当前位置:文档之家› 培优班第三讲 相似三角形性质和判定2

培优班第三讲 相似三角形性质和判定2

培优班第三讲   相似三角形性质和判定2
培优班第三讲   相似三角形性质和判定2

第三讲 相似三角形性质和判定2

【例1】如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 是中线,AE ⊥BD ,交BC 于点E ,求证:BE =2EC 。

【例2】如图,梯形ABCD 中,AD ∥BC (AD

6

=?,则△AOD 与△BOC 的周长之比是__________________。

【巩固】1、如图,在□ABCD 中,E 为CD 上一点,DE :CE =2:3,连结AE 、 BE 、BD ,且AE 、BD 交于点F ,则=???ABF EBF DEF S S S ::( ) A .4:10:25 B .4:9:25 C .2:3:5 D .2:5:25

2、如图,已知DE ∥BC ,CD 和BE 相交于O ,若16:9:0=??CO B E D S S ,则AD :DB =____________。

【例3】已知如图,在△ABC 中,∠BAC =90°,AD ⊥BC ,E 为AC 中点,求证:DF AC AF AB ?=?。

E

D

C

B

A

O

D

C

B

A

F

E

D

C

B

A

F

E

D

C

B

A

O

E

D

C B

A

【例4】已知如图,AE 为△ABC 的角平分线,D 为AB 上一点,并且∠ACD =∠B ,CD 交AE 于F ,求证:BE FD CF CE ?=?。

【例5】如图,△ABC 中,点DE 在边BC 上,且△ADE 是等边三角形,∠BAC=120°

求证: (1)△ADB ∽△CEA; (2)DE 2=BD ·CE;

【例6】如图,已知AB ⊥BD ,CD ⊥BD .

(1)若AB =9,CD =4,BD =10,请问在BD 上是否存在P 点,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?若存在,求BP 的长;若不存在,请说明理由;

(2) 若AB=9,CD=4,BD=15,请问在BD 上存在多少个P 点,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?并求BP 的长;

F

E

D

C

B

A

培优相似辅导专题训练附答案

一、相似真题与模拟题分类汇编(难题易错题) 1.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题: (1)求证:△BEF∽△DCB; (2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值; (3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由; (4)当t为何值时,△PQF为等腰三角形?试说明理由. 【答案】(1)解:证明:∵四边形是矩形, 在中, 分别是的中点, (2)解:如图1,过点作于,

(舍)或秒 (3)解:四边形为矩形时,如图所示: 解得: (4)解:当点在上时,如图2,

当点在上时,如图3, 时,如图4, 时,如图5, 综上所述,或或或秒时,是等腰三角形. 【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。(2)过点Q作QM⊥EF,易证QM∥BE,可证得△QMF∽△BEF,得出对应边成比例,可求出QM的值,再根据△PQF的面积为0.6cm2,建立关于t的方程,求解即可。 (3)分情况讨论:当点 Q 在 DF 上时,如图2, PF=QF;当点 Q 在 BF 上时, PF=QF,如图3;PQ=FQ 时,如图4;PQ=PF 时,如图5,分别列方程即可解决问题。

九年级培优圆与相似辅导专题训练含答案

九年级培优圆与相似辅导专题训练含答案 一、相似 1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧). (1)求函数y=ax2+bx+c的解析式; (2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率; (3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的 Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由. 【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2, 把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4, ∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4 (2)解:∵y=x2+2x+1=(x+1)2, ∴A(﹣1,0), 当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0); 当x=0时,y=﹣x2+4=4,则B(0,4), 从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB, ∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 , ∴△BCD为等腰三角形, ∴构造的三角形是等腰三角形的概率=

(3)解:存在, 易得BC的解析是为y=﹣2x+4,S△ABC= AC?OB= ×3×4=6, M点的坐标为(m,﹣2m+4)(0≤m≤2), ①当N点在AC上,如图1, ∴△AMN的面积为△ABC面积的, ∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1, 当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4, ∴tan∠MAC= =4; 当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2, ∴tan∠MAC= =1; ②当N点在BC上,如图2, BC= =2 , ∵BC?AN= AC?BC,解得AN= , ∵S△AMN= AN?MN=2,

中考数学培优(含解析)之圆与相似及详细答案.docx

中考数学培优 (含解析 )之圆与相似及详细答案 一、相似 1.如图,在四边形ABCD 中, AD//BC,, BC=4, DC=3, AD=6.动点P 从点 D 出 发,沿射线 DA 的方向 ,在射线 DA 上以每秒 2 两个单位长的速度运动,动点发,在线段 CB 上以每秒 1 个单位长的速度向点 B 运动,点 P、 Q 分别从点 Q从点C D,C 同时出发 出 ,当 点 Q 运动到点 B 时,点 P 随之停止运动.设运动的时间为t(秒 ). ( 1)设的面积为,直接写出与之间的函数关系式是________(不写取值范围) . (2)当 B,P,Q 三点为顶点的三角形是等腰三角形时,求出此时的值. (3)当线段PQ 与线段 AB 相交于点O,且 2OA=OB 时,直接写出=________.(4)是否存在时刻,使得若存在,求出的值;若不存在,请说明理由 . 【答案】(1) (2)解:如图1,过点 P 作 PH⊥ BC 于点 H, ∴∠ PHB=∠ PHQ=90 ,° ∵∠ C=90 ,°AD∥ BC, ∴∠ CDP=90 ,° ∴四边形 PHCD是矩形, ∴PH=CD=3, HC=PD=2t, ∵CQ=t, BC=4, ∴H Q=CH-CQ=t,BH=BC-CH=4-2t,BQ=4-t, ∴BQ2=,BP2=,PQ2=, 由 BQ2=BP2可得:,解得:无解; 由 BQ2=PQ2可得:,解得:; 由 BP2= PQ2可得:,解得:或, ∵当时, BQ=4-4=0,不符合题意,

∴综上所述,或; (3) (4)解:如图 3,过点 D 作 DM∥ PQ 交 BC的延长线于点 M, 则当∠ BDM=90°时, PQ⊥ BD,即当 BM2=DM2+BD2时, PQ⊥ BD, ∵AD∥ BC, DM∥ PQ, ∴四边形 PQMD 是平行四边形, ∴Q M=PD=2t , ∵QC=t, ∴CM=QM-QC=t, ∵∠ BCD=∠MCD=90 °, ∴BD2=BC2+DC2=25, DM2=DC2 +CM2=9+t 2, ∵B M2=(BC+CM)2=(4+t)2, ∴由 BM2=BD2+DM2可得:,解得:, ∴当时,∠ BDM=90 °, 即当时, PQ⊥ BD. 【解析】【解答】解:(1)由题意可得BQ=BC-CQ=4-,t点 P 到 BC 的距离 =CD=3, ∴S△PBQ= BQ × 3=; ( 3 )解:如图2,过点 P 作 PM⊥ BC交 CB的延长线于点M , ∴∠ PMC=∠ C=90 ,° ∵AD∥ BC, ∴∠ D=90 ,°△ OAP∽ △ OBQ,

中考数学备考之圆与相似压轴突破训练∶培优 易错 难题篇含答案

中考数学备考之圆与相似压轴突破训练∶培优易错难题篇含答案 一、相似 1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC. (1)求证:BD是⊙O的切线; (2)求证:CE2=EH?EA; (3)若⊙O的半径为,sinA= ,求BH的长. 【答案】(1)证明:如图, ∵∠ODB=∠AEC,∠AEC=∠ABC, ∴∠ODB=∠ABC, ∵OF⊥BC, ∴∠BFD=90°, ∴∠ODB+∠DBF=90°, ∴∠ABC+∠DBF=90°, 即∠OBD=90°, ∴BD⊥OB, ∴BD是⊙O的切线 (2)证明:连接AC,如图2所示: ∵OF⊥BC, ∴, ∴∠CAE=∠ECB, ∵∠CEA=∠HEC,

∴△CEH∽△AEC, ∴, ∴CE2=EH?EA (3)解:连接BE,如图3所示: ∵AB是⊙O的直径, ∴∠AEB=90°, ∵⊙O的半径为,sin∠BAE= , ∴AB=5,BE=AB?sin∠BAE=5× =3, ∴EA= =4, ∵, ∴BE=CE=3, ∵CE2=EH?EA, ∴EH= , ∴在Rt△BEH中,BH= . 【解析】【分析】(1)要证BD是⊙O的切线,只需证∠OBD=90°,因为∠OBC+∠BOD=90°,所以只须证∠ODB=∠OBC即可。由圆周角定理和已知条件易得∠ODB=∠ABC,则∠OBC+∠BOD=90°=∠ODB+∠BOD,由三角形内角和定理即可得∠OBD=90°; (2)连接AC,要证CE2=EH?EA;只需证△CEH∽△AEC,已有公共角∠AEC,再根据圆周角定理可得∠CAE=∠ECB,即可证△CEH∽△AEC,可得比例式求解; (3)连接BE,解直角三角形AEB和直角三角形BEH即可求解。 2.如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.

相似三角形的性质与判定讲义)

相似三角形的性质与判 定讲义) -CAL-FENGHAI.-(YICAI)-Company One1

相似三角形的性质与判定讲义 【知识点拨】 一、相似三角形性质 (1)相似三角形对应角相等,对应边成比例. (2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比. (4)相似三角形面积的比等于相似比的平方. (5)相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等 二、 相似三角形的等价关系 (1)反身性:对于任一ABC ?有ABC ?∽ABC ?. (2)对称性:若ABC ?∽'''C B A ?,则'''C B A ?∽ABC ?. (3)传递性:若ABC ?∽C B A '?'',且C B A '?''∽ C B A ''''''?,则ABC ?∽C B A ''''''?. 三、三角形相似的判定方法 1、定义法:对应角相等,对应边成比例的两个三角形相似. 2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似. 4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似. 6、判定直角三角形相似的方法: (1)以上各种判定均适用. (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. (3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 公式 Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则有射影定理如下: (1)(AD )2=BD ·DC ,(2)(AB )2=BD ·BC ,(3)(AC )2=CD ·BC 。 【例题精讲】: E D C B A

初中相似三角形性质与判定复习 (1)

一、基础训练 1、如图,在△ABC 中,点D 在边AB 上,满足条件 时,△ADC ∽△ACB 。 E D C B A 第1题 第3题 第4题 第5题 10,则后一个三角形的面积2),如果点C 在X 轴上(C 与A 不重合), B ,O , C 组成的三角形与△ABC 相似。 ,CP:DP=3:4,则三角形APB 的面积:平行四边 : : :S △BDC =1:3,那么S △ODC :S △ABC 的值 是 二、例题精讲 1、如图,AB ∥EF ∥CD ,若AB=6cm ,CD=9cm ,求EF 的长。 2、如图,在四边形ABCD 中,E 是AD 上一点,EC ∥AB ,EB ∥DC , (1)△ABE 与△ECD 相似吗?为什么? (2)设△ABE 的边BE 上的高为h 1,△ECD 的边CD 上的高为h 2,△ABE 的面积为3,△ECD 的面积为1,求2 1 h h 的值及△BCE 的面积。 E F D C B A P D C B A O D C B A E D C B A

3、如图,已知直角三角形的铁片ABC 的两条直角边BC 、AC 的长分别为3、4,按图示所采用两种方法,各剪一块正方形的铁片,试比较哪一种方法剪出的正方形的面积较大; 4、如图,在△PAB 中,点C 、D 在边AB 上,PC=PD=CD ,∠APB=120°。 (1)△APC 与△PBD 相似吗?为什么? (2)CD 是AC 与BD 的比例中项吗? 5、如图,在ABC △中,1AB AC ==,点D ,E 在直线BC 上运动,设BD x =,CE y =. (1)如果30BAC ∠= ,105DAE ∠= ,试确定y 与x 之间的函数关系式; (2)如果BAC ∠的度数为α,DAE ∠的度数为β,当αβ,满足怎样的关系式时,(1)中y 与x 之间的函数关系式还成立,试说明理由. B C E A D P D C B A

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

相似三角形培优训练含答案

相似三角形分类提高训练 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动 点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作 EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=2.5s时,求△CPQ的面积; ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着 AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的 速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.

相似三角形的判定与性质

比例线段 知识要点: 一、比例线段 1.线段的比:如果选用同一长度单位量得两条线段a ,b 的长度分别是m ,n ,那么就说这两条线段的比是a:b=m:n ,或写成 ,其中a 叫做比的前项;b 叫做比的后项。 2.成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段. 3.比例的项:已知四条线段a,b,c,d,如果 ,那么a,b,c,d,叫做组成比例 的项,线段a,d 叫做比例外项,线段b,c叫做比例内项,线段d还叫做a,b,c的第四比例项. 4.比例中项:如果作为比例线段的内项是两条相同的线段,即a:b=b:c 或,那么线段b叫 做线段a和c的比例中项. 二、比例的性质 (1)比例的基本性质: (2)反比性质: (3)更比性质: 或 (4)合比性质: (5)等比性质: 且 三、黄金分割 黄金分割的定义: 在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC>BC ). 如果 AC BC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的 比叫做黄金比,其中 618.0≈AB AC . 四、平行线分三角形两边成比例 平行线分三角形两边成比例的性质:平行于三角形一边的直线截其他两边,所得对应线段成比例。

1.由平行线产生比例式 基本图形(1): 若l1//l2//l3,则或或或 基本图形(2): 若DE//BC,则或或或 基本图形(3): 若AC//BD,则或或或 2.由比例式产生平行线段 基本图形(2):若, , , ,, 之一成立,则DE//BC。 基本图形(3):若, , , , , 之一成立,则AC//DB。 例1、已知: a:b:c=3:5:7且2a+3b-c=28, 求3a-2b+c的值。 例2、若, 求的值。 例3、如图,在□ABCD中,E为AB中点,,EF,AC相交于G,求。

相似三角形培优难题集锦(含答_案)

一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F, G是EF中点,连接DG.设点D 运动的时间为t秒. (1)当t为何值时,AD=AB,并 求出此时DE的长度; (2)当△DEG与△ACB相似时, 求t的值. 2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它 们都停止移动.设移动的时间为t 秒. (1)①当t=2.5s时,求△CPQ的 面积; ②求△CPQ的面积S(平方米)关 于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中 , ACB=90°,AC=6,BC= (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中, BA=BC=20cm,AC= 30cm,点P从A点出发, 沿着AB以每秒4cm的速 度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

相似三角形的判定和性质

相似三角形的判定和性质 知识讲解 1. 比例线段:对于四条线段a ,b ,c ,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等, 即a c b d =(或a:b=c:d )那么这四条线段叫做成比例线段,简称比例线段. 在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项. 如果作为比例内项的是两条相同的线段,即或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项. 比例的性质 (1)基本性质 ①a :b=c :d ad=bc ②a :b=b :c (2)更比性质(交换比例的内项或外项) (交换内项) (交换外项) (同时交换内项和外项) (3)反比性质(交换比的前项、后项): (4)合比性质: (5)等比性质: b a n f d b m e c a n f d b n m f e d c b a =++++++++?≠++++==== )0( 黄金分割 把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC= AB 0.618AB c b b a =?a c b =?2 d b c a =?= d c b a a c b d =a b c d =c d a b d c b a =?=d d c b b a d c b a ±=±?=2 1 5- ≈

如图,若AB PB PA ?=2 ,则点P 为线段AB 的黄金分割点. 2. 平行线分线段成比例定理: ① 定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3. AB BC =DE EF ;AB AC =DE DF ; BC AC =EF DF . ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例. ③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 3. 相似多边形的性质:相似多边形的对应角相等,对应边的比相等. 4. 相似三角形的概念:对应角相等,对应边之比相等的三角形叫做相似三角形. 5. 相似三角形的性质 (1)对应角相等,对应边的比相等; (2)对应高的比,对应中线的比,对应角平分线的比都等于相似比; (3)相似三角形周长之比等于相似比;面积之比等于相似比的平方. 6. 相似三角形的预备定理: 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似. 7. 相似三角形的判定定理: (1)三角形相似的判定方法与全等的判定方法的联系列表如下:

苏科版九年级数学下册培优培优相似三角形的判定

第12讲相似三角形的判定 【思维入门】 1.如图4-12-1,△ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是() A.1B.2C.3D.4 图4-12-1 图4-12-2 2.如图4-12-2,M是Rt△ABC的斜边BC上异于B,C的一定点,过点M作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有() A.1条B.2条C.3条D.4条 3.如图4-12-3,在?ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶CF等于() A.3∶2 B.3∶1 C.1∶1 D.1∶2 图4-12-3 图4-12-4 4.如图4-12-4,在?ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形____. 5.如图4-12-5,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转

得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为____. 图4-12-5 6.如图4-12-6,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G. (1)求证:△ADE≌△CFE; (2)若GB=2,BC=4,BD=1,求AB的长. 图4-12-6 【思维拓展】 7.以下三角形中,与图4-12-7中的三角形相似的是() 8.如图4-12-8①,在△ACB中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F. (1)求证:DE=EF;

(2)如图②,连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A +∠DGC. 图4-12-8 9.如图4-12-9,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CE于点E. (1)求证:△ACD≌△CBE; (2)已知AD=4,DE=1,求EF的长. 图4-12-9 10.如图4-12-10,等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P. (1)若AE=CF, ①求证:AF=BE,并求∠APB的度数;

2020-2021九年级培优相似辅导专题训练及详细答案

2020-2021九年级培优相似辅导专题训练及详细答案 一、相似 1.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒. (1)求抛物线的解析式和对称轴; (2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由; (3)设四边形DECO的面积为s,求s关于t的函数表达式. 【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入 得:,解得:, ∴抛物线的解析式为:, 对称轴为:直线x=﹣; (2)解:存在,∵AD=2t, ∴DF=AD=2t, ∴OF=4﹣4t, ∴D(2t﹣4,0), ∵直线AC的解析式为:,∴E(2t﹣4,t), ∵△EFC为直角三角形,分三种情况讨论: ①当∠EFC=90°,则△DEF∽△OFC, ∴,即,解得:t= ; ②当∠FEC=90°,

∴∠AEF=90°, ∴△AEF是等腰直角三角形, ∴DE= AF,即t=2t, ∴t=0,(舍去), ③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或; (3)解:∵B(1,0),C(0,2), ∴直线BC的解析式为:y=﹣2x+2, 当D在y轴的左侧时,S= (DE+OC)?OD= (t+2)?(4﹣2t)=﹣t2+4 (0<t<2); 当D在y轴的右侧时,如图2, ∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)?OD= (﹣8t+10+2)?(4t﹣4),即 (2<t<). 综上所述: 【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。 (2)根据题意分别求出AD、DF、OF的长,表示出点D的坐标,利用待定系数法求出直线BC的函数解析式,表示出点E的坐标,再分三种情况讨论△EFC为直角三角形:①当∠EFC=90°,则△DEF∽△OFC,根据相似三角形的性质,列出关于t的方程求解即可; ②∠FEC=90°,∠AEF=90°,△AEF是等腰直角三角形求出t的值即可;③当∠ACF=90°,则AC2+CF2=AF2,建立关于t的方程求解即可,从而可得出答案。 (3)求得直线BC的解析式为:y=-2x+2,当D在y轴的左侧时,当D在y轴的右侧时,如图2,根据梯形的面积公式即可得到结论。 2.已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点

初三相似三角形的判定培优同步讲义

初三相似三角形的判定培优同步讲义 学科教师辅导讲义 体系搭建 一、知识框架 二、知识概念 (一)相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形. 1、相似三角形是相似多边形中的一种; 2、应结合相似多边形的性质来理解相似三角形; 3、相似三角形应满足形状一样,但大小可以不同; 4、母子型:已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 5、斜交型: 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。 (有“反 A 共 角型”、“反 A 共角共边型”、 “蝶型”)b5E2RGbCAP 6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂 直型”) 考点 1:三角形相似判定方法的运用 例 1、如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于点 D ,则图中相似三角形共有( ) A .1 对 B .2 对 C .3 对 D .4 对 p1EanqFDPw 例 2、如图,下列条件不能判定△ADB ∽△ABC 的是( ) A .∠ABD=∠ACB B .∠ADB=∠ABCDXDiTa9E3d C .AB 2 =AD?AC D .= 典例分析 A B C D A B C D E 12 A

A B B C C D D E E 124 1 2 E C B D A B C D E A E
( )
A D C B 例 3、已知:在梯形 ABCD 中,AD∥BC,∠ABC=90°,BC=2AD,E 是 BC 的中点,连接 AE、 AC.RTCrpUDGiT (1)点 F 是 DC 上一点,连接 EF,交 AC 于点 O(如图 1),求证:△AOE∽△COF; (2)若点 F 是 DC 的中点,连接 BD,交 AE 与点 G(如图 2),求证:四边形 EFDG 是菱形. 例 4、如图,在△ABC 中,AB=AC=1,BC=,在 AC 边上截取 AD=BC,连接 BD. (1)通过计算,判断 AD2 与 AC?CD 的大小关系; (2)求∠ABD 的度数. 考点 2:网格图中相似三角形的判定 例 1、下列四个三角形中,与图中的三角形相似的是() A.B.C.D. 实战演练 课堂狙击 1、下列命题中,是真命题的为() A.锐角三角形都相似

相似三角形性质与判定复习

相似三角形复习 【知识要点】 1、相似三角形的定义 三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 2、相似三角形的判定方法 1.两个三角形相似,一般说来必须具备下列六种图形之一: 2. 两个角对应相等的两个三角形__________. 3. 两边对应成_________且夹角相等的两个三角形相似. 4. 三边对应成比例的两个三角形___________. 性质: ? ? ? ? ? ? ? 比的平方 、对应面积比等于相似 比 、对应周长比等于相似 、对应边成比例 、对应角相等 4 3 2 1 判定: ? ? ? ? ? 、三边对应成比例 夹角相等 、两边对应成比例,且 、两角对应相等 3 2 1 1.相似比:相似三角形对应边的比叫做相似比。当相似比等于1时,这两个三角形不仅形状相同,而且 大小也相同,这样的三角形我们就称为全等三角形。全等三角形是相似三角形的特例。 2.相似三角形的判定:①两角对应相等,两三角形相似。 ②两边对应成比例,且夹角相等,两三角形相似。 ③三边对应成比例,两三角形相似。 3.相似三角形的性质:①相似三角形的对应角相等。 ②相似三角形的对应线段(边、高、中线、角平分线)成比例。 ③相似三角形的周长比等于相似比,面积比等于相似比的平方。

F E D C B A 【典型例题】 1、如图在4×4的正方形方格中,△ABC 和△DEF 的顶点都在长为1的小正方形顶点上. (1)填空:∠ABC=______,BC=_______. (2)判定△ABC 与△DEF 是否相似? 2、如图所示,D 、E 两点分别在△ABC 两条边上,且DE 与BC 不平行,请填上一个你认为适合的条件_________, 使得△ADE ∽△ABC .并证明 3、如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、AC 边上,DE=DF ,∠EDF =∠A . (1)求证: BC AB EF DE =.(2)证明:BDE ?与EFC ?相似。 4、已知,如图,CD 是Rt ABC ?斜边上的中线,DE AB ⊥交BC 于F ,交AC 的延长线于E , 说明:⑴ ADE ?∽FDB ?; ⑵DF DE CD ?=2. 5、已知:如图,□AB C D 中E 为AD 的中点,AF :AB =1:6,EF 与AC 交于M 。求:AM :AC 。 A D B F

相似三角形培优训练(含答案)之令狐文艳创作

相似三角形分类提高训练 令狐文艳 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC 交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点 到达终点时,它们都停止移动.设移动的时间为t 秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的 面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D 在边AB上运动,DE平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q 从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x 为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB 边从A开始向点B以2cm/s的速度移动;点Q沿DA边从 点D开始向点A以1cm/s的速度移动.如果P、Q同时出 发,用t(s)表示移动的时间(0<t<6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t 为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

相似三角形的判定+性质+经典例题分析

相似形(一) 一、比例性质 1.基本性质: bc ad d c b a =?=(两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.合比性质: d d c b b a d c b a ±= ±?=(分子加(减)分母,分母不变) . 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 谈重点:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立. 5.黄金分割: ○1内容 ○2尺规作图作一条线段的黄金分割点 经典例题回顾: 例题1.已知a 、b 、c 是非零实数,且 k c b a d d a b c d c a b d c b a =++=++=++=++,求k 的值. 例题2.已知 111 x y x y +=+,求y x x y +的值。

板块二、新课讲解 知识点一、相似形的概念 概念:具有相同形状的图形叫相似图形. 谈重点: ⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关. ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况. ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 知识点二、平行线分线段成比例定理 ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则,,,…AB BC DE EF AB AC DE DF BC AC EF DF === ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 ③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。 ○推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ; 知识点三、相似三角形的判定 判定定理1:两角对应相等,两三角形相似. 符号语言: 拓展延伸:(1)有一组锐角对应相等的两个直角三角形相似。

最新《相似三角形》判定与性质测试卷

《相似三角形》判定与性质测试卷 一、细心填一填(共30分) 1.已知:如图,在ABC △中,DE ∥BC ,DE 分别与AB 、AC 相交于D 、E ,:1:3AD AB =.若2DE =,则BC =_________. 第1题图 第2题图 第6题图 第7题图 2.在□ABCD 中,E 为CD 上一点,连接AE 、BD,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :AB=_________. 3.已知789x y z ==,则x y z x z +++的值为 . 4.在一张由复印机复印出来的纸上,一个多边形图案的一条边由原来的1cm 变成2cm ,那么这次复印出来的多边形图案面积是原来的 . 5.已知,,,a b c d 是成比例线段,且3,6,15,a cm b cm c cm d ===则= . 6.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米. 7.如图,∠DAB=∠CAE,请你再补充一个条件___ (写一个即可)使得△ABC ∽△ADE. 8.在ΔABC 中,AB =4,BC =9,AC =8,在AC 上取一点M ,当AM 的长为 时,ΔAMB∽ΔABC. 9.如图,已知L 1//L 2//L 3,下列比例式中不成立的是 . (填序号及可) ① BC CE DF AD = ②AF BC BE AD = ③CE AD DF BC = ④CE BE DF AF = 第9题图 第11题图 第13题图 10.已知AD 为Rt △ABC 斜边BC 上的高,且AB=15cm ,BD=9cm ,则AD= ,CD= . 二、选择题 (每题3分,共30分) 11.如图,在Rt △ABC 中,AD ⊥BC 与D ,DE ⊥AB 与E ,若AD=3,DE=2,则AC=( ) A 、2 21 B 、215 C 、29 D 、15 12.下列三角形中,一定相似的是( ) A .两个等腰三角形 B .两个直角三角形 C .两个等边三角形 D .两个钝角三角形

湘教版九年级数学上《相似三角形判定与性质》综合培优题

A B C P 九年级上培优五 1、如图RtΔABC中,∠ACB=90°,CD⊥AB与D,AC=6,BC=8,则 AB= ,CD= ,AD= ,BD= 第1题图第2题图 2、如图□ABCD中,EF∥AB,DE:DA=2:5,EF=4,则CD的长为。 3、如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD , AB∥CD,AB=2米,CD=5米,点P到CD的距离是3米,则P到 AB的距离是米。 第3题图第4题图 4、如图,在河两岸分别有A、B两村,现测得A、B、D在一条直线 上,A、C、E在一条直线上,BC//DE,DE=90米,BC=70米,BD=20 米,则A、B两村间的距离为。 5、如图,AC⊥AB,BE⊥AB,AB=10,AC=2,用一块三角尺进行如下 操作:将直角顶点P在线段AB上滑动,一直角边始终经过点C, 另一直角边与BE相交于点D,若BD=8,则AP的长为 第5题图第6题图 6、如图,在正方形ABCD中,F是AD的中点,BF与AC交于点G, 则△BGC与四边形CGFD的面积之比是 7、如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有对。 8、如图,梯形ABCD中,AD∥BC(AD<BC),AC、BD交于点O,若 S S OAB25 6 = ?梯形ABCD 则△AOD与△BOC的周长之比为 第7题图第8题图 9、如图,D为△ABC的边AC上的一点,∠DBC=∠A,已知BC=2, △BCD与△ABC的面积的比是2:3, 则CD的长是 第9题图第10题图 10、如图,已知AD∥BC,连结CD交AB于E,且AE∶EB=1∶3 EF∥BC交AC于F,S△ADE=2cm2,则S△BCE= ,S△AEF= . 11、如图,已知ΔABC中,AD为BC边中线,E为AD上一点, 且CE=CD,∠EAC=∠B,求证:ΔAEC∽ΔBDA, DC2=AD?AE 12、如图、在等边⊿ABC中,P为BC边的一点,D为AC上的一点, 且∠APD= ?0 6,BP=1,CD= 3 2 ,求⊿ABC的边长. 13、如图,∠ACB=∠ADC=90°,AC=6,AD=2.问当AB的长为 多少时,这两个直角三角形相似. 14、如图,在⊿ABC中,∠ACB = ?0 6,点P是⊿ABC内的一点, 使得∠APB =∠BPC=∠CPA ,且PA=6,PB=8,求PC. 15、如图,在△ABC中,已知CD为边AB上的高,正方形EFGH的 四个顶点分别在△ABC上。求证: EF CD AB 1 1 1 = +.

相似三角形的综合应用(培优提高)

相似三角形的应用 【学习目标】 1、探索相似三角形的性质,能运用性质进行有关计算. 2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【知识回顾】 一、相似三角形的性质 (1)对应边的比相等,对应角相等. (2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方...... . (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 二、相似三角形的应用: 1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等 3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等. 【典型例题】 例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少? 【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少? 例2:阅读以下文字并解答问题: 在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高 A B C Q M D N P E

度.在同一时刻的阳光下,他们分别做了以下工作: 小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1). 小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米. 小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米. 小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m . (1)在横线上直接填写甲树的高度为 米. (2)求出乙树的高度(画出示意图). (3)请选择丙树的高度为( ) A 、6.5米 B 、5.75米 C 、6.05米 D 、7.25米 (4)你能计算出丁树的高度吗?试试看. 【同步练习】如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度. 图1 图2 图3 图4

相关主题
文本预览
相关文档 最新文档