当前位置:文档之家› 某厂发电机定子接地保护动作跳机情况分析_吴利平

某厂发电机定子接地保护动作跳机情况分析_吴利平

某厂发电机定子接地保护动作跳机情况分析_吴利平
某厂发电机定子接地保护动作跳机情况分析_吴利平

收稿日期:2011-03-16

作者简介:吴利平(1975-),男,电气工程师,从事电气设备管理工作。

引言

发电机定子接地故障为发电机常见的主要故

障,定子接地故障对发电机损害极大,接地电弧可能进一步扩大定子绕组绝缘的破坏范围;如果发现不及时,则可能发展为相间或匝间短路故障。一般来讲,单相接地故障的主要危害是电弧烧伤定子铁芯,铁芯烧伤程度与接地故障电容电流大小及持续时间长短有关。

1故障前运行方式

某厂(2台350MW 发电机组)2010年6月9日

发生2号发电机定子接地跳机故障,当时运行方式:

220kV 双母并联运行。2号发电机按正常运行方式并网运行;220kV I 段母线接带1号高备变、厂龙I

线、厂渡线;220kV II 段母线接带厂龙II 线。1号机组正在进行大修后的试运。1号启备变带1号机组

厂用电负荷。发电机参数见表1。

表1

发电机参数

2故障现象

2010年6月9日2点13分,2号发电机(以下

若未特别标明,均指2号机组设备)跳闸。DCS 首出“发电机故障”,发变组A 、B 套保护屏均报“定子零序电压”动作。主变高压侧202开关跳闸,灭磁开关跳闸,厂用电切换成功。励磁调节器有“脉冲消失”、

某厂发电机定子接地保护动作跳机情况分析

吴利平,曾万德,徐德荣,董卫强

(华能瑞金发电有限责任公司,江西瑞金341108)

摘要:介绍了某电厂发电机定子接地故障情况,通过逐步逼近法对发电机定子接地整个事件过程检查分析,排除

了发电机本体原因,找到了发电机出口PT 故障为跳闸原因,为今后各类发电企业防止类似事件发生,为快速判断故障点及查找原因提供了借鉴参考。关键词:发电机;PT ;匝间短路;接地中图分类号:TM621.7

文献标识码:A

Analysis on Stator Ground Protection Trip of Generator

WU Li-ping,ZENG Wan-de,XU De-long,DONG Wei-qiang

(Huaneng Ruijin Power Generation Co.,Ltd.,Ganzhou 341108,Jiangxi Province,China)

Abstract:Stator grounding fault in a thermal plant's generator was introduced in the paper.By analyzing stator grounding with successive approximation,we found that trip caused by PT fault.The case provided reference for finding reason.Key words:generator;PT;interturn short circuit;grounding

额定功率/MW 350功率因数0.85额定电压/kV

20额定电流/A

11887空载励磁电流/A 1015空载励磁电压/V 128满载励磁电流/A

2897满载励磁电压/V

368

接线YY

制造厂

哈尔滨电机有

限公司

型号QFSN-350-2

容量/MVA 412项目参数

项目参数

文章编号:1006-348X (2011)04-0056-03

“A、B套故障”报警。

3检查及试验情况

针对发电机定子接地故障跳机,立即对发电机本体、发电机附属设备及继电保护相关二次回路进行检查,逐一排查。所有排查必须通过严格的试验检测,以数据作为判断。发电机本体应排查彻底,确保不发生重大设备损坏事故。

3.1发电机本体检查情况

2号机转速为零后(盘车状态),用2500V专用水内冷发电机绝缘测试仪测量发电机定子(含主变低压侧、励磁变、封母)绝缘电阻和吸收比均合格;发电机出线解开后,单独测量发电机定子绝缘合格,测量封母连接主变压器绝缘合格。

外观检查:打开发电机励、汽上端盖及励端发电机出线罩人孔门、发电机汽端底部人孔门,检查发电机端部、出线套管无放电、破裂,出线罩内手包绝缘及汇水管,引水管无异常,检查端部线棒手包绝缘无变色、膨胀过热、开裂、流胶、脱漆、爬电现象检查铁芯各部位无锈蚀、碰伤、变形和局部过热。检查定子端部线棒与绑环之间、绑环与绝缘支架之间的固定及绑扎紧固,无松动、位移。因未抽转子,机内槽部无法检查。

3.2发电机附属设备检查

发电机出口11、12、13号PT一次绝缘均在400 MΩ以上;发电机端部及尾部出线未见异常现象;检查机端各PT保险接触良好,二次线无松动,一次侧直阻均衡(用万用表检查约为1.17kΩ)各二次绕组中性点接地符合要求,机端PT一、二次绕组对地绝缘良好。

3.3发电机单元其他设备检查

检查主变、高厂变、励磁变、发电机中性点变、封闭母线、发电机出口PT外观未见异常现象。

3.4发电机试验

为进一步判断发电机本体有无故障情况,进行了交、直流耐压试验。

发电机三相定子绕组泄漏电流值分别为A相68μA、B相35μA、C相46μA,相差不超过最小值的100%,且不随时间的延长而增加,符合试验要求。直流耐压50kV下持续一分钟试验通过。

发电机定子三相绕组交流耐压30kV1min通过无异常,电容电流均为2.1A。耐压前后绝缘电阻合格。2号发电机交、直流耐压试验合格,发电机定

子绕组绝缘良好。

3.5其它设备检查及试验

励磁变压器、中性点变压器、出口避雷器、封闭母线、发电机局放在线监测装置感应器等试验均合格,数据正常;主变及高厂变检查正常。

3.6发电机出口PT试验

测试各PT绝缘电阻均大于2500M;测试JDZX16-20型各PT直流电阻,数据见表2。

表2JDZX16-20型PT直流电阻

B相编号为080040298的PT直流电阻与A、C 相相比小约8%,与4月C修试测量数据相比小约8%。

耐压试验:3只全绝缘型号为JDZX16-20G型PT通过工频耐压试验。44kV,1min耐压试验通过。6只半绝缘型号为JDZX16-20型PT,从二次低压侧加三倍频150Hz,100V,40s,高压侧感应计算电压为34.6kV,试验见图1。现场采用了3倍频试验装置对PT进行感应耐压试验,接线见图2,试验结果为5只通过,但其中B相编号为080040298的PT 感应耐压试验,开始加压二次电流即顶表,波动剧烈,耐压试验未通过,此PT存在内部故障。

图1耐压试验原理

图2耐压试验接线

~380V

50Hz

高压A

高压尾

高压

互感器相别A1A2B1B2C1C2

一次绕组/Ω110811051029110811051103

3.7保护装置及回路检查

试验情况均正常。

4原因分析

综合电气一、二次数据及检查试验情况分析如下:

1)故障时中性点与机端零序三次谐波电压与正常时数据无明显变化,可以判断故障不在中性点25%区域内。

2)PT开口三角不存在短路可能,可以排除其影响机端三相电压。PT其他二次绕组也没有短路,因此不会反向影响一次系统电压。

3)PT二次绝缘和接地良好,同时结合220kV 系统无零序电压,电流无明显变化,6kV无零序电压情况,可以初步排除外部接地耦合零序电压及二次强干扰的可能。同时,在故障时,中性点电流由正常的0.1A增至0.4A,由此计算出此时中性点电压为0.4×0.474×(20/0.23)2=1433V,折算至二次为16.5V,与故障报告上数据基本吻合,这也可以从另一方面证明二次无强干扰,而确实是一次当时是存在单相接地。另外,匝间保护PT二次与开口三角电压保持不变,而其N600与其他二次绕组N600接于一根铜排上,也间接说明此时二次无强干扰,同时,也说明发电机内不存在匝间短路现象。

4)根据DCS中中性点零序电压变化情况,与保护动作情况相吻合,即开始发电机接地保护启动,后经过约2min,发电机接地保护动作。

5)发变组保护A、B屏B相电压及零序电压不一致,存在一点差别,反推到一次有282V的差别。如果是PT外部故障,一般不太可能有如此大的差别。结合B相编号为080040298的PT直流电阻与A、C相相比小约8%,与4月C修试测量数据相比小约8%这一现象,推断可能存在PT一次匝间短路故障,导致三相对地电阻不平衡,从而导致出现两只PT二次电压不同。

6)从保护录波数据中可以看出,在保护动作时机端三相电压不平衡,机端产生了11V(二次)左右的零序电压。同时中性点电压均为15.08V,达到动作电压。同时调取了220kV零序电压及各回路电流,均无异常变化。在这种情况下,根据定子接地保护动作原理,保护会动作出口。

2号发电机出口B相编号为080040298的PT 进行3倍频感应耐压试验,开始加压,二次电流即顶表,波动剧烈,耐压试验未通过,结合B相该PT一次侧直阻的试验数据与A、C两相直阻的试验数据相比小约8%的偏差和与4月C修试验报告测量数据相比小约8%这一现象,可以确定该PT存在内部匝间短路故障。

综上所述,认为发电机定子接地保护动作跳机是由于编号为080040298,型号为JDZX16-20的PT 存在设备质量缺陷造成匝间短路引起的,发变组保护装置定子接地保护动作正确。

5处理情况

1)更换了一台同型号PT。

2)新PT外观检查完好,直流电阻、交流阻抗、绝缘电阻、极性、变比检测正常,空载电流、三倍频交流感应耐压试验合格。

3)更换B相故障PT后,经发电机零起升压对PT二次电压核对相别、相序、相角正常,三相电压平衡,机端PT二次开口三角绕组和机尾二次不平衡电压在0.65V以下,发变组保护A、B套无异常。2010-6-15T6∶23,2号发电机并网运行,目前各项数据正常。

6防范措施

1)鉴于半绝缘PT故障率较高及需专用三倍频感应耐压试验设备,在条件许可和必要时,将半绝缘PT更换为全绝缘PT,提高设备可靠性,杜绝此类事件再次发生

2)加强电气设备绝缘监督管理工作,除按《电气设备预防性试验规程》做好常规试验外,在机组调停期间,加强对发电机出口半绝缘PT、6kV厂用电系统的半绝缘PT做三倍频感应耐压试验,及时掌握半绝缘PT绝缘状况。

3)加强对发电机机端三相电压、零序电压、机尾零序电压、零序电流的观察,掌握其变化趋势,及时发现异常情况。

7结束语

半绝缘PT的绝缘检测,尤其通过感应耐压试验的方法检测PT纵绝缘是电厂技术监督工作中是一个盲点,此次事件的发生及检查处理范例为今后预防此类设备故障的发生提供了借鉴。

利用三次谐波电压构成的100%发电机定子接地保护

利用三次谐波电压构成的100%发电机定子接地保护的工作原理? 由于发电机气隙磁通密度的非正旋分布和铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在,设以E3表示之。 为便于分析,假定: (1)把发电机每相绕组对地电容CG分成相等的两部分,每部CG/2分等效地分别集中在发电机的中性点N和机端S。 (2)将发电机端部引出线、升压变压器、厂用变压器以及电压互感器等设备的每相对地电容CS 也等效的集中放在机端。 根据理论分析,在上述加设条件下,可得出下列结论: (1)当发电机中性点绝缘时,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=CG/(CG+2CS)<1 (2)当发电机中性点经消弧线圈接地时,若基波电容电流被完全补偿,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=(7CG-2CS)/9(CG+2CS)<1 (3)不论发电机中性点是否接有消弧线圈,当在距发电机中性点α(中性点到故障点的匝数占每相分支总匝数的百分比)处发生定子绕组金属性单相接地时,中性点N和机端S处的三次处的三次谐波电压恒为 UN3=αE3 US3=(1-α)E3 如图所示: 从上图中可以看出,UN3=f(α)、US3=f(α)皆为线性关系,它们相交于α=0.5处;当发电机中性点接地时,α=0,UN3=0,US3=E3; 当机端接地时,α=1,UN3=E3,US3=0; 当α<O.5时,恒有US3>UN3; 当α>O.5时,恒有 UN3>US3。 综上所述,用US3作为动作量,UN3作为制动量构成发电机定子绕组单相接地保护,且当US3>

发电机转子接地保护

发电机转子接地保护 正常运行时,发电机转子电压(直流电压)仅有几百伏,且转子绕组及励磁系统对地是绝缘的。因此,当转子绕组或励磁回路发生一点接地时,不会构成对发电机的危害。但是,当发电机转子绕组出现不同位置的两点接地或匝间短路时,很大的短路电流可能烧伤转子本体;另外,由于部分转子绕组被短路,使气隙磁场不均匀或发生畸变,从而使电磁转矩不均匀并造成发电机振动,损坏发电机。 为确保发电机组的安全运行,当发电机转子绕组或励磁回路发生一点接地后,应立即发出信号,告知运行人员进行处理;若发生两点接地时,应立即切除发电机。因此,对发电机组装设转子一点接地保护和转子两点接地保护是非常必要的。 规程规定,对于汽轮发电机,在励磁回路出现一点接地后,可以继续运行一定时间(但必须投入转子两点接地保护);而对于水轮发电机,在发现转子一点接地后,应立即安排停机。因此,水轮发电机一般不设置转子两点接地保护。 一发电机转子一接地保护 1 转子一点接地保护的类别 转子一点接地保护的种类较多,主要有叠加直流式、乒乓式及测量转子绕组对地导纳式(实质是叠加交流式)。目前,在国内叠加直流式转子一点接地保护及乒乓式转子一点接地保护得到了广泛应用。 2 叠加直流式转子一点接地保护 (1)构成原理 叠加直流式转子一点接地保护的构成原理是:在发电机转子绕组的一极(正极或负极)对大轴之间,加一个直流电压,通过计算直流电压的输出电流,来测量转子绕组或励磁回路的对地绝缘。其构成原理框图如图43所示。 U = 图43 叠加直流式转子一点保护原理图 在图42中: U-外加直流电压; = I-计算及测量元件; p R-转子接地电阻。 正常工况下,发电机转子绕组或励磁回路不接地,外加直流电压不会产生电流;当转子绕组或励磁回路中发生一点接地时(设接地电阻为R),则外加直流电压通过部分转子绕组、接地电阻、发电机大轴构成回路,产生电流 i。接地电阻越小,p i越大;反之亦反。 p 测量计算装置根据电流 i的大小,便可计算出接地电阻值。 p

发电机保护现象、处理

发电机保护1对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。

发电机定子绕组单相接地保护的原理与存在的问题及改进分析

发电机定子绕组单相接地保护的原理与存在的问题及改进分析 1 引言 发电机定子接地是指发电机定子绕组回路及与定子绕组回路直接相连的一次系统发生的单相接地短路。定子接按接地时间长短可分为瞬时接地、断续接地和永久接地;按接地范围可分为内部接地和外部接地;按接地性质可分为金属性接地、电弧接地和电阻接地;按接地原因可分为真接地和假接地。 近几年来,各种原理的发电机定子绕组单相接地保护装置纷纷出现,如三次谐波电压型、零序电流型等,但零序电压型由于其接线简单、维护方便、运行可靠等优点,仍在中小型机组上广泛应用。因此,对零序电压型单相接地保护进行分析和改进,仍有现实意义。 2 零序电压型单相接地保护原理 6kV发电机为中性点不接地系统,当发生定子绕组单相接地时,故障点将出现零序电压。下面以A相定子绕组任一点发生金属性接地故障为例进行分析。 当中性点直接接地系统(又称大接地电流系统)中发生接地短路时,将出现很大的零序电压和电流。还有在中性点不直接接地系统中当发生单相接地时,也会产生零序电压。零序电源在故障点,故障点的零序电压最高,系统中距离故障点越远处的零序电压就越低,取决于测量点到大地间阻抗的大小。 如图1所示,假设A相在距中性点a处(a表示由中性点到故障点的匝数中该相总匝数的百分数)的d点发生接地故障。 则零序电压为(推导过程略):Ud0=-aEA 上式表明,故障点的零序电压与a成正比,即接地点离中性点越远,零序电压越高。这样,可以利用接于机端的电压互感器开口三角形取得零序电压,构成单相接地保护,如图2所示。 3 存在问题与改进 图2是最基本的零序电压型发电机定子接地保护,实际运行中,经常发生保护误动或拒动

发电机定子单相接地处理(仅给借鉴)

发电机定子绕组单相接地,是发电机最常见的一种电气故障。非故障相对地电压上升为线电压,可能导致绝缘薄弱处发生接地形成两点接地短路,扩大事故。定子绕组单相接地的危害性主要是流过故障点的电容电流产生电弧可能烧坏定子铁心,进一步造成匝间短路或相间短路(铁心灼伤后造成磁场分布不均,定子绕组局部温度高,后果必然是相间短路损坏发电机。),使发电机遭受更为严重的破坏。 6kV发电机为中性点不接地系统,当发生定子绕组单相接地时,故障点将出现零序电压。下面以A相定子绕组任一点发生金属性接地故障为例进行分析。如图1所示,假设A相在距中性点a处(a表示由中性点到故障点的匝数占该相总匝数的百分数)的d点发生接地故障。 则零序电压为(推导过程略):Ud0=-aEA 上式表明,故障点的零序电压与a成正比, 即接地点离中性点越远,零序电压越高。这样,可以利用接于机端的电压互感器开口三角形侧取得零序电压,构成单相接地保护,如图2所示。 零序电压型单相接地保护,是从机端电压互感器开口三角形侧取得零序电压,接入保护用的过电压继电器。理想情况下,发电机正常运行时,TV开口三角形侧无零序电压,继电器不动作。但实际上,发电机在正常运行情况下,其相电压中存在三次谐波电压;另外,在变压器高压侧发生接地短路时,由于变压器高低压绕组之间有电容存在,发电机机端也会产生零序电压。为了保证保护动作的选择性,保护的整定值应躲开上述三次谐波电压与零序电压。根据运行经验,电压值一般整定为15~20V之间。按此值整定后,由于靠近中性点附近发生接地故障时,零序电压低,保护可能不会起动,故此种保护的保护范围约为由机端到中性点绕组的85%左右,保护存在死区。 规程规定,对于出口电压为6 3kV的发电机,当接地电流等于或大于5A时,单相接地保护作用跳闸;小于5A时,一般只发信号不跳闸,这是基于保护发电机定子绕组而作出的规定。 保护动作时间国家有关规程对发电机定子绕组单相接地保护的动作时间未作明确规定,各电厂应根据本厂机组的实际运行情况给出延时时间。根据运行经验,延时时间应躲过变压器高压侧后备保护的动作时间,一般为3~5s为宜,否则容易误动。 发电机定子绕组单相接地保护,对于中小型发电机,可采用零序电压型保护,实际运行中,应根据系统接线与运行方式,决定保护接线、定值整定、跳闸方式等,以利于发电机定子单相接地保护准确而可靠地动作。 如果查明接地点在发电机内部(在窥视孔能见到放电火花或电弧),应立即减负荷停机,并向上级调度汇报。如果现场检查不能发现明显故障,但“定子接地”报警又不消失,应视为发电机内部接地,30min内必须停机检查处理。 一、零序电压式定子接地保护的整定计算 1、零序动作电压 零序电压式定子接地保护的动作电压,应按躲过发电机正常工况下及恶劣条件下发电机系统

发电机注入式转子一点接地(两延时)

发电机注入式转子一点接地保护 一、保护原理 保护采用注入直流电源原理,直流电源由装置自产。因此,在发电机运行及不运行时,均可监视发电机励磁回路的对地绝缘。该保护动作灵敏、无死区。 考虑到双套化配置方案中,转子接地保护由于保护原理的要求不能双套化,否则会相互影响导致测量失误。如采用一套运行一套备用方式,需要时应可靠安全地带电切换。 要说明的是:对于励磁系统是可控硅整流系统时,由于励磁电压中有较高的谐波分量(例如ABB 公司生产的励磁装置,运行时产生的6次谐波、12次谐波电压远大于直流分量电压),可能影响转子一点接地保护的测量精度。 保护的输入端与转子负极及大轴连接。保护有两段出口供选用。 其保护逻辑如图一; 大负号 号 单元件横差加延时及投入转子两点接地保护机 图一 转子一点接地保护逻辑框图 二、一般信息 2.3出口跳闸定义(方式) 注:对应的保护压板插入,保护动作时发信并出口跳闸;对应的保护压板拔掉,保护动作时 只发信,不出口跳闸。

2.5 2.6投入保护 开启液晶屏的背光电源,在人机界面的主画面中观察此保护是否已投入。(注:该保护投入时其运行指示灯是亮的。)如果该保护的运行指示灯是暗的,在“投退保护”的子画面点击投入该保护。 2.7参数监视 点击进入发电机转子接地保护监视界面,可监视保护整定值,开/合电流,接地电阻计算值等信息。 三、保护动作整定值测试 3.1 动作值校正曲线的测定 在保护装置端子排接转子电压负极端子与接大轴的端子之间接一电阻箱,使电阻箱的电阻分别为5KΩ、10 KΩ,观察并记录界面上显示的测量电阻值。要求:显示电阻值清晰稳定,显示电阻与外加电阻之差应小于10%。 模范现场运行工况,接入专用转子一点接地测试装置,在此模拟测试装置的正极和负极之间加入一直流电压,设置接地电阻0KΩ、5KΩ、10 KΩ,设置接地方式负极接地、正极接地,观察界面显示的测量电阻值,要求:显示电阻值清晰稳定,显示电阻与外加电阻之差应小于10%。 如果测量精度不满足,需检查调整硬件,重新测试。 电阻小于整定值时,保护动作,记录动作电阻。 注:该保护在现场接入后需重新测试。在整定值那点,利用漏电流补偿,可以调整测量电阻的精度。 3.2动作时间定值测试 注:一点接地保护时间整定误差为±1秒 保护逻辑是否正确(打“√”表示):正确□错误□ 保护出口方式是否正确(打“√”表示):正确□错误□ 保护信号方式是否正确(打“√”表示):正确□错误□

发电机定子接地故障排查

龙源期刊网 https://www.doczj.com/doc/473994101.html, 发电机定子接地故障排查 作者:贾鹏 来源:《科技与创新》2015年第09期 摘要:阐述了发电机出口离相式封闭母线受潮,使得发电机组定子接地跳闸的情况,并 分析了具体的处理过程和防范措施。 关键词:定子接地故障;绝缘子;封闭母线;驱潮工作 中图分类号:TM31 文献标识码:A DOI:10.15913/https://www.doczj.com/doc/473994101.html,ki.kjycx.2015.09.144 1 事故概述 某电厂2×300 MW发电机组采用哈尔滨电机厂生产制造的QFSN-300-2型水氢氢发电机,机端额定电压为20 kV,中性点经消弧线圈接地。发电机保护采用的是南京国电南自凌伊电力自动化有限公司生产的DGT-801A保护装置,定子接地保护采用的是基于稳态基波零序电压和三次谐波原理构成的100%保护。 该厂#1机组在负荷为226 MW的情况下运行时,发电机突然跳闸解列,汽机跳闸,锅炉 灭火,监控画面首出“发电机保护动作”,就地检查保护屏,发出了“发电机定子3U0定子接地”报警,而双套保护均动作,发出信号为发电机“定子接地”保护动作。下面,结合此次发电机定子接地故障的实际情况,简单分析了大型发电机定子接地故障的排查。 2 事故处理过程 2.1 二次系统检查 跳机后,应先全面检查保护装置,2套发电机保护装置A柜、B柜的“定子接地”保护均动作,基波3UO发跳闸信号,3次谐波3 W发报警信号,查看保护定值零序电压为8 V,延时4 s动作。查看故障录波图,发电机机端电流A,B,C三相峰值分别为3.28 A、3.30 A、3.26 A,发电机机端电压A,B,C三相峰值分别为86.979 V、80.182 V和74.518 V,C相电压下降得较快。发电机“定子接地”保护动作时,发电机机端零序电压2套保护动作值分别为8.643 9 V、8.647 4 V和8.668 8 V、8.665 2 V,零序电压达到8.6 V保护动作。对发电机出口PT一次侧做加压试验,保护屏电压显示正确,PT二次回路绝缘测试合格,基本排除了保护误动的可能。但是,这些故障数据并不能确定是发电机内部故障还是外部故障。 2.2 一次系统检查 初步检查发电机非电气系统,未发现发电机有积水、漏氢、漏油等情况,且系统工作正常。定子冷却水电导率化验合格,在发电机本体、励磁变、出线离相封母、出口PT、中性点

低压电网中有关电动机的接地保护问题.doc

低压电网中有关电动机的接地保护问题- 根据国标GB50055-93规定,低压交流电动机应装设接地故障保护,并规定接地故障保护应符合现行国标《低压配电设计规范》中规定。当电动机短路保护器件满足接地故障保护要求时,应采用短路保护兼作接地保护。在《低压配电设计规范》中规定:当配电线路采用熔断器作短路保护时,对于中性点直接接地网络,如果被保护线路末端发生单相接地短路时,其短路电流值不小于熔体额定电流的4倍。当用自动开关作短路保护时,其短路电流不应小于自动开关瞬时或短延时过电流脱扣器整定电流的1.5倍。 对于低压供电系统按其接地方式可分为:TN-C、TN-C-S、TN-S、TT及IT系统,在工厂配电最常用的为TN-C、TN-S系统,而近年来尤以TN-S系统在石油化工企业中应用最为广泛。 当供电线路末端发生单相接地短路时,短路电流与系统、变压器及线路的正序、负序、零序阻抗的大小有关。变压器的零序阻抗与其接线形式有很大关系,Yy接线变压器零序阻抗远远大于Dy接线变压器的零序阻抗。在系统阻抗和变压器阻抗一定的情况下,短路电流与配电线路的阻抗有关,即线路越长,导线截面越小则导线阻抗越大,相应短路电流越小。一方面我们希望短路电流小而减小接地故障造成的损失,而另一方面我们也希望故障电流大而易于检测,迅速切除故障。虽然采用高阻接地系统可以把接地故障电流限制得很小,使系统能够带故障运行而提高供电系统的可靠性,但因其故障电流很小,对保护报警设备要求较高,而很少在石油化工企业中应用。 在石油化工企业中,为了提高线路末端单相接地故障电流

而能满足保护需求,通常做法是除了电动机外壳以扁钢接地外,对于电动机回路采用3+1芯电缆供电,有时甚至采用四芯等截面电缆以降低线路的零序阻抗。 下面就TN-S系统内对于低压电动机的单相接地保护在一具体工程中的设定,谈一点体会。例如,某系统容量SX=100MV A;变压器:160kV A,Dy11,Ud=6%,Pd=14.5kW. 低压系统采用BFC式低压抽屉柜配电,由于该变电所为化工罐区变电所,负荷分散,而且距离远近不同,电动机功率也相差甚大,现选两条典型回路进行分析说明:①距配电室280m远装有75kW电动机回路;②距配电室280m远,装有2.2kW电动机回路。 (1)电缆的选择: (2)保护设定: 2.2kW电动机: 单相接地短路电流/断路器瞬时脱扣器整定电流=0.09/0.126=0.714<1.5 75kW电动机: 线路末端发生单相接地短路时,可从熔断器特性曲线上查得:熔断器在10s内熔断。 可以看出两者均满足规范要求,但是由于所选用的是抽屉柜,需用自动空气断路器实现抽屉柜带电不能开门的连锁要求,而且为了操作方便,我们对于上述2.2kW电动机回路选用熔断器加空气断路器加接触器回路方案,由NT熔断器作为短路保护。考虑到对于上述75kW回路虽然采用熔断器作为短路保护能够满足规范要求,但如果线路末端发生单相接地短路,短路电流不是很大,熔断器熔断时间过长,不利于安全运行,我们采用限流

发电机定子接地处理及原因分析(完稿)

中国华能集团公司 2017年技师考评申报材料 (论文) 申报单位:华能九台电厂 姓名:赵丽丽 工种:电气试验工 专业:电气检修

发电机定子接地处理及原因分析 华能吉林发电有限公司九台电厂赵丽丽 摘要:发电机是电力之源,作为火力发电厂主要设备,发电机的定子和转子绕组绝缘和接头由于电、热和机械振动影响会逐渐老化和接触不良,运行中易产生事故。发电机在日常生产中起着至关重要的作用,它的健康运行与否直接关系到发电厂能否经济运行,当发电机发生接地故障时,对事故发生原因进行分析和判断,并根据现场保护动作及设备情况及时分析原因,准确判断出是一次设备还是二次设备造成,并快速消除设备隐患,保证机组安全稳定运行。本文介绍了我厂发电机定子接地故障的查找过程、处理经过、原因分析及防范措施等。 关键词:发电机绝缘定子接地直流耐压故障分析 1、机组概述 我电厂2号发电机组为670MW超临界燃煤发电机组,汽轮发电机(QFSN-670—2型)由哈尔滨电机厂有限责任公司制造。机组型式为水-氢-氢冷670MW发电机组。本型发电机为三相交流隐极式同步发电机。发电机采用整体全密封、内部氢气循环、定子绕组水内冷、定子铁芯及端部结构件氢气表面冷却、转子绕组气隙取氢气内冷的冷却方式。定子电压20KV,定子电流21.49KA。该机组于2009年12月6日投运至今,曾发生过励侧主引线并联环上下接头处漏氢已处理好,本次故障发生前机组运行稳定,已持续运行一年多。 2、机组运行方式及动作情况 故障前,我厂1号、2号机组正常双机运行,1号发电机有功功率540MW,2号发电机有功功率465MW,频率50Hz。,2号发电机组于2014年08月22日19时06分跳闸,发变组保护正确动作,厂用电切换正确。主机联跳2号炉机组打闸停机,500KV开关场内5021、5022断路器跳闸,检查发变组保护动作报告为:2014-08-22 19:06:22:111,01000ms,定子零序电压,01005ms,定子零序电压高段。查看发变组保护起动后1至2个周波内发电机机端电压UA1=16.67V,UB1=82.24V,UC1=89.28V,发电机机端零序电压值72.18V,发电机中性点零序电压值40.12V。(详见附图1)

发电机定子接地保护动作跳闸分析

发电机定子接地保护动 作跳闸分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

发电机定子接地保护动作跳闸分析郑州热电厂3号发电机为典型的发电机变压器组(发变组)单元接线,发电机为东方电机厂生产的QFSN-200-2型,机组于1992年投运,现处于稳定运行期。2001-11-18,3号发电机处于正常运行状态,当时机组带有功负荷125MW,无功负荷25Mvar,对外供热量160t/h。 1事故经过 凌晨01:35,3号机集控室铃响,中央信号盘发出“保护回路故障”和“故障录波器动作”光字,随即喇叭叫,中央信号盘又出“发电机定子接地”、“主汽门关闭”、“断水保护动作”、“远方跳闸动作”、“6kV配电装置故障”光字,发变组表计无明显冲击,发变组控制盘发电机出线开关Ⅲ建石1、灭磁开关Q7、励磁调节柜输出开关Q4绿灯闪光,除副励电压表外,发变组其它表计均无指示;厂用电盘6kVⅠ、Ⅱ段出“BZT动作”光字,6kV高压厂用电备用电源进线开关6107,6207 红灯闪光,6kV高压厂用电备用变压器高压侧开关建备1绿灯平光, 6kVⅠ、Ⅱ段电压表指示为0,高、低压厂用电失电,集控室工作照明失去,保安电源联动正常,值班人员立即退出6107,6207联动开关,将上述跳闸开关复位后,发现Ⅲ建石1、Q7、6kV高压厂用电工作电源进线开关6104,6204均为绿灯平光,红灯闪光,由于灯光指示异常,为防止扩大事故,在确认6104,6204断开后,于01:38,手动合上建备1,高、

低压厂用电恢复正常。到保护间检查,发变组保护A柜“发电机定子接地零序电压”和“发电机定子接地三次谐波”发信、跳闸灯均亮,“主汽门关闭”和“发电机断水”灯亮。值班人员对发变组所属一次系统外观进行检查,未发现明显异常。厂用电失压期间,接于3号机UPS的机、炉所有数字监视表计均无指示。02:35,在高低压厂用电恢复正常后,3号发电机从0起升压,当定子电压升至2kV时,发电机零序电压为2V,当定子电压升至2.5kV时,中央信号盘出“定子接地”光字,于是将发电机电压降至0,断开Q4和微机非线性励磁调节器控制开关KK1、KK2,通知检修进一步查找原因。运行值班人员将发变组解备,并将发电机气体置换后,检修人员拆掉发电机5m处出线,对发电机做交直流耐压试验正常,封闭母线出线、主变及高压厂用变做交流耐压试验正常,然后逐一将发电机出线电压互感器推入工作位置,做交流耐压试验,当推入发电机出线电压互感器2YHA时,发现2YHA相泄漏电流达50mA,其它相只有1mA,遂判断为2YHA故障,将其更换并恢复发电机接线,机组重新从0升压正常。 2原因分析及对策 此次事故原因通过电气检修做交、直流耐压试验及更换发电机出线电压互感器2YHA后,发电机重新零起升压正常的情况看,可以确认为是发电机出线电压互感器2YHA相对地绝缘降低,造成发电机定子接地保护动作引起。

发电机100%定子接地保护的实现

发电机100%定子接地保护的实现 发电机能实现100%定子接地保护,采用了基波零序电压式定子接地保护和三次谐波电压构成的定子接地保护。,前者可反应发电机的机端向机内不少于85%定子绕组单相接地故障(85%~95%),后者反应发电机中性点向机端20%左右定子绕组单相接地故障(0~50%)。通过这两种保护的相互配合,达到了大容量机组100%定子接地保护的要求。 发电机定子单相接地后,接地电流经故障点、三相对地电容、三相定子绕组 而构成通路。当接地电流较大能在故障点引起电弧时,将使定子绕组的绝缘和定 子铁芯烧坏,也容易发展成危害更大的定了绕组相间或匝间短路。 第一部分是基波零序电压式定子接地保护: 保护接人的3Uo电压,取自发电机机端电压互感器开口三角绕组两端和发电机中性点电压互感器的二次侧。零序电压式定子接地保护的交流输入回路如图1所示。

第二部分是利用发电机三次谐波电动势构成的定子接地保护 由于发电机气隙磁通密度的非正旋分布和受铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在。 正常运行时,发电机中性点的三次谐波电压总是大于发电机机端的三次谐波电压。而当发电机靠中性点侧0~50%范围内有接地故障时,发电机机端的三次谐波电压大于发电机中性点的三次谐波电压。 根据发电机定子绕组中性点附近接地故障的三次谐波分布特性,保护装置取发电机中性点及机端三次谐波电压,并对其进行大小和相位的矢量比较。三次谐波定子接地保护交流接入回路如图6所示。

该保护的动作逻辑图如图7所示。

发电机定子接地保护动作跳闸分析详细版

文件编号:GD/FS-2098 (解决方案范本系列) 发电机定子接地保护动作跳闸分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

发电机定子接地保护动作跳闸分析 详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 郑州热电厂3号发电机为典型的发电机变压器组(发变组)单元接线,发电机为东方电机厂生产的QFSN-200-2型,机组于1992年投运,现处于稳定运行期。2001-11-18,3号发电机处于正常运行状态,当时机组带有功负荷125 MW,无功负荷25 Mvar,对外供热量160 t/h。 1 事故经过 凌晨01:35,3号机集控室铃响,中央信号盘发出“保护回路故障”和“故障录波器动作”光字,随即喇叭叫,中央信号盘又出“发电机定子接地”、“主汽门关闭”、“断水保护动作”、“远方跳闸动

作”、“6 kV配电装置故障”光字,发变组表计无明显冲击,发变组控制盘发电机出线开关Ⅲ建石1、灭磁开关Q7、励磁调节柜输出开关Q4绿灯闪光,除副励电压表外,发变组其它表计均无指示;厂用电盘6kVⅠ、Ⅱ段出“BZT动作”光字,6 kV高压厂用电备用电源进线开关6107,6207红灯闪光,6kV 高压厂用电备用变压器高压侧开关建备1绿灯平光,6 kVⅠ、Ⅱ段电压表指示为0,高、低压厂用电失电,集控室工作照明失去,保安电源联动正常,值班人员立即退出6107,6207联动开关,将上述跳闸开关复位后,发现Ⅲ建石1、Q7、6 kV高压厂用电工作电源进线开关6104,6204均为绿灯平光,红灯闪光,由于灯光指示异常,为防止扩大事故,在确认6104,6204断开后,于01:38,手动合上建备1,高、低压厂用电恢复正常。到保护间检查,发

发电机定子单相接地保护

发电机定子绕组单相接地保护方案综述 发布: 2009-8-07 09:59 | 作者: slrd8888 | 查看: 882次 1 前言 定子绕组单相接地故障是发电机最常见的一种故障,而目往往是更为严重的绕组内部故障发生的先兆,因此定子接地保护意义重大。目前实际应用中比较成熟的定子接地保护有基波零序电压保护、三次谐波电压保护及二者组合构成的保护,国外的发电机中性点大都是经高阻接地,较多的采用的是外加电源式的保护。近十几年微机保护的飞速发展,为新保护原理的开发提供了强大的硬件平台和广阔的软件空间。其中基于自适应技术、故障分量原理和小波变换的保护比较突出,它们有力地推动了单相接地保护技术的发展。 扩大单元接线的发电机定子接地保护迫切需要具有选择性的保护方案,由于零序方向保护自身的缺陷、基于行波原理的保护在理论和技术上尚不够成熟,因此将小波变换应用到选择性定子接地保护有着重要的意义。 2 定子绕组单相接地保护方案 发电机定子绕组单相接地时有如下特点:内部接地时,流经接地点的电流为发电机所在电压网络对地电容电流的总和,此时故障点零序电压随故障点位置的改变而改变;外部接地故障时,零序电流仅包含发电机本身的对地电容电流。这些故障信息对接地保护非常重要,下面就介绍几种定子接地保护方法。 2.1 零序电流定子接地保护 由单相接地故障特点可知,对直接连在母线上的发电机发生内部单相接地时,外接元件对地电容较大,接地电流增大超过允许值,这就是零序电流接地保护的动作条件。这种保护原理简单,接线容易。但是当发电机中性点附近接地时,接地电流很小,保护将不能动作,因此零序电流保护存在一定的死区。 2.2 基波零序电压定子接地保护

关于发电机定子绕组接地保护3U0整定的讨论

关于发电机定子绕组接地保护3U0整定的讨论 发表时间:2017-07-17T15:17:51.820Z 来源:《电力设备》2017年第8期作者:吴文宝 [导读] 摘要:本文主要叙述了大型发电机组定子接地保护的作用以及发电机定子绕组接地保护的概念 (江西省火电建设公司江西南昌 330001) 摘要:本文主要叙述了大型发电机组定子接地保护的作用以及发电机定子绕组接地保护的概念,并介绍了新疆某600MW电厂使用的定子接地保护整定方法。在各种运行条件下,对主变高压侧发生单相接地故障时耦合至发电机侧的零序电压进行分析计算,提出了发电机定子接地保护的整定建议。 关键词:发电机组;定子接地保护;3U0电容;接地电流 一、定子接地保护在大型汽轮发电机组中的地位 发电机是电力系统中最重要的设备之一,其外壳完全接地。当发电机定子绕组与铁心之间的绝缘被破坏时,就形成了定子单相接地故障。发电机定子绕组发生单相接地故障时,中性点流过的接地故障电流与中性点接地方式有关,发电机中性点接地方式的不同,对发电机定子接地保护的出口方式要求也不同,而且动作时限也是长短不一。由于现代大型发电机组在电力系统的重要性,所以大型发电机一般都装设作为发电机主要保护的100%定子接地保护,并保证该保护能够可靠正确动作,确保小异常不酿成大事故。 二、大型发电机定子接地保护的构成 我国大型发电机组大都采用单元接线方式,中性点接地方式主要采用中性点经配电变压器(二次侧接电阻)接地,电阻值较大,取为高阻接地,其电阻吸收功率大于或等于三相对地电容的无功伏安。为限制动态过电压不超过2.6倍额定相电压,接地电阻(一次值)RN′≤1/3ωCg,Cg为发电机每相对地耦合电容。 三、发电机定子绕组接地保护 (1)接地电阻定值的确定发电机中性点经配电变高阻接地,当定子绕组发生单相接地故障时,其等效的基波零序回路电路如下图所 示: 粗略估计电容容抗与中性点接地电阻(一次值)相等,根据DLT 684-2012 大型发电机变压器继电保护整定计算导则,发电机允许的接地故障电流值为1A中性点变压器变比为20000/240V,二次电阻为0.46Ω,令α=1(机端接地),IE=Iper=1A,E=UN/1.732,得

利用三次谐波电压构成的100%发电机定子接地保护的工作原理

由于发电机气隙磁通密度的非正旋分布和铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在,设以E3表示之。 为便于分析,假定: (1)把发电机每相绕组对地电容CG分成相等的两部分,每部CG/2分等效地分别集中在发电机的中性点N和机端S。 (2)将发电机端部引出线、升压变压器、厂用变压器以及电压互感器等设备的每相对地电容CS也等效的集中放在机端。 根据理论分析,在上述加设条件下,可得出下列结论: (1)当发电机中性点绝缘时,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=CG/(CG+2CS)<1 (2)当发电机中性点经消弧线圈接地时,若基波电容电流被完全补偿,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=(7CG-2CS)/9(CG+2CS)<1 (3)不论发电机中性点是否接有消弧线圈,当在距发电机中性点α(中性点到故障点的匝数占每相分支总匝数的百分比)处发生定子绕组金属性单相接地时,中性点N和机端S处的三次处的三次谐波电压恒为 UN3=αE3US3=(1-α)E3 如图所示:

从上图中可以看出,UN3=f(α)、US3=f(α)皆为线性关系,它们相交于α=0.5处;当发电机中性点接地时,α=0,UN3=0,US3=E3;当机端接地时,α=1,UN3=E3,US 3=0;当α<O.5时,恒有US3>UN3;当α>O.5时,恒有UN3>US3。 综上所述,用US3作为动作量,UN3作为制动量构成发电机定子绕组单相接地保护,且当US3>UN3时保护动作,则在发电机正常运行时保护不会误动,而在发电机中性点附近发生接地时,保护具有很高的灵敏度。用这种原理构成的发电机定子绕组单相接地保护,可以保护定子绕组中性点及其附近范围内的接地故障,对其余范围则可用反应基波零序电压的保护,从而构成了100%发电机定子绕组接地保护。

电动机接地

保护接地和保护接零是不一样的概念,要区别对待。为保证人身和设备安全,各种电气设备均应根据国家标准GB14050《系统接地的形式及安全技术要求》进行保护接地。不过建议楼主仔细询问电气专业人员,最好问问有经验的电工或者电气工程师。。有理论,还得有实践经验。 1.保护接地:在中性点不接地的三相电源系统中,当接到这个系统上的某电气设备因绝缘损坏而使外壳带电时,如果人站在地上用手触及外壳,由于输电线与地之间有分布电容存在,将有电流通过人体及分布电容回到电源,使人触电。保护接地就是把电气设备的金属外壳用足够粗的金属导线与大地可靠地连接起来。电气设备采用保护接地措施后,设备外壳已通过导线与大地有良好的接触,则当人体触及带电的外壳时,人体相当于接地电阻的一条并联支路。由于人体电阻远远大于接地电阻,所以通过人体的电流很小,避免了触电事故。 2.保护接零:指在中性点接地的系统中,将电气设备在正常情况下不带电的金属部分与零线作良好的金属连接。当某一相绝缘损坏使相线碰壳,外壳带电时,由于外壳采用了保护接零措施,因此该相线和零线构成回路,单相短路电流很大,足以使线路上的保护装置(如熔断器)迅速熔断,从而将漏电设备与电源断开,从而避免人身触电的可能性。保护接零用于380/220V、三相四线制、电源的中性点直接接地的配电系统。在电源的中性点接地的配电系统中,只能采用保护接零,如果采用保护接地则不能有效地防止人身触电事故。熔断器熔体的额定电流是根据被保护设备的要求选定的,如果设备的容易较大,为了保证设备在正常情况下工作,所选用熔体的额定电流也会较大,如在30A接地短路电流的作用下,将不会熔断,外壳带电的电气设备不能立即脱离电源,所以在设备的外壳上长期存在对地电压Ud,其值为:Ud=30X4=120V,这是很危险的。如果保护接地电阻大于电源中性点接地电阻,设备外壳的对地电压还要高,这时危险更大。 3.电源电性点不接地的三相四线制配电系统中,不允许用保护接零,而只能用保护接地。在电源中性点接地的配电系统中,当一根相线和大地接触时,通过接地的相线与电源中性点接地装置的短路电流,可以使熔断器熔断,立即切断发生故障的线路。但在中性点不接地的配电系统中,任一相发生接地,系统虽仍可照常运行,但这时大地与接地的相线针等电位,则接在零线上的用电设备外壳对地的电压将等于接地的相线从接地点到电源中性点的电压值,是非常危险的。 4.在采用保护接零的系统中,还要在电源中性点进行工作接地和在零线的一定间隔距离及终端进行重复接地。在三相四线制的配电系统中,将配电变压器副边中性点通过接地装置与大地直接连接叫工作接地。将电源中性点接地,可以降低每相电源的对地电压,当人触及一相电源时,人体受到的是相电压。而在中性点不接地系统中,当一根相线接地,人体触及另一根相线时,作用于人体的是电源的线电压,其危险性很大。 所以一个供配电系统中的重复接地到底有无必要以及采用哪种方式,不是那么简单的,对楼主这台电机,还得看整个配电系统的接地和保护是如何设计的,看来是设计成重复接地的,如此则电源中性点进行了工作接地,重复接地不是没有必要,而是必须这么做才更安全和符合规范

发电机保护配置

发电机保护基本原理 发电机可能发生的故障 定子绕组相间短路 定子绕组匝间短路 定子绕组一相绝缘破坏引起的单相接地 励磁回路(转子绕组)接地 励磁回路低励(励磁电流低于静稳极限对应的励磁电流)、失磁 发电机主要的不正常工作状态 过负荷 定子绕组过电流 定子绕组过电压 三相电流不对称 过励磁 逆功率 失步、非全相、断路器出口闪络、误上电等 发电机的主要保护和作用 纵差保护 作用:发电机及其引出线的相间短路保护 规程:1MW以上发电机,应装设纵差保护。对于发电机变压器组:当发电机与变压器间有断路器时,发电机装设单独的纵差保护;当发电机与变压器间没有断路器时,100MW及以下发电机可只装设发电机变压器组公用纵差保护;100MW及以上发电机,除发电机变压器组公用纵差保护还应装设独立纵差保护,对于200MW及以上发电机变压器组亦可装设独立变压器纵差保护。 与发变组差动区别:发变组差动需要考虑厂用分支,要考虑涌流制动、各侧平衡调节。 纵向零序电压 作用:发电机匝间短路(也能反映相间短路)。 规程:50MW以上发电机,当定子绕组为星形接线,中性点只有三个引出端子时,根据用户和制造厂的要求,也可装设专用的匝间短路保护。 定子接地 作用:定子绕组单相接地是发电机最常见的故障,由于发电机中心点不接地或经高阻接地,定子绕组单相接地并不产生大的故障电流。 常用保护方式:基波零序电压(90%)、零序电流、三次谐波零序电压(100%) 定子接地 规程:与母线直接连接的发电机:当单相接地故障电流(不考虑消弧线圈的补偿作用)大于允许值时,应装设有选择性的接地保护装置。保护装置由装于机端的零序电流互感器和电流继电器构成,其动作电流躲过不平衡电流和外部单相接地时发电机稳态电容电流整定,接地保护带时限动作于信号,但当消弧线圈退出运行或由于其它原因,使残余电流大于接地电流允许值时应切换为动作于停机。 发电机变压器组:对100MW以下发电机应装设保护区不小于90%的定子接地保护,对100MW及以上的发电机应装设保护区为100%的定子接地保护。保护装置带时限动作于信号必要时也可动作于停机。 励磁回路接地保护 作用:励磁回路一点接地故障对发电机并未造成危害。但若继而发生两点接地将严重危害发电机安全。 实现方法:采用乒乓式原理。 规程:1MW及以下水轮发电机,对一点接地故障宜装设定期检测装置,1MW以上水轮发电机应装设一点接地保护装置。 100MW以及汽轮发电机,对一点接地故障可采用定期检测,装置对两点接地故障应装设两点接地保护装置。 转子水内冷汽轮发电机和100MW及以上的汽轮发电机,应装设励磁回路一点接地保护装置,并可装设两点接地保护装置,对旋转整流励磁的发电机宜装设一点接地故障定期检测装置。 一点接地保护带时限动作于信号两点接地保护应带时限动作于停机。 失磁保护 作用:为防大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统

发电机定子接地3W

发电机3W定子接地保护 一、保护原理 保护反应发电机机端和中性点侧三次谐波电压大小和相位,反应发电机中性点向机内20%或100%左右的定子绕组单相接地故障,与发电机3U0定子接地保护联合构成100%的定子接地保护。见图一: 图一发电机定子接地3W保护逻辑 二、一般信息

K1,K2,K3整定方法及试验:开机带负荷整定 2.5投入保护 开启液晶屏的背光电源,在人机界面的主画面中观察此保护是否已投入。(注:该保护投入时其运行指示灯是亮的。)如果该保护的运行指示灯是暗的,在“投退保护”的子画面点击投入该保护。 2.6参数监视 点击进入发电机3W定子接地保护监视界面,可监视保护的整定值、动作量和制动量;待整定动作量和待整定制动量,以及3W保护的自动整定界面。 二、保护动作特性测试 发电机3W定子接地K值整定 附图 ①待发电机并网后,最好带20%~30%的负荷,拔掉3W保护的投退压板;

②中性点先不挂电阻,带20%~30%的负荷,单击“自动计算K1/K2一次”按钮,此时待整 定三次谐波动作量接近于0,点击“设定允许修改定值状态”按钮,改变“禁止修改定值状态”为“允许”,单击“将自动计算K1K2值写入保护装置”按钮,将K1、K2定值写入保护装置; ③带20%~30%的负荷时,在中性点挂上电阻(建议:水电机组1~3K,火电机组3~5K), 单击K3调整按钮(K3下方的四个按钮分别表示增大、减小、粗调、细调),将“待整定三次谐波动作量”调整略大于“待整定三次谐波制动量”,单击“将自动计算K1K2值写入保护装置”按钮,将K3定值写入保护装置; ④注意:此时千万不要按“自动计算K1/K2一次”按钮及调整K1 、K2的值; ⑤撤除电阻,调试完毕。 ⑥如果采用绝对值比较式原理,写入定值K1=1,K2=0;依照步骤三、四和五整定K3 三、动作时间定值测试 在发电机机端TV开口三角电压侧突然加1.5倍三次谐波定值电压,记录动作时间。 四、TV断线闭锁逻辑测试 在发电机机端TV开口三角电压端子侧加入三次谐波电压,并超过整定值,定子接地3W信号亮(一般只发信不跳闸);在发电机机端TV加三相不平衡电压,使发TV断线信号,定子接地3W信号可复归,TV断线信号灯亮。 保护逻辑是否正确(打“√”表示):正确□错误□ 保护出口方式是否正确(打“√”表示):正确□错误□ 保护信号方式是否正确(打“√”表示):正确□错误□

关于发电机定子接地保护问题的探讨

第2期(总第97期) 2001年4月 山西电力技术 SHANXI ELECTRIC POWER No 12(Ser 197)Apr 12001 关于发电机定子接地保护问题的探讨 郑一凡 (山西大同热电有限责任公司,山西大同 037039) 摘要 :根据QFS —60—2型双水内冷发电机特点,对其定子接地保护典型设计回路中存在的问题以及应采取的改进措施进行了分析和讨论。关键词:发电机;定子保护;探讨 中图分类号:TM 311 文献标识码:B 文章编号:100526742(2001)022******* 1 发电机定子绕组单相接地的特点 由于发电机中性点不直接接地,因此它具有一般不接地系统单相短路的共性。不同之处在于故障点的零序电压将随定子绕组接地点的位置而改变。 例如,当距发电机中性点a 处发生单相(如A 相)接地故障时(图1),则各相机端对地电压为: 图1 发电机内部单相接地时的电流分布 U A d =(1-a )E A , U Bd =E B -aE A ,U Cd =E C -aE A 。 所以,故障点的零序电压为: U d0(a )=1 3(U A d +U Bd +U Cd )=-aE A =aU Υ, 故障点处总接地电容电流为(分析略): I jd ∑(a )=j 3Ξ(C 0f +C 0∑)aU Υ。 可见,当发电机内部单相接地时,流过零序电流互感器LH 0一次侧的零序电流为(分析略): 3I 0=j 3ΞC 0∑aU Υ, 式中:a ——发电机中性点到故障点的绕组占全 部绕组的百分数; 收稿日期:2001201221 作者简介:郑一凡(19562),男,山西山阴人,1983年毕业于太原理 工大学热能动力专业,高级工程师,总经理。 C 0∑——除本发电机以外的发电机电压网络 每相对地总电容; C 0F ——发电机每相对地电容。 2 定子接地保护 由于发电机的外壳是接地的,因此定子绕组因绝缘破坏而引起单相接地就比较普遍。当定子绕组发生单相接地时,从以上分析可以看出,有电流流过故障点,其值决定于定子绕组的接地电容电流和与发电机有电联系的电网接地电容电流。当接地电流较大且产生电弧时,将使绕组绝缘和定子铁芯烧坏。因此规程规定:当接地电流等于或大于5A 时,定子绕组接地保护应动作跳闸。211 零序电压保护 发电机定子绕组任意点单相接地时,在定子回路各点均有零序电压aU Υ,因此可以根据aU Υ的出现与否来构成零序电压保护(图2)。 图2 零序电压保护原理 正常运行时,由于发电机相电压中含有三次谐波电压,当变压器高压侧发生单相接地故障时,由于变压器高、低压绕组之间存在耦合电容,都会出现零序电压。为了保证动作的选择性,保护装置的整定值必须躲过上述电压的影响,继电器的动作电压一般整定在15V ~30V 。按上述条件,保护装置

相关主题
文本预览
相关文档 最新文档