位置传感器、针阀行程传感器等检测到的实时工况信息,再根据ECU内部预先设置和存储的控制程序和参数或图谱,经过数据运算和逻辑判断,确定适合柴油机当时工况的控制参数,并将这些参数转变为电信号,输送给相应的执行器,执行元件根据ECU的指令,灵活改变喷油器电磁阀开闭的时刻或开关的开或闭,使气缸的燃烧过程适应柴油机各种工况变化的需要,从而达到最大限度提高柴油机输出功率降低油耗和减少排污的目的。 一旦传感器检测到某些参数或状态超出了设定的范围,电控单元会存储故障信息,并且点亮仪表盘上的指示灯(向操作人员报警),必要时通过电磁阀自动切断油路或关闭进气门,减小柴油机的输出功率(甚至停止发动机运转),以保护柴油机不受严重损坏——这是电子控制系统的故障应急保护模式

常见电源的工作原理

常见电光源的工作原理 自19世纪初电能开始用于照明后,电光源技术经历了几次有代表性的发展,人们相继制成了白炽灯、高压汞灯、低压汞灯、卤钨灯,近年来又制成了高压纳灯和金属卤化物灯等新型照明电光源,电光源的发光效率、寿命、显色性等性能指标不断得到提高。 1、第一次电光源技术革命——白炽灯 以爱迪生为代表发明的白炽灯,经过几代科技人员120多年的努力,白炽灯的发光效率平均每年增长0.11lm/W,至今灯发光效率增加了10倍、寿命提高了500倍、价格下降了10倍,满足了人们对400~2000lm光通量的室内照明的需要。 (1)普通白炽灯 普通白炽灯(简称普通灯泡),一般内部安装有金属钨做的灯丝,内部被抽成真空或充入少量惰性气体,灯丝通电后,钨丝呈炽热状态并辐射发光。灯丝温度越高,辐射的可见光比例就越高,即灯将电通转换为可见光的效率就越高。随着白炽灯发光效率的增加,灯丝温度的升高,钨灯丝的蒸发速度也增加,从而使灯的寿命缩短。较大功率的白炽灯泡内充有约80kPa气压的惰性气体,可以在一定程度上抑制金属钨的蒸发,从而延长了白炽灯的使用寿命。普通白炽灯的典型发光效率为10lm/W,使用寿命为1000h左右。 (2)卤钨灯 1959年人们发明了卤钨循环原理的石英白炽灯,给普通白炽灯注入了新的活力,卤钨石英白炽灯具有体积小、灯发光效率维持率在95%以上,灯发光效率和使用寿命有了很大的提高。 “卤”字代表元素周期表中的卤族元素,如氟、氯、溴、碘这类元素。卤钨灯就是充有卤素的钨丝白炽灯,现在常用的卤钨灯有碘钨灯和溴钨灯。根据卤钨循环原理制造出的卤钨灯,给热辐射光源注入了新的活力。这类灯的体积小,光通量维持率高(可达95%以上),灯发光效率和使用寿命明显优于白炽灯,卤钨灯的外壳一般采用耐高温并且高强度的石英玻璃或硬质玻璃,灯内充有2~8个大气压的惰性气体及少量的卤素气体,从而可以进一步提高灯丝的工作温度。 普通白炽灯灯丝上的钨原子蒸发出去后,沉积在玻璃泡壳上,时间一长,灯丝越来越细,泡壳越变越黑。经过长期的努力,人们找到了卤族元素——氟、氯、溴、碘。比如碘,它在250℃以上的温度下和钨很亲近,会和钨结合在一起变为碘化钨分子;而在1500℃以上的高温下,碘化钨又分解成碘和钨原子。如果在白炽灯内充上碘,灯泡壁上温度超过250℃时, 碘就会把泡壳上的钨化合成碘化钨蒸气,从泡壳上将钨拉走,向灯丝方向移动。在灯丝附近因为温度高了,碘化钨分解,把钨交还给灯丝,剩下的碘又移到温度较低的泡壳上去拉钨原子,这样,人们也就不必担心钨的蒸发了。消除了灯丝钨蒸发的问题后,就可以提高灯丝的工作温度了。灯丝工作温度提高,意味着通过灯丝的电流增加,也就增加了灯的功率,这样小小体积的碘钨灯就能比体积大很多的普通白炽灯更亮。卤钨灯与普通白炽灯相比,发光效率可提高到30%左右,高质量的卤钨灯寿命可以提高到普通白炽灯寿命的3倍左右。 由于卤钨循环(见图1),减少了灯泡玻璃壳的黑化,卤钨灯的光输出在整个寿命过程中基本可以维持不变。 正是由于卤钨灯的以上优势,使其用途日趋广泛。低压卤钨灯的工作电压一般为 为95~100,12V/24V,灯功率从10~50W不等,它们的主要特点是:色温为2900K,显色指数R a

国三高压共轨发动机燃油系统

国三高压共轨发动机燃油系统主要部件介绍共轨式喷油系统于二十世纪90 年代中后期才正式进入实用化阶段。这类电控系统可分为:蓄压式电控燃油喷射系统、液力增压式电控燃油喷射系统和高压共轨式电控燃油喷射系统。高压共轨系统可实现在传统喷油系统中无法实现的功能,其优点有: a. 共轨系统中的喷油压力柔性可调,对不同工况可确定所需的最佳喷射压力,从而优化柴油机综合性能。 b. 可独立地柔性控制喷油正时,配合高的喷射压力 (120MPa~200MPa ),可同时控制NOx 和微粒 (PM )在较小的数值内,以满足排放要求。 c. 柔性控制喷油速率变化,实现理想喷油规律,容易实现预喷射和多次喷射,既可降低柴油机NOx ,又能保证优良的动力性和经济性。 d. 由电磁阀控制喷油,其控制精度较高,高压油路中不会出现气泡和残压为零的现象,因此在柴油机运转范围内,循环喷油量变动小,各缸供油不均匀可得到改善,从而减轻柴油机的振动和降低排放。 由于高压共轨系统具有以上的优点,现在国内外柴油机的研究机构均投入了很大的精力对其进行研究。比较成熟的系统有:德国ROBERT BOSCH 公司的CR 系统、日本电装公司的

ECD-U2 系统、意大利的FIAT 集团的unijet 系统、英国的DELPHI DIESEL SYSTEMS 公司的LDCR 系统等。 二、高压共轨燃油喷射系统主要部件介绍 高压共轨电控燃油喷射系统主要由电控单元、高压油泵、共轨管、电控喷油器以及各种传感器等组成。低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨,高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的map确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。 1 、高压油泵 高压油泵的供油量的设计准则是必须保证在任何情况下的柴油机的喷油量与控制油量之和的需求以及起动和加速时的油量变化的需求。由于共轨系统中喷油压力的产生于燃油喷射过程无关,且喷油正时也不由高压油泵的凸轮来保证,因此高压油泵的压油凸轮可以按照峰值扭矩最低、接触应力最小和最耐磨的设计原则来设计凸轮。 bosch 公司采用由柴油机驱动的三缸径向柱塞泵来产生高达135Mpa 的压力。该高压油泵在每个压油单元中采用了多个压油凸轮,使其峰值扭矩降低为传统高压油泵的1/9 ,

燃油喷射系统介绍

燃油喷射系统介绍 很多人多知道爱车、也研究车,但真正知道汽车燃油喷射系统构造的不知道多不多,反正我以前是不知道~ O(∩_∩)O 燃油喷射系统(燃油泵)原理: 电子控制燃油喷射系统的喷油压力是由电动燃油泵提供的,电动燃油泵装在邮箱内,浸在燃油中。油箱内的 燃油被电动燃油泵吸出并加压,压力燃油经燃油滤清器滤除杂质后,被送至发动机上方的分配油管。分配油管与安装在各缸进气歧管上的喷油器相通。喷油器是一种电磁阀,由电脑控制。通电时电磁阀开启,压力燃油以雾状喷入进气歧管内,与空气混合,在进气行程中被吸进气缸。分配油管的末端装有燃油压力调节器,用来调整分配油管中燃油的压力,使燃油压力保持某一定值,多余的燃油从燃油压力调节器上的回油口返回。 燃油泵位置:(是在后排座位底下哦) 燃油泵样式:

A.燃油泵塑料支架 模具:

POM进料:

B:燃油泵芯 燃油泵是汽车配件行业的专业术语。是电喷汽车燃油喷射系统的基本组成之一。 作用是把燃油从燃油箱中吸出、加压后输送到供油管中,和燃油压力调节器配合建立一定的燃油压力。 泵芯组成:

燃油泵芯流量检测仪: C.浮子总成

油浮子就是汽车油量传感器,用来测量油箱内剩余多少油的!油浮子带动一个绕线式滑动电阻,油位的高低引起滑动电阻阻值的变化,从而能够测量油量。油浮子靠浮力浮在油面上,浮子的为位置就是液面位置,油面高低不同,,浮子高低也不同,与浮子连接的滑动变阻器的阻值就不一样,电脑给滑动变阻器一个电压,返回降压后,电脑估算油量,显示数据到汽车仪表,实际油箱里的浮子,就是一个滑动的可变电阻,通过浮子上面浮动,改变电路中的 电阻大小,然后通过仪表上的油表指针反应出来,懂了吗? 燃油泵有问题会造成汽车被召回:

高压钠灯的基本知识

高压钠灯的基本知识 高压钠灯的基本知识 高压钠灯使用时发出金白色光,它具有发光效率高、耗电少、寿命长、透雾能力强和不锈蚀等优点。广泛应用于道路、高速公路、机场、码头、船坞、车站、广场、街道交汇处、工矿企业、公园、庭院照明及植物栽培。 高显色高压钠灯主要应用于体育馆、展览厅、娱乐场、百货商店和宾馆等场所照明。 1.1 工作原理当灯泡启动后,电弧管两端电极之间产生电弧,由于电弧的高温作用使管内的钠汞齐受热蒸发成为汞蒸气和钠蒸气,阴极发射的电在向阳极运动过程中,撞击放电物质有原子,使其获得能量产生电离激发,然后由激发态回复到稳定态;或由电离态变为激发态,再回到基戊无限循环,多余的能量以光辐射的形式释放,便产生了光。高压钠灯中放电物质蒸气压很高,也即钠原子密度高,电子与钠原子之间碰撞次数频繁,使共振辐射谱线加宽,出现其它可见光谱的辐射,因此高压钠灯的光色优于低压钠灯。高压钠灯是一种高强度气体放电灯泡。由于气体放电灯泡的负阻特性,如果把灯泡单独接到电网中去,其工作状态是不稳定的,随着放电过程继续,它必将导致电路中电流无限上升,最后直至灯光或电路中的零、部件被过流烧毁。 1.1.1 伏—安特性高压钠灯同其他气体放电灯泡一样,工作是弧光放电状态,伏—安特性曲线为负斜率,即灯泡电流上升,而灯泡电压却下降。在恒定电源条件下,为了保证灯泡稳定地工作,电路中必须串联一具有正阻特性的电路无件来平衡这种负阻特

性,稳定工作电流,该元件称为镇流器或限流器。电阻器、电容器、电感受器等均肯有限流作用。电阻性镇流器体积小,价格便宜,与高压钠灯配套使用会发生启动困难,工作时电阻产生很高的热量,需有较大的散热空间、消耗功率很大,将会使电路总照明效率下降。它一般在直流电路中使用,百交流电路中使用灯光有明显所闪烁现象。电容性镇流器虽然不象电阻性镇流器自身消耗功率很大,温升低,在电源频率较低时,电容器充电时,会产生脉冲峰值电流,对电极造成极大损害,灯光闪烁,影响灯泡使用寿命;在高频电路中工作,电压波动能达到理想状态,成为理想的镇流器。 电感性镇流器损耗小,阻抗稳定,阻抗菌素性偏差小,使用寿命长,灯泡的稳定度比电阻性镇流器好,目前与高压钠灯配套使用的镇流器均为电感性镇流器。其缺点较苯重及价格偏高。另外,电子镇流器已经开始出现,目前其价格昂贵,可靠性还不能与高压钠灯相匹配,除特殊场合使用外,一般情况下很少被采用。所以,高压钠灯必须串联与灯泡规格相应的镇流器后方可使用。高压钠灯的点灯电路是一个非线性电路,功率因数较低,因此在网路上考虑接补偿电容,以提高网路的功率因数。 1.2 结构和材料 1.2.1 电弧管电弧管是高压钠灯的关键部件。电弧管工作时,高温高压的钠蒸气腐蚀性极强,一般的抗钠玻璃和石英玻璃均不能胜任;而采用半透明多晶氧化铝和陶瓷管做电弧管管体较为理想。它不仅具有良好的耐高温和抗菌素钠蒸气腐蚀性能,还有良好的可见光穿越能力。另外,单晶氧化铝陶瓷管在耐高温、抗菌素钠蒸气腐蚀和透光率等性能均优于多晶扪化铝陶瓷

高压共轨喷油器工作原理.

高压共轨喷油器工作原理 2017-06-14 高压共轨喷油器工作原理 2011-03-13 00:09:27| 分类:阅读8 评论0 字号:大中小订阅 喷油时刻和喷油量的调整是通过电子触发的喷油器实现的。这些喷 油器取代了喷油嘴-帽总成(喷油嘴和喷油嘴帽)。 与已经存在的直喷柴油机中的喷油嘴-帽总成相类似的压具同样被应用于气缸顶部用于安装喷油器,也就是说,共轨的喷油器可以在发动机无需变动的情况下,就安装在已存在的直喷柴油机的气缸顶部。喷油器可以被拆分为一系列功能部件:孔式喷油嘴,液压伺服系统和 电磁阀。 燃油来自于高压油路,经通道流向喷油嘴,同时经节流孔流向控制腔,控制腔与燃油回路相连,途径一个受电磁阀控制其开关的泄油孔。泄油孔关闭时,作用于针阀控制活塞的液压力超过了它在喷油嘴针阀承压面的力,结果,针阀被迫进入阀座且将高压通道与燃烧室隔离,密 封。 当喷油器的电磁阀被触发,泄油孔被打开,这引起控制腔的压力下降,结果,活塞上的液压力也随之下降,一旦液压力降至低于作用于喷油嘴针阀承压面上的力,针阀被打开,燃油经喷孔喷入燃烧室。这种对喷油嘴针阀的不直接控制采用了一套液压力放大系统,因为快速打开针阀所需的力不能直接由电磁阀产生,所谓的打开针阀所需的控制作用,是通过电磁阀打开泄油孔使得控制腔压力降低,从而打开针阀。 图8 共轨系统喷油器 1-回油管;2-回位弹簧;3-线圈;4-高压连接; 5-枢轴盘;6-球阀;7-泄油孔;8-控制腔;9-进油 口;10-控制活塞;11-油嘴轴针;12-喷油嘴 图1-喷油器关闭图2-喷油器打开 此外,燃油还在针阀和控制柱塞处产生泄漏,控制和泄漏的燃油,通

氙气灯和高压钠灯

一、氙气灯的概念 氙气灯是一种含有氙气的新型大灯,又称高强度放电式气体灯,英文简称HID (Intensity Discharge Lamp )。它的原理是在UV-cut 抗紫外线水晶石英玻璃管内,以多种化学气体充填,其中大部份为氙气(Xenon )与碘化物等惰性气体,然后再透过增压器(Ballast )将车上12 伏特的直流电压瞬间增压至23000 伏特的电流,经过高压震幅激发石英管内的氙气电子游离,在两电极之间产生光源,这就是所谓的气体放电。而由氙气所产生的白色超强电弧光,可提高光线色温值,类似白昼的太阳光芒,HID 工作时所需的电流量仅为3.5A ,亮度是传统卤素灯泡的三倍,使用寿命比传统卤素灯泡长10 倍。 二、氙气灯(HID)的发光原理 汽车氙气灯与传统卤素灯不同,这是一种高压放电灯,它的发光原理是利用正负电刺激氙气与稀有金属化学反应发光,因此灯管内有一颗小小的玻璃球,这其中就是灌满了氙气及少许稀有金属,只要用电流去刺激它们进行化学反应,两者就会发出高达4000K-12000K 温度的光芒。它采用一个特制的镇流器,利用汽车电池12V 电压产生23000V 以上的触发电压使灯启动。启动时0.8 秒的亮度是额定亮度的20% ,达到卤素灯的亮度,并使大灯4 秒以内达到额定亮度的80% 以上。在灯稳定后镇流器向灯提供约80V 供电电压,保持灯以恒定功率运转。 三、氙气灯(HID)的性能特点 1、亮度高:一般的55W 卤素灯只能产生1000 流明的光,而35W 氙气灯能产生3200 流明的强光,亮度提升300% ,拥有超长及超广的视野,为你带来前所未有的驾车舒适感;让夜晚不再黑暗,视野更清晰,可大大减少行车事故率。 2、寿命长:氙气灯是利用电子激发气体发光,并无钨丝存在,因此寿命较长,约为3000 小时,大幅度超越汽车夜间行驶的总时数,而卤素灯只有250 小时。 3、节能:氙气灯只有35W ,而发出的是55W 卤素灯 3.5 倍以上的光,大大减轻了汽车电力系统的负荷,电力损耗节省40% ,相应提高了车辆性能,节约能源。 4、色温性好:有4300K-12000K 等,6000K 接近日光,深受广大用户的好评,而卤素灯只有3000K ,光色暗淡发红。 5、安全可靠:安全性才是HID 的最大魅力,很多使用过HID 的车主反应,安装了HID 灯视线良好,夜间驾驶的安全性大大提高。主要是因为HID 灯带来的多重光束和强度会比简单的远、近光设置更有效,能大幅提高车前方的照明,照亮路边的标志,这些对行车安全的重要性是毋庸置疑的。 6、应急性,由于氙气灯与卤素灯的发光原理不同,当蓄电池供电出现问题时,它会延长几秒才熄灭,以便让车主有一定的时间去处理紧急情况。 四、造成氙气灯缺点的真正原因

高压共轨燃油喷射系统的结构和工作原理

高压共轨燃油喷射系统的结构和工作原理高压共轨燃油喷射系统的结构和工作原理 李明诚,《电控柴油机的基本结构及工作原理》,xx 1、高压共轨喷射系统简介 它是由燃油泵把高压油输送到公共的、具有较大容积的配油管——油轨内,将高压油蓄积起来,再通过高压油管输送到喷油器,即把多个喷油器,并联在公共油轨上。在公共油轨上,设置了油压传感器、限压阀和流量限制器。由于微电脑对油轨内的燃油压力实施精确控制,燃油系统供油压力因柴油机转速变化所产生的波动明显减小(这是传统柴油机的一大缺陷),喷油量的大小仅取决于喷油器电磁阀开启时间的长短。 特点: ①、将燃油压力的产生与喷射过程完全分开,燃油压力的建立与 喷油过程无关。燃油从喷油器喷出以后,油轨内的油压几乎不变; ②、燃油压力、喷油过程和喷油持续时间由微电脑控制,不受柴 油机负荷和转速的影响;③、喷油定时与喷油计量分开控制,可以自由地调整每个气缸的喷油量和喷射起始角。 2、高压共轨燃油喷射系统的基本结构 高压共轨燃油喷射系统包括燃油箱、输油泵、燃油滤清器、油水 分离器、高低压油管、高压油泵、带调压阀的燃油共轨组件、高速电磁阀式喷油器、预热装置及各种传感器、电子控制单元等装置。

高压共轨燃油喷射系统的低压供油部分包括:燃油箱(带有滤网、油位显示器、油量报警器)、输油泵、燃油滤清器、低压油管以及回油管等;共轨喷射系统的高压供油部分包括:带调压阀的高压油泵、燃油共轨组件(带共轨压力传感器)以及电磁阀式喷油器等。 3、电控燃油喷射系统的工作原理 电子控制单元接收曲轴转速传感器、冷却液温度传感器、空气流量传感器、加速踏板位置传感器、针阀行程传感器等检测到的实时工况信息,再根据ECU内部预先设置和存储的控制程序和参数或图谱,经过数据运算和逻辑判断,确定适合柴油机当时工况的控制参数,并将这些参数转变为电信号,输送给相应的执行器,执行元件根据ECU 的指令,灵活改变喷油器电磁阀开闭的时刻或开关的开或闭,使气缸的燃烧过程适应柴油机各种工况变化的需要,从而达到最大限度提高柴油机输出功率降低油耗和减少排污的目的。 一旦传感器检测到某些参数或状态超出了设定的范围,电控单元会存储故障信息,并且点亮仪表盘上的指示灯(向操作人员报警),必要时通过电磁阀自动切断油路或关闭进气门,减小柴油机的输出功率(甚至停止发动机运转),以保护柴油机不受严重损坏——这是电子控制系统的故障应急保护模式

高压共轨燃油喷射系统的组成与工作原理

高压共轨燃油喷射系统的组成与工作原理 (3)断路(开路)检测方法 如图3-74所示的配线有断路故障,可用“检查导通性”或“测量电压”的方法来确定断路的部位。 图3-74 断路检测 ①“检查导通性”方法 a. 脱开连接器A和C,测量它们之间的电阻值,如图3-75所示。若连接器A的端子1与连接器C的端子1之间的电阻值为∞,则它们之间不导通(断路);若连接器A的端子2与连接器C的端子2之间的电阻值为0Ω,则它们之间导通(无断路)。 图3-75 导通检测 b.脱开连接器B,测量连接器A与B、B与C之间的电阻值。若连接器A的端子1与连接器B的端子1之间的电阻值为0Ω,而连接器B的端子1与连接器C的端子1之间的电阻为∞,则连接器A的端子l与连接器B的端子l之间导通,而连接器B的端子1与连接器C 的端子1之间有断路故障存在。 ②“测量电压”方法。 在ECU连接器端子加有电压的电路中,可以用“测量电压”的方法来检查断路故障。如图3-76所示)。

图3-76 电压检测 在各连接器接通的情况下,ECU输出端子电压为5 V的电路中,如果依次测量连接器A 的端子1、连接器B的端子1和连接器C的端子1与车身(搭铁)之间的电压时,测得的电压值分别为5 V、5 V和0 V,则可判定:在连接器B的端子1与连接器C的端子1之间的配线有断路故障存在。 (4)短路检查方法 如果配线短路搭铁,可通过检查配线与车身(搭铁)是否导通来判断短路部位。如图3-77所示。 图3-77 短路检测 ①脱开连接器A和C,测量连接器A的端子1和端子2与车身之间的电阻值。如果测得的电阻值分别为0 Ω和∞,则连接器A的端子1与连接器C的端子1的配线与车身之间有搭铁短路故障。 ②脱开连接器B,分别测量连接器A的端子1和连接器C的端子1与车身之间的电阻值。如果测得的电阻值分别为∞和0Ω,则可以判定:连接器B的端子1与连接器C的端子1之间的配线与车身之间有搭铁短路故障。 九、信号检测线 信号检测线的作用是在进行发动机 ECU 端子的检测时,为防止接头破损,需连接信号检查线束,并将测试棒抵住信号检查线束的接触箱进行检测。 1.信号检测线的连接使用方法 (1)将起动器钥匙置于「OFF」(锁定),从发动机 ECU 上取下接头。注意接头不可使锁定部位的锁扣弯折。 (2)将信号检查线束连接在发动机 ECU 以及机械线束上。 (3)将测试棒抵住信号检测线的信号检测接头测量。 (4)信号检测线为共轨式燃料喷射系统专用。如图3-78所示。

浅谈柴油机高压共轨技术

浅谈柴油机高压共轨技术 一、高压共轨技术简介 我们先来了解下传统柴油发动机燃油喷射系统的局限性: 传统柴油发动机燃油喷射系统的工作过程是:柴油通过高压油泵提高油压后,再按照一定的供油定时和供油量通过喷油器,喷入气缸燃烧室。在燃油喷射过程中,由于压力波动,存在二次喷油现象。由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物的排放量,油耗也增高。此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。 随着发动机自动控制技术的发展和进步,为了解决柴油机燃油压力变化所造成的燃油喷射燃烧缺陷,现代柴油机采用了一种高压共轨电控燃油喷射技术,使柴油机的性能得到了全面提升。 柴油机在机械喷射、增压喷射和普通电喷后,近几年来出现了共轨高压喷射。高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,相比于一般的喷油系统,它的压力建立、喷射压力控制和喷油过程相互独立,并可以灵活地控制。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度。 另外,共轨喷油系统的高精度零部件的表面加工质量要求高,几何精度高,特殊要求多,其加工都是微米、亚纳米级的精度,代表了目前机械制造行业的最高加工水平。 二、高压共轨系统的组成和工作原理 2.1、高压共轨喷射系统组成 高压共轨喷射系统主要由高压油泵、共轨管、电控喷油器、各种传感器和电控单元ECU 等组成,如图1所示。发动机工作时,高压油泵上自带的齿轮泵通过负压从油箱中吸油,并以一定的压力(约5~7bar)将过滤后燃油送入高压油泵。燃油进入高压柱塞腔后被压缩,通过高压油管进入共轨管形成高压,每缸喷油器通过高压油管与共轨管相连,以实现高压喷射。 2.1.1 高压油泵(High pressure pump) 高压油泵是高压共轨系统中的关键部件之一,它的主要作用是将低压燃油加压成为高压燃油,储存在油轨内等待ECU的喷射指令。高压油泵由齿轮泵、油量计量单元、溢流阀、进出油阀和高压柱塞等部分组成。以Bosch目前广泛应用于中国商用车市场并已开始本地化生产的CPN2.2BL为例,其结构如图2所示[12]。

PT燃油系统结构组成及工作原理

PT燃油供给系统结构与原理 一、发动机燃油供给系统的作用:根据发动机的工作要求,定时、定量、以一定压力地将雾化质量良好的燃油按一定的喷油规律喷入汽缸内,并使其与空气迅速良好地混合和燃烧,同时根据负荷需要对喷油量进行调节,如发动机在怠速时,控制燃油使发动机在不致熄火的转速下运转;当发动机负荷增加时,可增加喷油量以增大转矩;负荷减少时,可减少喷油量以降低转矩;当发动机超过最高转速时,应减少喷油量以降低转矩;要使发动机停止转动时就要停止供油。 二、PT燃油供给系统简介:PT燃油供给系统无论在结构上还是原理上都与一般常用的燃油供给系统有很大的不同,在世界范围内,仅仅只有美国康明斯发动机公司(Cummins)一家采用这种独特的PT供油系统,它是该公司的专利。其鉴别字母“PT”是压力(Pressure)和时间(Time)的缩写。PT燃油系统也是康明斯发动机区别于其他发动机的标志。 三、PT燃油系统的主要特点:在一般发动机供给系统中,产生高压燃油、喷油正时和油量调节均由喷油泵完成,PT燃油系统则有很大的区别,油量调节是由PT燃油泵完成的,而高压的产生和定时喷射则由PT喷油器来完成。因此它具备了上述两种供油系统的优点,归纳起来有如下几点:(1)由于油量的调节是由PT燃油泵完成的,因而取消了喷油泵和喷油器之间的连接管路、传动机构,从而使结构紧凑,并且各缸油量的分配均匀性易于集中调整,比较稳定,使发动机的平稳性能大为改观。 (2)由于高压油是由喷油器产生的,免去了高压油管,因此喷射过程中消除了高速时压力波和燃油压缩问题所带来的不良影响,从而可以采用较高的喷油压力(68.89~137.79MPa)。而一般发动机的燃油系统其喷油压力仅为9.8~19.6MPa。这不仅可以满足强化发动机所要求的高喷射率和喷射压力的需要,而且雾化良好,有利于燃烧。 (3)进入喷油器的燃油只有20%左右经喷油器喷入气缸燃烧,余下的80%左右的燃油对喷油器进行冷却和润滑后流回油箱。这样可对喷油器进行充分冷却,还可以带走油路中的气泡,有利于提高喷油器的工作可靠性和使用寿命。而一般的发动机的燃油供给系统,其燃油经喷油泵压送到喷油器,

第三节 电控燃油喷射系统的组成与基本原理

第三节电控燃油喷射系统的组成与基本原理 组成:按其部件功用来看,主要有进气系统(气路)、燃油控制系统(油路)和电子控制系统(电路)三部分。 一、进气系统 a) b) 图1进气系统原理图 作用:为发动机提供必要的空气。 组成:一般由空气滤清器、节气门体、节气门、空气阀、进气总管、进气歧管等部分组成。另外,为了随时调节进气量,进气系统中还设置了进气量的检测装置。 如图所示:在L型EFI系统中,采用装在空气滤清器后的空气流量计(空气流量传感器)直接测量发动机发动机吸入的进气量。其测量的准确度高于D型EFI系统,可以精确的控制空燃比。“L”是德文“空气”的第一个字母。 D型EFI系统是根据进气歧管压力传感器进行检测。由于进气管内的空气压力在波动,所以控制的测量精度稍微差些。“D”是德文“压力”的第一个字母。 空气阀只是在发动机温度低时用来调节进气量,控制发动机的怠速转速。 节气门总成包括控制进气量的节气门通道和怠速运行的空气旁通道。节气门位置传感器与节气门轴相连接,用来检测节气门的开度。 二、燃油供给系统

图2燃油供给系统工作流程图 作用:向气缸提供燃烧所需要的燃油。 组成:如图所示,燃油供给系统通常由电动汽油泵、汽油滤清器、压力调节器、脉动阻尼器、 喷油器和冷起动喷油器组成。 工作原理:如图所示,在电控汽油喷射系统中,汽油由电动汽油泵从油箱中泵出,经汽油滤清器等输送到电磁喷油器和冷起动喷油器调节器与喷油器并联,保证供给电磁喷油器内的汽油压力与喷射环境的压力之差(喷油压差)保持不变。燃油泵按其安装位置可以分为外装泵和内装泵两种。外装泵将泵装载油箱之外的输油管路中,内装泵则是将泵安装在燃油箱内。与外装泵相比,内装泵不易产生气阻和燃油泄露,而且嘈声小。目前多数EFI采用内装泵。 脉动阻尼器可以消除喷油时油压产生的微小波动,进一步稳定油压。电磁喷油器按照发动机控制的喷油脉冲信号把汽油喷入进气道。当冷却水温度低时,冷起动喷油器将汽油喷入进气总管,以改善发动机低温时的起动性能。 三、电子控制系统 功用:根据各种传感器的信号,由计算机进行综合分析和处理,通过执行装置控制喷油量等,使发动机具有最佳性能。 组成:如图所示,从控制原理来看,电控汽油喷射系统由传感器、ECU和执行器三大部分组成。 传感器是感知信息的部件,功能是向ECU提供汽车的运行状况和发动机工况。ECU接收来自传感器的信息,经信息处理后发出相应地控制指令给执行器。执行器即执行元件,其功用是执行ECU的专项指令,从而完成控制目的。 ECU根据空气流量计(L)型和进气歧管压力传感器(D)型和转速传感器的信号确定空气流量,在根据传感比要求即进气量信号就可以确定每一个循环的基本供油量,然后根据各种传感器的信号进行点火提前角、温度、节气门开度、空燃比等各种工作参数的修正,最后确定某一工况下的最佳喷油量。

气体放电光源之高压钠灯篇

高压钠灯 一、气体放电与光源简介 气体放电光源是利用气体放电发光原理制 成的。 外界电场加速放电管中的电子,通过气体(包括某些金属蒸气)放电而导致原子发光的光谱,如日光灯,汞灯,钠灯,金属卤化物灯气体放电有弧光放电和辉光放电两种,放电电压有低气压、高气压和超高气压 3种。弧光放电光源包括:荧光灯、低压钠灯等低气压气体放电灯,高压汞灯、高压钠灯、金属卤化物灯。此种光源具有分立的线状谱。 正常状态下气体不是导体。当气体原子受到具有一定能量的电子碰撞时会被激发和电离而发光。当放电电流很小时,放电处于辉光放电阶段;放电电流增大到一定程度时,气体放电呈低电压大电流放电,这就是弧光放电。 我们可把气体放电光源分为三类: 1) 低压放电光源 灯内气体的总压强约1%大气压左右。 低气压放电光源有两种:辉光放电光源(霓虹灯、氖灯等)和弧光放电光源(低压钠灯、荧光灯、紫外线灯合部分感应无极灯等)。 低压气体放电灯发光体较大,发光均匀。其工作电流较小,辉光放电灯在几百毫安以内,弧光放电灯在1安培以内。灯功率因而也较小,一般在200瓦以内。低压气体放电灯从启动方式看有冷阴极和热阴极两种。冷阴极灯不需预热可直接高电压启动,如霓虹灯。热阴极灯需进行预热,当灯丝达到电子发射温度时再启动,如预热式荧光灯,需配用适宜的启动器进行预热启动。低压气体放电灯在灯点燃熄灭后一般可以立即再启动点燃。 2) 高压放电光源 灯内气体的总压强在1个~10个大气压。 光源有高压汞灯、高压钠灯、金属卤化物灯和微波硫灯、长弧氙灯等。 高压气体放电灯工作电流可以较大,是大电流工作,因而灯功率可以做得较大。它不需预热启动,可配用适宜的触发器直接启动。但高压气体放电灯在灯点燃熄灭后一般不可以立即再启动点燃,需间隔一段时间待灯冷却后再启动。 3) 超高压放电光源

高压共轨燃油喷射系统的结构和工作原理.

高压共轨燃油喷射系统的结构和工作原理 2017-06-14 高压共轨燃油喷射系统的结构和工作原理 李明诚,《电控柴油机的基本结构及工作原理》,2011 1、高压共轨喷射系统简介 它是由燃油泵把高压油输送到公共的、具有较大容积的配油管――油轨内,将高压油蓄积起来,再通过高压油管输送到喷油器,即把多个喷油器,并联在公共油轨上。在公共油轨上,设置了油压传感器、限压阀和流量限制器。由于微电脑对油轨内的燃油压力实施精确控制,燃油系统供油压力因柴油机转速变化所产生的波动明显减小(这是传统柴油机的一大缺陷),喷油量的大小仅取决于喷油器电磁阀开启时间的长短。 特点: ①、将燃油压力的产生与喷射过程完全分开,燃油压力的建立与喷油过程无关。燃油从喷油器喷出以后,油轨内的油压几乎不变; ②、燃油压力、喷油过程和喷油持续时间由微电脑控制,不受柴油机负荷和转速的影响;③、喷油定时与喷油计量分开控制,可以自由地调整每个气缸的喷油量和喷射起始角。 2、高压共轨燃油喷射系统的基本结构 高压共轨燃油喷射系统包括燃油箱、输油泵、燃油滤清器、油水分离器、高低压油管、高压油泵、带调压阀的燃油共轨组件、高速电磁阀式喷油器、预热装置及各种传感器、电子控制单元等装置。 高压共轨燃油喷射系统的低压供油部分包括:燃油箱(带有滤网、油位显示器、油量报警器)、输油泵、燃油滤清器、低压油管以及回油管等;共轨喷射系统的'高压供油部分包括:带调压阀的高压油泵、燃油共轨组件(带共轨压力传感器)以及电磁阀式喷油器等。 3、电控燃油喷射系统的工作原理 电子控制单元接收曲轴转速传感器、冷却液温度传感器、空气流量传感器、加速踏板位置传感器、针阀行程传感器等检测到的实时工况信息,再根据ECU内部预先设置和存储的控制程序和参数或图谱,经过数据运算和逻辑判断,确定适合柴油机当时工况的控制参数,并将这些参数转变为电信号,输送给相应的

高压钠灯

目录 一、高压钠灯的工作原理 二、高压钠灯的构造 高压钠灯的工作原理 低压钠灯、标准高压钠灯和高显色性高压钠灯的光谱能量分布曲线不同,对应的钠蒸气压强分别为1Pa,15kPa和65kPa。随着钠蒸气压强升高,那光谱线逐渐展宽,连续光谱成分逐渐丰富,同时出现钠D线的自吸现象。 增加钠D线自吸引宽度可以改进高压钠灯的光色,提高其显色性。为此可以增加放电管内钠蒸气压强和放电管的直径,或者增加管内氙气压强。当采取以上措施将自吸收宽度扩大到45nm时高压钠灯的色温从2000k-2100k提高到2400k,显色指数Ra从15-30提高到80.这种灯泡称为高显色性高压钠灯,但是此时灯泡发光效率下降一半左右,仅60lm/w。高显色高压钠灯是以牺牲效率为代价,使用范围有限。 高压钠灯的放电管内除钠外还必须冲入适量汞,汞基本上不参与发光,但是具有以下重要作用: 1)、提高电位梯度 钠蒸气放点的电位梯度很低,一只400W高压钠灯的如果不充汞,管压降只有40-44v,工作电流约10A。充入汞后,由于汞蒸气压强比钠蒸气压强高的多,减少了电子迁移率,电位梯度提高至10V/cm,这样400W高压钠灯的管压降上升到110V,工作电流下降到3.7A。管压降提高后不仅改进了放电管发光效率,而且可以提高功率因数,缩小镇流器的体积和重量。 2)、减小热导率,降低电弧热损耗,提高发光效率。 3)、汞原子影响钠原子的共振能级,使展宽了的钠谱线像长波方向移动,一定程度上改善了灯的显色性。 此外高压钠灯放电管中充入帮助启动的惰性气体,一般充入10-30氩或氙,氙气热导率低,灯泡发光效率比较高,但启动电压比较高。 高压钠灯的构造 1)放电管 高压钠灯的放电管用耐高温、抗钠蒸气侵蚀的多晶氧化铝陶瓷管制成。多晶氧化铝陶瓷管用氧化铝粉经模具成型后再以2100k高温烧结而成,严格控制氧化铝粉的纯度和粒度,管子的透明度可以达90%-97%。加入氧化镁可进一步提高透明度。为了减少钠谱线的自吸收,放电管直径仅7-8mm。放电管两端各封一只电极,抽真空之后充入钠、汞,并且充入惰性气体。 2)电极 高压钠灯采用锆酸钡或钨酸钡作为电子发射物质,发射材料涂复在五四螺旋的内层,外螺旋保护发射材料。 钨电极于氧化铝管的封接采用金属铌过渡,铌化学性质稳定,热膨胀系数于多晶氧化铝陶瓷管的热膨胀系数非常接近。钨杆和铌管焊接,铌管再通过陶瓷塞与陶瓷封接。 3)、外玻壳 为减少放电管的热损失,保证放电管温度从而保证放电管内的钠蒸气压强,外玻壳与放电管之间抽成高真空,并且使用消气剂维持其真空度。大部分高压钠灯外玻壳是透明的,少部分灯泡外玻壳内壁涂二氧化钛或荧光粉,涂层对光色没有影响,而且光通量减少5%-7%,但可以减少眩光,获得比较柔和的光线。 本文出自于https://www.doczj.com/doc/474073858.html,

第一章电子燃油喷射系统的构成

第一章电子燃油喷射系统的构成

2 引出端子功能见表1—1。 当整车供电后,ECU开始不断地定时检测各传感器及开关信号,并以此为依据,计算出发动机各工况下的最佳供油量、最佳点火正时、最理想的怠速等。经输出驱动电路完成对喷射阀、点火组件、怠速直流电机和空调系统的控制。 该电控单元还不断地对电控系统中各零部件的功能进行随时检测。一旦发现故障,马上将故障源以代码的形式存贮在ECU的指定单元中,并且根据故障的类型决定系统是否进入“自救”状态。 维修人员可用专用故障诊断仪VAG1551或VAG1552读出存在于ECU中的故障代码,判别故障的来源,以便尽快维修保养。

二、进气压力温度传感器Array进气压力温度传感器安装在进气歧管上,测量进气歧管绝对压力,为ECU提供发动机的负荷信息。 传感元件由一片硅芯片组成。在硅芯片中蚀刻出压力膜片,整流电路也集成在硅片上。空气压力的改变, 使膜片变形受力,压阻效应使电阻改变。通过芯片处理 后,形成与压力成线性关系的电压信号。 进气温度传感器集成在进气压力传感器中,用来测量发动机的进气温度。该传感器是一种负温度系数 热敏电阻式的传感器。该传感器阻值随进气温度的变 化而变化。当进气温度升高时,传感器的阻值随之减 少;反之,其阻值增大。以此测量出进气温度,并转 换成相应的电压信号输送给ECU,对喷油、点火等进 行修正。 3

输出电压与进气压力的变化曲线如下:传感器阻值与进气温度的变化曲线如下: 4

5

四、曲轴位置传感器(CKPS) 当发动机运行时,磁电传感器不断的检测靶轮上齿峰与齿谷间的变化,并转换成相应的电压信号传送给ECU。ECU 根据该信号计算出发动机的转速并判断出活塞在气缸内的行程位置,进而控制喷油时刻、喷射量、点火正时、怠速和燃油泵等各项工作。 传感器输出的波形与靶轮齿的相应关系如下: 6

相关主题
文本预览
相关文档 最新文档